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Abstract
The high incident and mortality rate in African American patients 

reflects the racial disparity in prostate cancer (PCa). African American 
men are affected by several non-biological and biological factors that 
increase their susceptibility to develop aggressive PCa compared with 
Caucasian men. Here, we provide a general view of some factors that 
impact the outcome, focusing on socio-economic factors and with more 
detail on a molecular perspective covering the mutations, polymorphisms, 
or epigenetic changes that influence cell proliferation/death balance, 
androgen pathway and immune response involved in PCa racial disparity. 
Moreover, we provide an overview of how non-biological and biological 
factors are interconnected in properly managing diseases. 
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Introduction
Prostate cancer (PCa) is the most common cancer diagnosed in men and 

the fifth leading cause of death worldwide [1]. The incidence among African 
American (AA) men in the US is 60% higher compared with their Caucasian 
(CA) counterparts, and the mortality rate is 2.5-fold increased [2, 3]. AA men 
present at the diagnosis with more aggressive disease, worst prognosis, and 
worst therapeutic response with a higher risk of recurrence [4-6]. In addition, 
AA patients exhibit more severe side effects of conventional therapies than 
their CA counterparts [7]. Although socio-cultural disparities are often 
associated with PCa outcomes in AA patients, several other biological factors 
are also involved. 

Among the non-biological factors that impact PCa treatment and outcome 
are socioeconomic status, lack of access to adequate health, physician-
patient barrier communication, lifestyle, and environment. Biological factors, 
including germline polymorphisms, family history, hormonal levels, and 
molecular alterations, contribute to race-specific prostate cancer development, 
incidence, and clinical outcome. 

Socio-Cultural Factors in Racial Disparities of Prostate 
Cancer

One of the first barriers involved in the correct prevention, diagnosis, and 
treatment of PCa, in general, is the lack of knowledge related to genitourinary 
health and the risk factors involved in the development of PCa, including 
age, family history of PCa, sexually transmitted disease history, smoking, 
diet, among others according to American Cancer Society (cancer.org). In 
addition to this, other sociocultural factors involved in the PCa disparity in 
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frequency of this mutation [20]. However, there is limited 
support for an association in AA men.

HPC1.   Hereditary prostate cancer 1 is localized at 
1q24-31; several studies suggest that HPC1 increases the 
risk of hereditary PCa development in AA men [21, 22]. 
Furthermore, in the loci of HPC have been identified several 
candidates that contribute to susceptibility, such as HPCX at 
Xq27-28 and RNASEL at 1q25 [23]. While HPCX variants 
are associated with an increased risk of PCa, variants in 
RNASEL contribute to susceptibility to the early onset of the 
hereditary form of PCa [23].

Apoptotic genes: Cell cycle regulation is disrupted in 
cancer by the imbalance between cell growth and cell death; 
many genes related to apoptotic functions are altered in PCa 
as described as follows: 

Anti-apoptotic BCL2. BCL2 protein plays a crucial role 
in cancer development and progression and exhibits an anti-
apoptotic effect in cancer cells. BCL2 expression in PCa is 
associated with increased resistance to therapies. AA men 
present higher expression of BCL2 compared with their CA 
counterparts. Thus, the overexpression of BCL2 in AA men 
may participate in prostate tumor growth and aggressiveness 
[24].  It was reported that a functional single nucleotide 
polymorphism (c.-938C>A, rs2279115) in the inhibitory 
P2 promoter of BCL2 results in altered transcription factor 
binding and expression [25]. While the BCL2 -938C allele was 
significantly associated with increased P2 promoter activity, 
which results in decreased BCL2 transcriptional activity and 
protein expression [26, 27], the BCL2-938 CC genotype (CA 
allele +AA allele) is associated with an increased risk of 
biochemical recurrence [28]. In 2014, Renner et al., showed 
a strong association between the BCL2-938 CC genotype and 
reduced survival in PCa patients [29]. However, the study by 
Bachmann et al., reported an association of the BCL2-938 
AA allele with a worse outcome in PCa patients [26]. The C 
allele is the most common in AA populations. The cause of 
this discrepancy is unclear. 

