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Exendin-4 Enhances GSIS By Upregulating Genes Related to Maturation, 
Glucose-Sensing Apparatus and Mitochondrial Oxidative Phosphorylation 
Machinery in hPSC-Derived Islets Without Increasing β-Cell Number
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Abstract
Emerging β-cell replacement with human pluripotent stem cell (hPSC)–
derived β-cells could provide remedial cell therapy for diabetes. Most 
in vitro differentiation protocols generated hPSC‐derived β-cells with 
immature phenotypes such as impaired or weakened glucose‐stimulated 
insulin secretion (GSIS) relative to primary β-cells. Evidence has shown 
the effectiveness of exendin‐4 in increasing β-cell mass and function in 
vivo. This study investigates the effect of exendin‐4 on maturation and 
functionality of hPSC‐derived β‐cells. Differentiation of two hPSC 
cell lines (HUES8 and iPSC824) into islets was carried out using a 3D 
differentiation protocol. 50 nM Exendin‐4 was added to the suspension 
culture during the last three days of differentiation. The gene expression 
patterns in both cell lines showed that expression of the pluripotent 
marker OCT4 was lost upon initiation of differentiation. The definitive 
endoderm marker SOX17 was transiently and significantly increased 
at Stage 1. PDX1, a marker of the pancreatic progenitor 1 started being 
significantly upregulated at Stage 3; while the β-cell specific markers 
including insulin, NKX6-1 were strongly induced at stage 5, and 6. In 
HUES8 there was no difference in c‐peptide secretion between low 
(2.8mM) and high (20 mM) glucose; suggesting a lack of functional β-
cells. While flow cytometry data showed no significant difference 
between control and exendin-4 treated groups in NKX6.1+/insulin+ (β-
cell markers), the addition of exendin‐4 significantly enhanced GSIS in 
both cell lines. This was associated with increased expression of 
maturation (NeuroD1, Six2, MAFA) glucose‐sensing (Glut2, GCK) 
and mitochondrial oxidative phosphorylation machinery (NDUSF1, 
NDUSF2) genes. In summary, we demonstrated for the first time in 3D 
differentiation of hPSC-derived β-cells that addition of exendin-4 
enhances GSIS without increasing β-cell number.

Keywords: Exendin-4; 3D differentiation; diabetes; GSIS; hPSC-derived 
β-cells.

Introduction
Diabetes mellitus, which affects more than 537 million people worldwide 

(www.idf.org) is characterized by impaired glucose metabolism that results 
from a defect in insulin secretion, action, or both [1]. The American Diabetes 
Association (ADA) has classified diabetes into two main categories, Type 
1 diabetes (T1DM) and Type 2 diabetes (T2DM) (American Diabetes 
Association 1997 Report). T1DM, also known as juvenile diabetes or insulin-
dependent diabetes is a result of a selective immune-mediated pancreatic β-cell 
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destruction leading to nearly complete deficiency of insulin 
production in the body and represents 5-10% of diabetic 
patients. T2DM, on the other hand, results from peripheral 
tissue insulin resistance and β-cell dysfunction and represents 
80-90% of diabetic patients [2-4]. Now it is well established
that T1DM and severe forms of T2DM commonly share an
important feature, a marked reduction in the number of the
pancreatic β-cells that negatively impacts insulin secretion
[5], suggesting that β-cell replenishment would be of an ideal
therapeutic option in both diseases in the future. Patients with
T1DM predominantly rely on exogenous insulin injections
to combat insulin deficiency [6]. Whilst the exogenous
insulin injections are considered as a life-saving treatment,
it remains unfortunately imperfect as it could result in acute/
severe hypoglycemia, and weight gain for many patients [7].
Cadaveric islet transplantation using Edmonton protocol has
demonstrated to be an effective treatment for T1DM, which
could allow temporal exogeneous insulin independence [8].
However, this islet transplantation approach is significantly
hindered by its high costs and healthy islet donor shortage
as well as a potential risk of tissue rejection [9]. Therefore,
transplantation option cannot be widely implemented in
clinical practice to the diabetic population. One of the
alternatives to resolve the cadaveric islet shortage is the
generation of surrogate and transplantable pancreatic β-cells
from pluripotent stem cells (PSC) due to their infinite self-
renewal capacity and ability to differentiate into derivatives
(cell types) of all three germ layers in the body.

