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Abstract 

Pulmonary tuberculosis resembles cystic fibrosis and other chronic 

inflammatory lung diseases in its ability to cause chronic tissue 

destruction, hypoxia, tissue acidosis, and leakage of blood into the 

surrounding milieu.  Destructive and inflammatory changes of the lung in 

diseases such as cystic fibrosis support the increased growth of the 

commensal Prevotella, a bacterial commensal which requires 

polyphosphate and thrives under inflammatory conditions.  Since the 

nutritional needs of Prevotella are in some ways mirrored by those of the 

pathogens Pseudomonas aeruginosa and Berkholderia cepacia, it is 

possible that Prevotella may serve as a marker for these destructive lung 

pathogens.  The biochemical milieu of pulmonary tuberculosis resembles 

that of other chronic inflammatory lung diseases in its ability to cause 

inflammation, destruction, tissue acidosis, and bleeding, yet in pulmonary 

tuberculosis, contrary to expectation, Prevotella species are decreased 

rather than increased.  It is hypothesized that the M. tuberculosis 

exopolyphosphatase may serve to reduce polyphosphates required by 

Prevotella species.  Since the nutritional needs of  P. aeruginosa and B. 

cepacia resemble those of Prevotella, it is reasonable to hypothesize that 

addition of exopolyphosphatase might also hamper the growth of these 

dangerous lung pathogens, as well.   
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Introduction 

In some respects, the process of decline in pulmonary 

tuberculosis resembles that of cystic fibrosis and other 

chronic inflammatory conditions of the lung.  In such 

conditions there may be lung tissue destruction, 

hypoxia, local tissue acidosis, leakage of blood into the 

airway, or loss of weight.  Bacterial pathogens involved 

in pulmonary inflammatory processes (including 

Pseudomonas aeruginosa and Berkholderia cepacia in 

cystic fibrosis and various causes of inflammation and 

bronchiectasis; Mycobacterium tuberculosis in 

pulmonary tuberculosis) often have similar nutritional 

requirements for iron and polyphosphate.  Acquisition 

of polyphosphate depends on the availability of ATP 

and bacterial polyphosphate kinase, and leakage of 

blood and heme into the airway supplies the 

requirement for iron in ample measure. Out of the 

bacterial pathogens noted above -- P. aeruginosa, B. 

cepacia, and M. tuberculosis - all utilize heme for iron, 

and all depend on polyphosphate kinase to synthesize 

polyphosphate [1-8]. 

 

Since the composition of pulmonary microbiota depends 

on local nutritional, inflammatory, and infectious 

factors, it should come as no surprise that inflammatory 

disease processes such as cystic fibrosis, bronchiectasis, 

and toxic lung exposure select for pulmonary 

commensals which require iron and polyphosphate for 

survival and growth and which are capable of thriving in 

an acidic environment.  Prevotella species conform to 

expectations in both respects: they depend on 

polyphosphate and iron, and they are capable of 

growing at lower pH than are many other commensals.  

Accordingly, commensal Prevotella species are 

increased in cystic fibrosis, in toxic insult to the lung, 

and in other pulmonary infectious/inflammatory 

conditions [9-16].   

 

Given the proclivities of Prevotella, the presence of this 

commensal may serve as a marker for certain 

environmental stress conditions within the lung. Since 

Prevotella requires heme iron and polyphosphate for 

growth and is capable of thriving at low pH, its 

increased dominance as a commensal in BAL fluid 

might suggest the increased presence of iron, blood, 

polyphosphate, and acid within the lung.  Similarly, 

Prevotella species might be useful as a marker for 

increased risk infection by P. aeruginosa or B. cepacia, 

lung pathogens whose nutritional needs resemble those 

of Prevotella, and which may promote acidosis of local 

tissue.  

 

Although many chronic inflammatory conditions of the 

lung tend to lead to increased growth of Prevotella, 

pulmonary tuberculosis is an exception to the rule.  As a 

pathogen, M. tuberculosis would seem to meet all of the 

presumed criteria for increased growth of Prevotella 

species: M. tuberculosis requires both heme iron and 

polyphosphate, induces leakage of blood into the 

airway, and is capable of producing an acidic, 

inflammatory environment within the lung.  In such an 

environment, one might expect that Prevotella species, 

and perhaps also Pseudomonas or Berkholderia species, 

would thrive.  Instead, the opposite is true.  In 

pulmonary tuberculosis, Prevotella species are 

decreased rather than increased, and superinfection by 

organisms such as Pseudomonas or Berkholderia is 

much rarer in pulmonary tuberculosis than in cystic 

fibrosis and other causes of bronchiectasis. [6,17-20] 

Why might this be?   