MDM2. This ubiquitin ligase protein is involved in several 
functions, such as promoting the degradation of the tumor 
suppressor p53, DNA repair, and apoptosis [30, 31]. MDM2 is 
significantly highly expressed in CA patients compared with 
AA, and the overexpression in PCa is associated with cancer 
progression in a mechanism dependent on p53 degradation 
[32]. However, the expression in AA patients is associated 
with poor prognosis. Bond et al., reported a single nucleotide 
polymorphism (SNP309), which enhances transcriptional 
activation of MDM2 downregulating p53 pathway [33]. In 
addition, Wang et al., reported no difference in the expression 
level of SNP309 between AA and CA patients [34]. Still, 
interestingly, in a meta-analysis performed by Yang et al., 
they showed that the MDM2 309G variant was markedly 

AA men include poor interpersonal communication between 
physicians and patients, including physicians' failure to 
provide necessary information and racism, patients' distrust 
in the health care system, and lack of adherence to therapy. 
Even if the barriers mentioned above are overcome, the 
socioeconomic status of the patients impact directly in the 
affordability of the treatment, and consequent outcome; 
indeed, socioeconomic status in AA patients diagnosed 
with PCa is directly associated with increased mortality and 
morbidity [8, 9]. Furthermore, fear of diagnosis and treatment 
strategies and poor health consciousness contribute to the late 
diagnosis. These and other factors were reviewed in-depth 
elsewhere [10]. Socio-cultural and biological factors influence 
dietary habits; however, the exact molecular mechanisms 
of how these act remain unclear. In particular, vitamin D 
deficiency is associated with increased susceptibility to 
developing prostate cancer in AA men [11]. On the other 
hand, high calcium intake is associated with aggressiveness 
of PCa [12].

Molecular Basis of Racial Disparities in Prostate 
Cancer 

Molecular factors such as genetic modifications, including 
gene polymorphism and mutations, epigenetic alterations, 
dysregulation of miRNAs, and over-activation of several 
signaling pathways, are involved in PCa disparities [13].

Genetic Variants

Since PCa is one of the most recognizable inherited 
malignancies associated with hereditary breast and ovarian 
cancer (HBOC) and Lynch syndromes (LS), some germline 
polymorphisms and mutations are involved in the disparity 
susceptibility to develop PCa in AA men as described below:

Chromosome 8. The deletion of the short arm of 
chromosome 8 is frequently found in prostatic intraepithelial 
neoplasia and adenocarcinomas, which participate in 
prostate cancer carcinogenesis [14, 15]. Although the exact 
mechanisms by which alterations of 8q24 participate in PCa 
development are unclear, some polymorphisms may influence 
the expression of neighbor genes, such as c-MYC [16]. The 
allelic variant of 8q24 is reported to be associated with the 
risk of PCa in young AA men [17], and alteration of 8q24 is 
associated with hereditary PCa in AA men. 

MSR1. Macrophage scavenger receptor 1 (MSR1), also 
known as CD204, is a multifunctional receptor that binds 
modified self- and pathogen-associated antigens. MSR1 plays 
an important role in maintaining immunological tolerance 
[18]. MSR1 gene is associated with germ-line alterations in 
8p and prostate carcinogenesis. Several variants of MSR1 are 
found to be associated with PCa susceptibility in AA men 
[19]. A specific mutation in the MSR1 gene that results in 
520G>T is associated with PCa, and AA men exhibit a high 
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associated with a low risk of developing PCa and slower 
clinical progression in CA men [35]. Thus, some controversies 
need to be studied more deeply. 