In the context of diabetes therapy, patient specific 
PSC-derived β-cells also known as induced PSC (iPSC) or 
autologous PSC-derived β-cells would help to circumvent 
the inadequate islet supply and allogeneic immune rejection. 
Indeed, iPSC do not impose any ethical concerns as 
compared to human embryonic stem cells (hESC); making 
the appropriate choice for diabetes therapy. Moreover, 
iPSC-derived β-cells from patients with diabetes are also 
critical to gain a better understanding of the disease and its 
progression [10]. Over the last two decades, great effort has 
been concentrated by scientists on developing technologies 
and protocols to efficiently and reproducibly differentiate 
PSC into mono-hormonal insulin-expressing cells in vitro 
that show key features of a bona fide mature β-like cells 
capable of maintaining the physiological blood glucose 
setpoint following transplantation. Most in vitro protocols 
for differentiating PSC into insulin-expressing β-cells using 
specific soluble inducers or small molecules have produced 
hPSC-derived β-cells with an immature phenotype. This is 
characterised by impaired or weakened glucose-stimulated 
insulin secretion (GSIS) and low or absent expression of 
key mature transcription factors (e.g MAFA, NEUROD1, 
SIX2) as compared to primary β-cells [7, 11]. The reason and 
mechanisms behind the production of immature PSC-derived 

β-cells in vitro vary and are not fully understood. Evidence 
has shown that β-cell mitochondria play a central role in 
coupling glucose metabolism to insulin exocytosis. Therefore, 
the impairment of GSIS in hPSC-derived β-cells may be 
attributed to mitochondrial dysfunction. There is consensus 
that mitochondrial metabolism is a major determinant of 
insulin secretion from islet β-cells [12]. More specifically, 
in response to extracellular glucose, β-cells facilitate GSIS 
through increased mitochondrial oxidative ATP production 
[13-15], indicating that increased mitochondrial activity 
is a cellular component required for GSIS. Therefore, 
disruption of mitochondrial oxidative metabolism has been 
identified as an important contributor to impaired GSIS 
[16, 17]. Moreover, the paramount role of mitochondria in 
GSIS is demonstrated by the substantial positive correlation 
between mitochondrial membrane potential and GSIS [18] 
as well as by complete inhibition of GSIS when OXPHOS 
is suppressed [19]. Also, hPSC-derived β-cell clusters 
obtained in vitro are often characterized by low amplitude of 
GSIS as compared to native pancreatic β-cells despite equal 
amount of mitochondrial mass per cell [20], suggesting that 
differentiated hPSC-derived β-cells might have metabolically 
dysfunctional mitochondria. Interestingly, reduced 
anaplerotic cycling in the mitochondria has been identified 
as an underlying mechanism associated with reduced GSIS in 
hPSC-derived β-cells [20]. Therefore, proper mitochondrial 
function is a cornerstone of β-cell in coupling glucose 
metabolism to insulin exocytosis. In addition, besides intrinsic 
factors (genetic program), the efficiency of differentiation 
is modulated by external microenvironment. Interestingly, 
the glucagon-like peptide-1 (GLP-1) receptor agonist 
exendin-4 [21] has been incorporated among the extrinsic 
factors to enhance PSC-derived β-cell differentiation using 
conventional two-dimensional (2D) cell culture systems [22-
25]. Exendin-4 is a 39-amino-acid peptide which has been 
found to act as a long-acting GLP-1 receptor agonist and 
has been reported to stimulate both β-cell replication and 
neogenesis, resulting in increased β-cell mass and improved 
the insulin secretion function [26]. However, the effects of 
exendin-4 on 3D suspension culture throughout the entire 
differentiation protocol [27-30] specifically have not been 
studied adequately.

Materials and Methods
Stem cell culture and in vitro pancreatic beta cell dif-
ferentiation

Both embryonic (HUES8) and induced (iPSC824) 
pluripotent stem cell lines were used in this study. iPSC824 
line was generated by Qatar Biomedical Research Institute 
stem cell core from commercially available consented healthy 
(female) donors' dermal fibroblasts. Undifferentiated HUES8 
and iPSC824 cells were cultured on Matrigel-coated (Cat # 
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Accuri C6 flow cytometer (BD Biosciences). Flow cytometry 
data were then analyzed using FlowJo software. Results 
presented are representative of at least three independent 
differentiations.