 

Structural differences aside, one answer is suggested by 

the unique ability of M. tuberculosis to adjust its 

metabolism in order to adapt to starvation conditions, 

such as that of the oxygen and inorganic phosphate-

limited environment of the pulmonary granuloma.  This 
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metabolic adaptation, or “stringent response,” is 

controlled by the enzyme RelMtb.  Inorganic phosphate 

starvation, hypoxia, and polyphosphate accumulation 

activate transcription of RelMtb, which upregulates 

synthesis of the small molecules involved in the 

stringent response: guanosine 5’-diphosphate 

3’diphosphate (ppGpp) and guanosine 5’-triphosphate 

3’-diphosphate (pppGpp), together denoted (p)ppGpp.  

(p)ppGpp, in turn, serves as a second messenger for the 

stress response [21].  The result is decreased growth and 

decreased biofilm formation. 

 

An important aspect of the stringent stress response in 

M. tuberculosis is that it is triggered both by inorganic 

phosphate deficit and also by polyphosphate excess.  In 

M. tuberculosis, polyphosphate is synthesized via the 

action of polyphosphate kinase and hydrolysed via the 

action of exopolyphosphatase 2 (ppx2).  When 

inorganic phosphate is scarce in the local environment, 

the stringent response regulates growth.  On the other 

hand, when polyphosphate reaches a critical threshold, 

once again, the stringent response regulates growth 

[22,23].  

 

Chuang et. al. (2015) found that, in M. tuberculosis, in a 

ppx2 knockdown strain, excess accumulation of 

polyphosphate resulted in growth restriction and 

reduced biofilm formation [22,23]  The resultant 

phenotype is one of growth regulation on both ends of 

the spectrum.  M. tuberculosis differs from pathogens 

such as P. aeruginosa and B. cepacia in its ability to 

persist for many years in a latent or semi-latent state 

within the lung.  It is possible that the regulation of 

growth by M. tuberculosis during times of plenty might 

contribute to the ability of M. tuberculosis to evade host 

immunity, thereby persisting over extended periods of 

time in a latent or semi-latent state. [24].   

 

In pulmonary infection by M. tuberculosis, 

polyphosphate overproduction triggers the stringent 

response to restrict bacterial growth, which in turn 

reduces subsequent polyphosphate production by the 

organism.  Ongoing bacterial exopolyphosphatase 

activity hydrolyzes polyphosphate, which enables 

growth, but growth, in turn, requires further production 

of polyphosphate.  The effect is a tightly regulated 

system in which less polyphosphate may be available in 

the surrounding milieu.   

 

This polyphosphate regulating behavior of M. 

tuberculosis could have implications for predisposition 

to superinfection, as well as for growth of associated 

microbiota such as Prevotella.  In pulmonary 

tuberculosis, a commensal such as Prevotella would not 

be expected to lack for heme iron and would not be 

hampered by the inflammatory milieu. Despite 

conditions which might seem to support the growth of 

Prevotella, the ongoing activity of mycobacterial 

exopolyphosphatase and to ongoing growth restriction 

during times of excess polyphosphate production appear 

to suppress the growth of Prevotella instead. It is 

tempting to associate the observed growth suppression 

of Prevotella with exopolyphsophatase-induced scarcity 

of readily available polyphosphate.   

In contrast to the observed suppression of Prevotella in 

the context of M. tuberculosis, in cystic fibrosis and in 

chronic traumatic/toxic lung damage, the situation is 

different. With cystic fibrosis and with traumatic lung 

damage, the underlying cause of lung damage is 

genetic/metabolic or traumatic rather than infectious; 

regulatory processes and exopolyphosphases of M. 

tuberculosis do not play a role in limiting environmental 

polyphosphate; and Prevotella species thrive within the 

lung.   
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The most interesting aspect of this hypothesis may 

relate to its application to bacterial pathogens of the 

lung which resemble Prevotella with respect to their 

nutritional needs and environmental tolerances. For 

what can be said for Prevotella might also be said for 

pathogens such as P. aeruginosa and B. cepacia.  If  M. 

tuberculosis exopolyphosphatase can control the growth 

of Prevotella, perhaps it can limit the growth of 

Pseudomonas and Berkholderia species, as well.  This 

trait may hold potential for use of exopolyphosphatases 

in control of pulmonary infection in cystic fibrosis and 

in other chronic bronchiectasis producing conditions.   
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