Caveolin-1. This structural protein is involved in 
tumor progression and metastasis and was reported to 
participate actively in radio-resistance acquisition [36]. 
Since caveolin-1 is significantly upregulated in PCa cells 
and mediates downstream signaling mechanisms related to 
the development of aggressive PCa, caveolin-1 was proposed 
as a prognostic biomarker to monitor tumor radioresistance 
[36]. Furthermore, caveolin-1 is involved in the suppression 
of apoptosis by suppressing c-MYC. In addition, Caveolin-1 
was found overexpressed in prostate adenocarcinoma cells and 
is implicated in the progression of androgen-dependent PCa 
to androgen-independent [37]. It is known that a high level of 
caveolin-1 is associated with poor treatment outcomes [36]. 
AA men diagnosed with PCa exhibit a significant increment in 
the level of caveolin-1 compared with their CA counterparts 
[38]. Although caveolin-1 polymorphism rs7804372 is 
associated with the risk of several types of cancer (10.4236/
ym.2020.43020), there is no current information on AA risk 
to PCa with this polymorphism.

Growth factors and receptors:  As a counterpart to 
balance cell death, cell survival, and proliferation are driven 
by several growth factors. Epidermal growth factor and 
receptor (EGFR) and EPH receptor (EPHB2) are the most 
common receptors involved in the racial disparity of PCa. AA 
men exhibit a higher level of IGF-1 and lower levels of IGFB-
3 that may participate in tumor growth and progression. IGF 
and ligands are effectors of AKT signaling, activating PCa 
development, metastasis, and anti-apoptosis [39]. 

EGFR. The EGFR signaling pathway is one of the 
most critical pathways to PCa development. This pathway 
is implicated in the progression of PCa from androgen-
dependent to androgen-independent and is associated 
with metastasis [40]. Several studies have identified racial 
differences in dinucleotide (CA)n repeat polymorphisms in 
intron 1 of the gene [41]. The number of CA repeats is related 
to transcriptional activity. Thus, the longer allele is associated 
with reduced protein expression. In contrast, shorter alleles, 
which are more frequent in AA men, are associated with 
overexpression and PCa development [42]. 

EPHB2. The gene encodes a tyrosine kinase receptor and 
is a tumor suppressor gene. Somatic inactivating mutations 
occur in approximately 10% of sporadic tumors. The 
nonsense mutation K1019X (3055A-T) is more frequently 
found in AA men and is associated with an increased risk of 
PCa development. [43].

Androgens pathway. Several studies have shown that 
sex steroid hormone levels are also implicated in the racial 

disparities in PCa. These studies have shown that AA men 
exhibit approximately 11-15% higher levels of testosterone, 
13% higher free testosterone, and higher activity of 5-alpha 
reductase than CA men [44-46]. Although there is no 
established relationship between the level of circulating 
androgens and PCa, the level of androgens is considered a 
risk factor. Furthermore, mutation or alteration in several 
genes involved in androgen biosynthesis may contribute to 
the racial disparity. 

Androgen receptors. Androgens bind androgen 
receptor (AR), inducing several androgen-regulated genes 
required for prostate cell growth and maintenance. AR 
is a transcription factor, a gene mapped in Xq11-12 and 
composed of 8 exons. Exon 1 encodes the N-terminal domain, 
which is a transactivation domain. This domain controls the 
transcriptional activation of the receptor and exhibits several 
highly repetitive DNA sequences. Polymorphic trinucleotide 
repeats (CAG) are associated with PCa disparity. One study 
performed in 587 cases of PCa compared with 588 controls, 
which involved 95% of CA patients, showed that shorter 
CAG repeat sequence was associated with metastasis and 
high grade of the disease [47]. In addition, Do et al., analyzed 
CAG repeat length in 109 cases of PCa and found that the 
median CAG repeat length was 25 in patients with early status 
of PCa, while in advanced status, the CAG repeat length was 
present between 22-23. Further, they found a significant 
correlation between these CAG repeats and the age at onset 
of the disease, suggesting that these repeats may be associated 
with an increased risk of developing PCa [48]. On the other 
hand, Sartor et al., analyzed the presence of these repeats in 
130 CA and 65 AA average men, finding that AA men exhibit 
significantly shorter repeats than their CA counterparts [49]. 
Thus, shorter CAG repeats may explain the occurrence at a 
younger age and the rapid progression of PCa in AA men.  