Immunofluorescence staining
 At each stage of the differentiation, clusters were collected, 

washed, and fixed in 4% PFA for 1 hour on ice. Fixed clusters 
were washed and incubated in sucrose overnight at 4 oC before 
being frozen in Optimal Cutting Temperature compound 
(O.C.T). The clusters were then sectioned (8 µm thickness) 
and placed on a glass slide. For staining, slices were washed 
with PBS, permeabilized for 30 minutes in permeabilization 
buffer (0.3% Triton-X in PBS) and blocked for two hours in 
blocking buffer (6% BSA, 2% donkey serum, 0.3% Triton-X 
in PBS). The clusters were incubated with primary antibodies 
overnight at 4 °C in blocking buffer, washed three times and 
incubated with secondary antibodies for 2 hours in blocking 
buffer at room temperature. The clusters were then washed, 
incubated with DAPI for 10 min and then washed twice 
before placing a coverslip over the slide using permount 
mounting media (Cat#SP15-100). The list of antibodies used, 
and their dilution are mentioned in supplementary Table 1. 
Images were acquired using at 20X/0.8 numerical aperture 
(NA) objective (LD LCI Plan‐Apochromat; Carl Zeiss Inc, 
Oberkochen, Germany) using confocal microscopy on a laser 
scanning microscope (LSM 780; Carl Zeiss Inc, Oberkochen, 
Germany). Images were analyzed using ZEN imaging 
software (Carl Zeiss Inc.). Images shown are representative 
of at least three biologically separate differentiations.

Gene expression using real-time RT-PCR
 At each stage of the differentiation, total RNA was 

extracted from clusters using RNeasy Mini kit (Cat # 74104) 
as instructed by the manufacturer, then converted to cDNA 
using High-Capacity cDNA Reverse Transcription Kit (Cat 
# 4374967). Gene expression was measured using RT-PCR 
(QuantStudio 6 Flex system) using SYBR Green (Cat # 
4309155). Relative expression was calculated by the Livak 
comparative ΔΔCt method [31]. GAPDH and Actin genes 
were used as housekeeping genes. The primer sequences are 
listed in Table 1.

Whole cell lysates and western blot
Total proteins were extracted from exendin-4 treated 

and control cells using RIPA buffer (Cat # 89901). Protein 
concentration was determined by the BCA method using 
γ-globulin as a standard, and 20 µg of proteins were loaded 
on 10% SDS-PAGE gels and used to detect OXPHOS, 
MAFA, NeuroD1. Proteins were then transferred onto 
PVDF membranes, blocked with 5% non-fat dried milk in 
Tris-buffered saline containing 0.05% Tween 20 (TBST) for 
1 h, and then probed with the primary antibody for overnight 

3542277.) 2D plates and maintained in mTeSR+ (Cat # 
100-0276.) for expansion. After reaching ~90% confluency
and undergoing at least three passages, cells were dissociated
into a single-cell suspension, counted and 20 million cells
were transferred into 30ml spinner flasks (ABLE
Corporation, Tokyo, Japan) placed on a 6-position stir plate
set at rotation rate of  65 rpm in a 37°C incubator, 5% CO2, and
100% humidity to form 3D clusters. Stem cells clusters were
passaged every 3-4 days using Gentle Cell Dissociation
Reagent (GCDR; Cat# 100-0485) for cluster dissociation,
followed by passing the cells through a 37 uM strainer and
seeded at 0.5 million cells/ml in mTeSR+ + 10 μM
Y27632 (ROCK inhibitor; Cat #72308). Two stem cell
lines, one embryonic (HUES8) and one induced-pluripotent
(iPSC824) stem cell lines were differentiated into pancreatic
β-like cells using a modified 3D differentiation protocol [28].
The differentiation process was carried out in six stages, as
detailed below: differentiation was initiated 48 hours after
passage, when clusters reached a diameter of 200-250 µM,
by removing mTeSR+ medium and replacing with the stage-
specific medium and growth factor/small molecules
supplements. Media changes were as follows – Day 1: S1
+100ng/ml ActivinA + 3 μM Chir99021 + 10 μM Y27632.
Day 2: S1 + 100 ng/ml ActivinA. Day 3: S1 + 100 ng/ml
Activin A. Days 4, 6: S2 + 50 ng/ml KGF. Days 7, 8: S3 +
50 ng/ml KGF + 0.25μM Sant1 + 2μM RA + 200nM
LDN193189 (only Day 7) + 500 nM PdBU + 10μM Y27632.
Days 9, 11, 13: S3 + 50 ng/ml KGF + 0.25 μM Sant1 +
100nM RA + 10μM Y27632. Days 14, 16: S5 + 0.25 μM
Sant1 + 100 nM RA+1 μM XXI + 10μM Alk5i II + 1μM T3
+20 ng/ml Betacellulin. Days 18, 20: S5 + 25 nM RA +
1μM XXI+ 10 μM Alk5i II + 1μM T3 + 20ng/ml
Betacellulin. Days 21–35: S3 (changed media alternate
days). For the Exendin-4 treatment study, S3 media
supplemented with 50 nM of Exendin-4 (Cat # E7144-1MG)
was added during the last 3 days of differentiation (Days
33-35). The 50nM were chosen as ideal concentration based
on a dose-dependent effect of exendin-4 on cell viability
(Supplementary figure 1).

Flow cytometry
At each stage of the differentiation, clusters from the 

suspension culture were collected and dissociated using 
TrypLE Express (Gibco; Cat#12604013) at 37 °C and 
mechanically disrupted to form single cells. Cells were fixed 
using 4% PFA (Cat # J61899.AP) for 20 min at 4 oC. Fixed 
cells were washed twice with stain buffer (Cat # 554656) 
and then incubated in permeabilizing/washing buffer (Cat # 
51-2091KZ) with primary antibodies (30 min for conjugated
antibodies or overnight at 4 °C for unconjugated antibodies).
The cells were washed by centrifugation (300 rcf, 5 min)
three times with permeabilizing/washing buffer and
incubated with secondary antibodies in permeabilizing/
washing buffer for 2 hours at room temperature. Following
three more washes, the cells were resuspended in stain buffer
and analyzed using the ,



Diane A, et al., Fortune J Health Sci 2025 
DOI:10.26502/fjhs.285

Citation:	Abdoulaye Diane, Razik Bin Abdul Mu-U-Min, Asma Allouch, Noora Ali Al-Shukri, Nuha Taysir Swaidan, Shahryar Khattak and Heba 
Hussain Al-Siddiqi. Exendin-4 Enhances GSIS By Upregulating Genes Related to Maturation, Glucose-Sensing Apparatus and 
Mitochondrial Oxidative Phosphorylation Machinery in hPSC-Derived Islets Without Increasing β-Cell Number. Fortune Journal of 
Health Sciences. 8 (2025): 367-382.

Volume 8 • Issue 2 370 

at 4 °C. Actin and GAPDH were used as internal control. 
Antibodies recognizing OXPHOS, MAFA, NeuroD1, Actin, 
and GAPDH were used at dilutions of 1:1000, 1:1000, 
1:1000, 1:1000, and 1:10,000, respectively. After washing, 
the membranes were incubated with horseradish peroxidase-
conjugated secondary antibody at a dilution of 1:2000 for 
2 h at room temperature. Protein bands were visualized by 
chemiluminescence, and the images were captured using 
the ChemiDoc XRS+ system (Bio-Rad, Hercules, CA). 
For densitometric analysis, the intensity of the bands was 
determined using ImageJ 1.52v software (NIH, Bethesda, 
MA, USA).

Glucose stimulated insulin secretion (GSIS) Assay
hPSC-derived islet clusters (35 days of differentiation) 

were collected for glucose-stimulated insulin secretion 
(GSIS) assay as previously described [32]. Krebs buffer (KB)  
[128 mM NaCl, 5 mM KCl, 2.7 mM CaCl2 Krebs buffer (KB) 
[128 mM NaCl, 5 mM KCl, 2.7 mM CaCl2, 1.2 mM MgSO4, 
1 mM Na2HPO4, 1.2 mM KH2PO4, 5 mM NaHCO3, 10 
mM HEPES (Life Technologies; 15630080), 0.1% BSA 
in deionized water] was freshly prepared on the day of the 
experiment. Clusters were washed twice with low-glucose 
(2.8 mM) KB and incubated for 1 hour in 37°C incubator. 
They were washed once in low-glucose KB to remove any 
residual insulin, incubated in low-glucose KB for 1 hour, 
and the supernatant was collected. To challenge the cells, the 
clusters were then incubated in high-glucose (20 mM) KB for 
1 hour, and the supernatant was collected. Finally, clusters 
were incubated in low-glucose KB containing 30 mM KCl 
(forced depolarization challenge) for 1 hour, and then the 
supernatant was collected. Clusters were finally dispersed 
into single cells using TrypLE Express, and cell number 
was counted to normalize insulin level by the cell number. 
Supernatant samples containing secreted C-peptide (a proxy 
marker for insulin co-released at equivalent molar) were 
processed using the human ultrasensitive C-peptide ELISA 
kit (Mercodia, Uppsala, Sweden).