Genes involved in androgen biosynthesis. Polymorphism 
in genes involved in androgen biosynthesis and metabolism 
may modify the expression of androgen levels, contributing 
to racial disparity. Some of these polymorphism genes are 
the following:

CYP17. The CYP17 gene is located on chromosome 
10 and encodes the cytochrome P450c17a enzyme, which 
participates in the steroid biosynthesis pathway [50]. The 
polymorphic T-to-C substitution in the 5’ promoter region 
results in A1(T) and A2(C) alleles [51]. One study conducted 
by Wadelius et al., evaluated the association between the 
polymorphism in the CYP17 gene and prostate cancer in 178 
CA patients diagnosed with PCa using as control 160 age-
matched control individuals. After evaluating the presence 
of the polymorphism in blood samples, they reported the 
frequency of the CYP17 A1 allele was significantly higher 
in prostate cancer patients [52]. Supporting the results 
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as mentioned earlier, Habuchi et al., published a study 
performed in a Japanese population that included 252 
prostate cancer patients, 202 benign prostatic hyperplasia 
(BPH) patients, and 131 male controls, which found that the 
A1 allele is associated with an increased risk of both prostate 
cancer and BPH, but not influence in the status of the disease 
[53]. Despite several studies reporting that the A1 allele is 
associated with an increased risk of PCa in CA and Japanese 
patients [52, 53], other studies show the opposite. Lunn et 
al., performed a study in 108 CA prostate cancer cases where 
they found that the A2 allele (genotype A1/A2 and A2/A2) 
was the most frequent in CA PCa patients compared with 
control urology patients [54]. Contrary to the report in CA, 
Ntais et al., by performing a meta-analysis of 10 studies 
that included 2404 patients with prostate cancer and 2755 
controls, found that while the allele A2 seems not to affect 
the predisposition to develop PCa in CA people, in AA men 
the presence of A2 allele is associated with PCa development 
[55]. In addition, and supporting this finding, Kittles et al., 
by analyzing the presence of the A2 allele (genotype A1/A2 
and A2/A2) in Nigerian (n=56), CA (n=74), and A-A (n=111) 
healthy male as a control found that AA men homozygous for 
the allele A2 present a higher risk to develop PCa [56]. Thus, 
the association is not conclusive.

CYP3A4. A germinal variant (A to G) in the 5’ regulatory 
region of the gene determines the variant CYP3A4-V. One 
study conducted by Rebbeck et al., on 230 Caucasians shows 
that CYP3A4-V is associated with the development and 
aggressiveness of PCa in CA but not in AA men [57]. In AA 
men, the variant CYP3A4 G is more frequent and is associated 
with poor prognosis [58]. 

CYP19A1. The CYP19A1 gene is mapped in 15q21.1 
and encodes the enzyme aromatase. At least 30 SNPs have 
been identified and associated with a high estradiol level in 
men's serum. The polymorphisms rs2470152, rs12439137, 
rs3751592, and rs2470164 are associated with a high risk of 
PCa in both AA and CA. [59]. However, CA men bearing 
rs2470164 polymorphism present a higher risk. 

SRD5A2. This gene encodes steroid 5-α reductase type 
2, which converts testosterone to DHT and is exclusively 
expressed in the prostate [60]. SRD5A is highly polymorphic 
in AA men, and SRD5A2 TA repeats are exclusively present 
in high-risk AA men. Other variants, such as V89L and 
A49T, are involved in converting DHT from testosterone; 
the first variant decreases the production, while the second 
increases the production in AA men [61]. 

The HSD3B family, HSD3B1 and HSD3B2, encode 
3β-hydroxysteroid dehydrogenase type 1 and 2, respectively. 
A notable variation that frequently occurs in prostate cancer is 
the N367T (rs10473003) polymorphism in HSD3B1. While 

this variation is more prevalent in CA than in AA, it does 
not significantly modify its activity compared with the wild 
type, underscoring its importance in prostate cancer genetics 
[62]. The presence of (TG)n(TA)n(CA)n dinucleotide repeats 
in the intron 3 of HSD3B2 gene presence variation between 
racial populations, the longer sequences are associated with 
faster degradation of DHT. In contrast, the shorter alleles 
are associated with PCa risk and aggressiveness in CA men 
[63]. Two SNPs were reported in HSD3B1 (rs1819689 and 
rs1538989), which are more frequent in AA men and are 
associated with PCa in that racial population [59].  

miRNAs. MicroRNAs are endogenous non-coding RNA 
that regulate gene expression. The correct regulation of the 
expression at transcriptional and post-transcriptional levels 
by miRNAs is required for the basic cellular process. These 
small sequences of oligonucleotides could function as a 
tumor suppressor or oncogenes according to their expression 
level [64, 65]. Since the miRNAs are specific to the type 
of cancer, tumor grade, and level of metastasis, miRNAs 
have the potential to be used as a stage-specific biomarker 
of cancer [66]. Some miRNAs such as (miR-21, miR-17-
5P, miR-191, miR-29-b2, miR-223, miR-199-a1, miR-146, 
miR-181-b1, miR-20a, miR-32, miR-92-2) are up-regulated 
in PCa but also are up-regulated in other solid tumor. Thus, 
these miRNAs are not specific but belong to the signatures of 
some solid cancers [67]. Recently, Sharma et al., published 
a review identifying a panel of miRNAs differentially 
expressed in PCa. These miRNAs include miR-141, miR-
375, miR-221, and miR-21 and are the most common 
dysregulated miRNAs in prostate cancer independent of the 
racial disparity [66]. The role of these miRNAs in PCa is 
shown in Table 1. Calin et al., reported at least five miRNAs 
that are differentially expressed between AA and CA patients 
diagnosed with PCa ( miR-26a, miR-30c-1, miR-1b-1, miR-
219, and miR-301) [68]. In addition, Ren et al., working with 
a cohort of 27 cases of radical prostatectomy PCa samples, 
reported that the expression of miR-30c and miR-219 were 
downregulated in PCa, but miR-21 and miR-30c were 
significantly downregulated in PCa in AA cases compared 
with CA cases. They also found the downregulation of let-
7c in PCa stroma cells was significantly associated with 
metastasis [69]. However, it is necessary to note the limited 
number of cases analyzed in the study. Another group using a 
combined platform intergraded by cancer cell lines, transgenic 
mice, and human tissue samples has shown that loss of miR-
34b expression occurs in AA patients more frequently than 
in CA, and the loss of the expression is associated with PCa 
progression in a SOX2 dependent mechanism [70]. Working 
with the AA and CA cancer cell lines model, Theodore found 
that  mir-26a is significantly expressed in AA compared with 
CA [71].
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Epigenetic Changes
Epigenetic processes regulate gene expression, a 

reversible process that, contrary to mutation, consists of DNA 
methylation, modification of histones, chemical modification, 
and chromatin remodeling that result in changes in gene 
expression without modification of the DNA sequences—
epigenetic process blockage of the access of transcriptional 
factors to the target genes promoter. Thus, genes are not able 
to be transcribed. Since the epigenetic changes are reversible, 
they allow the development of new opportunities for therapies 
to recover the initial condition. Several genes exhibit aberrant 
methylation in PCa. Among these genes are found GSTP1, 
MGMT, CDH1, CD44, CDKN2A, APC, RARβ, RARRES1, 
and RASSF1. GSTP1 gene is localized in chromosome 11q13 
and encodes glutathione S-transferase. Hypermethylation of 
GSTP1 seems to be exclusive of PCa cells and is present at all 
stages of PCa. MGMT is localized in chromosome 10q23 and 
encodes DNA methyltransferase enzyme. Its methylation was 
reported in PCa patients and cell lines and is associated with 
carcinogenesis [72]. Since both enzymes are involved in cell 
detoxification and DNA repair, they may be involved in the 
genomic instability of the cells. CDH1 gene is another gene 
hypermethylated in PCa, which encodes E-cadherin protein 
that participates in cell-cell adhesion. Hypermethylation 
of CDH1 results in loss of E-cadherin expression, which 
is associated with metastasis development [73, 74]. CD44 
hypermethylation is found in 78% of patients diagnosed 
with PCa, a characteristic feature of epithelial-mesenchymal 
transition [74, 75]. CCND2 promoter hypermethylation is 
found in 32% of PCa, and the high methylation level of the 
gene is correlated with tumor aggressiveness [75, 76]. APC 
protein encoded by the APC gene participates in cell cycling 
regulation, migration, and differentiation. The silencing 
of the APC protein product of promoter methylation is 
associated with high-grade and advanced stages of PCa [77]. 
Other genes were reported to be hypermethylated in PCa, 
such as the retinoic acid receptor (RARβ), RARRES1, and 

RASSF1, in which proteins are found in low levels and are 
involved in PCa development [78-80]. On the other hand, 
hypomethylation is associated with cancer metastasis and 
is frequently found in repetitive sequences of LINE-1 in 
PCa metastasis [81, 82]. Higher expression of urokinase 
plasminogen activator, heparanase, cytochrome p450s, 
WNT5A, S100P, and cysteine-rich intestinal protein 1 due 
to promoter hypomethylation was reported in PCa [83, 84]. 
Furthermore, aberrant histone methylation is found in PCa 
patients. Chervona et al., found reduced levels of H3K4me3 
and H3K18Ac in PCa, which were associated with relapse 
and negative prognosis [85].

Fusion Gene in Racial Prostate Cancer Disparity
Gene rearrangement involving the androgen-regulated 

gene transmembrane protease serine 2 (TMPRSS2) and 
erythroblastosis virus E26 oncogene homolog (ERG) is the 
most common fusion gene in PCa. Its presence is found in 
approximately 50% of the patients diagnosed with PCa. 
However, this aberration is more frequently found in CA 
than in AA men, whose frequency is 31% [86]. Although 
ERG alteration is more commonly found in CA patients, AA 
patients with no ERG alteration exhibit higher-grade index 
tumors [87]. TMPRSS2-ERG fusion gene is associated with 
an aggressive tumor and is seen to be generated by gamma-
irradiation-induced DNA double-strand breaks [88]. In 
addition, aberrant androgen receptor signaling may induce 
chromosome aberration.   

Immune System in Prostate Cancer Disparity
The tumor microenvironment is constituted by 

various soluble factors such as cytokines, interleukins, 
proteins, several immune cells such as natural killer (NK), 
lymphocytes, macrophages, and non-immune cells such 
as fibroblast and endothelial cells. The fact that AA men 
develop more frequently PCa, and more aggressive diseases 
compared with CA men suggests that an inappropriate 

Table 1: Common dysregulated miRNAs in prostate cancer
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tumor microenvironment may contribute to the increased 
disparity. A study conducted by Eastham et al., found that 
AA specimens exhibit higher inflammation compared 
with CA specimens in prostate biopsy specimens obtained 
from patients diagnosed with PCa [89]. In another study, 
Wallace et al., using microarray technology, evaluated the 
gene expression profile in PCa primary tumors obtained 
from a cohort of 69 patients (AA=33 and CA=36). They 
found that autocrine mobility factor receptor (AMFR), 
chemokine receptor 4 (CXCR4), and matrix metalloprotease 
9 (MMP9) were the most differentially expressed genes [90]. 
In 2014, Kinseth et al., in a study integrated by 17 pairs of 
arrays for AA and CA, found a significant difference in the 
gene expression between both populations. Interestingly, 
most genes differentially expressed were associated with 
tumor-adjacent stroma, not tumor tissue [91]. Among the 
genes differentially expressed and associated with tumor 
tissue, genes involved in immune-related pathways were 
overexpressed [91], while from the genes differentially 
expressed in PCa stroma tissue, approximately 20% of them 
were involved in immune response, including cytokines such 
as TGF-β and IL-10 [91]. Interestingly, these cytokines are 
involved in immune suppression and PCa progression. 

Another protein that seems to be involved in immune racial 
disparity is the well-known transmembrane protein MHC 
class I polypeptide-related sequence A (MICA). This protein 
participates in the surveillance and antitumor immunity 
by interacting with NK cells, cytotoxic T, and other T cell 
subsets expressing NKG2D receptor [92, 93]. Even though 
the expression of MICA allows immune cells to recognize 
tumors, some tumor cells exhibit an evasion mechanism by 
which MICA is cleaved from the membrane of the cancer. 
This soluble form (sMICA) binds the NKGD2 receptor, 
which is internalized. Thus, sMICA impairs the activation of 
immune cells [94, 95]. In 2004, Wu et al., reported a positive 
correlation between the level of sMICA and deficiency in NK 
function in patients with advanced PCa. Moreover, the group 
proposes sMICA as a novel biomarker for prostate cancer 
[96]. Recently, Sakiyama et al., in a cohort composed of a 
total of 52 patients diagnosed with PCa, including AA and CA 
men, found that prostate tumor tissues express a higher level 
of MICA compared with normal tissues. Furthermore, the 
MICA expression at molecular and protein levels was lower 
in AA patients compared with CA, and low levels of MICA 
were associated with poor prognosis [97]. Interestingly, 
sMICA was found in prostate cancer cell lines representative 
of CA but not in cell lines representative of AA. Thus, MICA 
expression participates in racial disparity. Another entity 
suggested to participate in immune race disparity in PCa is 
benign ethnic neutropenia, which is very frequent in AA [98, 
99]. In 2012, Sadeghi et al., reported that neutropenia is an 
independent risk factor for developing poorly differentiated 

PCa among AA men [100]. However, more studies need to be 
performed to confirm the strength of this association.

Conclusion
Several factors are involved in the racial disparities 

observed between AA and CA men. Some increase the 
susceptibility to developing PCa, and others are related to 
aggressiveness and capacity to induce metastasis, resulting 
in the worst outcome. Among these factors, we can find 
mutations and gene variations such as polymorphisms, 
alteration of miRNA expression, aberrant activation of 
signaling pathways, epigenetic changes, and altered protein 
expression. Although for therapy use or the development of 
new ones, it is essential to know the molecular mechanisms 
implicated in the pathophysiology of PCa, some fundamental 
limitations still exist in the diagnosis and successful treatment. 
Due to the molecular complexity of PCa and the difficulties 
of therapies in targeting genetic factors such as mutations or 
polymorphisms, primary therapies are focused on surgical 
removal of the prostate combined with radiotherapy or 
chemotherapy to limit cancer cell proliferation. However, 
one of the best approaches that lead to successful therapies 
for cancer in general is preventive medicine since this allows 
for early diagnosis.

Preventive medicine encompasses educational strategies 
to draw attention to risk factors such as ancestry-related 
predisposition and environment. Recently, Garraway IP et al.,  
[101] published a guideline for early screening to detect PCa
in AA men, containing key points such as screening for blood
PSA in the early 40s and family history. Furthermore, other
strategies in preventive medicine include education related
to dietary habits, smoking, and exposure to environmental
pollutants. In conclusion, the combination of managing non-
biological and biological factors involved in PCa is essential
to eliminate racial disparities in diagnosis and treatment in
AA men.
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