Statistical analysis
All assays were performed at least in triplicate and a 

minimum of three independent experiments. Results are 
presented as means ± SEM and were plotted using GraphPad 
(Prism v7, La Jolla, CA). We used one-way ANOVA for 
comparison of the groups with post-hoc Tukey’s test or the 
student t-test and paired two-sided t-test, as appropriate. A 
p-value < 0.05 was considered statistically significant.

Results
Differentiation of human pluripotent stem cell lines 
into 3D human pancreatic islets

Using a 3D differentiation protocol [30] with slight 
modification, both HUES8 and iPSC824 stem cell lines were 
differentiated into insulin-expressing cells. In this study, we 
used a new induced-pluripotent stem cell line, iPSC824, which 
was established in our Stem Cell Core. iPSC824 expressed 
pluripotency markers SOX2, OCT4, SSEA4, and TRA1-60; 
and successfully differentiated into ectoderm, mesoderm, and 
endoderm germ layers; and had normal 46, XX karyotype 
(Supplementary Fig. 2). To determine the efficiency of the 
differentiation, stage-specific markers were assessed in cells 
collected from different stages of the differentiation using 
RT-qPCR, flow cytometry and immunofluorescence. Gene 
expression pattern of pancreatic development (or lineage 
cell differentiation) markers is outlined in Figure 1 and data 
showed that expression of the pluripotent marker OCT4 
was lost upon initiation of differentiation. The definitive 
endoderm marker SOX17 was transiently upregulated at 
stage 1 (S1) (day 4) by around >5,000 times as compared to 
stem cell control cells (day 0). PDX1, a marker of pancreatic 
progenitors was upregulated significantly at stage 3 (S3) 
(day14); while β-cell markers including NKX6-1 and insulin 
were strongly induced at stages 5 (S5) (day 21), and 6 (S6) 
(day 35). Additionally, glucagon (GCG), a hormone secreted 
by alpha cells, was transiently upregulated at S5, followed by 
a reduction in expression at S6 in HUES8-derived pancreatic 

Table 1: Primer list and sequences
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islets. To ensure the efficiency of the differentiation, stage-
specific markers were measured at different stages using 
flow cytometry.  The results showed 96.3% OCT4+ cells 
(pluripotency marker) at S0; 89.4% SOX17+ cells (definite 
endoderm marker) at S1 and 83.4% PDX1+ cells (pancreatic 
progenitor marker) induction at S3. Subsequently, β cell-
specific markers were induced, as evidenced by the generation 
of over 40% NKX6.1/insulin double-positive cells (Figure 2). 
The expression of stage-specific markers was also confirmed 
by immunofluorescence (Figure 3). To assess reproducibility 
of the differentiation, the differentiation was conducted using 
the newly generated hiPSC line (iPSC824) and we observed 
consistent results in the expression of stage-specific markers 
and β cell-specific markers (Figures 1-3). 

Exendin-4 enhances glucose-stimulated insulin se-
cretion without increasing β-cell number

Several studies reported the effectiveness of Exendin-4 in 
increasing β-cell mass and function [33-35]; however, none 
of these studies examined the effect of Exendin-4 on the 
functionality and maturation of 3D hPSC-derived pancreatic 
islets. Therefore, we investigated whether addition of 
exendin-4 could improve the functionality of hPSC-derived 
islets by performing the static GSIS assay. Data displayed in 
Figure 4 indicated that, in control HUES8 non-treated group, 
the clusters failed to secrete more c-peptide in response to high 
glucose (20 mM) challenge. However, they were responsive 
to direct cellular depolarization-mediated c-peptide secretion 
by KCl, indicating non-functional islets.  Interestingly, in 

Fig. 1:
HUES8

iPSC824

Figure 1: Gene expression profiling of stage-specific markers. Relative expression of pluripotent marker (OCT4), endoderm marker (SOX17) 
and pancreatic progenitor 1 marker (PDX1), endocrine β-cells markers (NKX6.1, Insulin, Glucagon) in HUES8 and iPSC824 at different 
stages. Relative expression was calculated by the comparative ΔΔCT method, and the fold change (2−ΔΔCt) were calculated using stage 0 as 
control. The data are mean ± SEM for at least n=3 per cell line.
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Figure 2: Representative flow cytometry plots of relevant stage-specific markers of HUES8 and iPSC824 differentiation into insulin-producing 
β-cells. Cell clusters were collected from different stages of the differentiation included stage 0 (OCT4 for pluripotency), stage 1 (SOX17 for 
definitive endoderm), stage 3 (PDX1 for pancreatic progenitor) and stage 6 (NKX6.1/insulin for β-like cells, following exendin-4 treatment). 
Data were analyzed using FlowJo.
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Fig. 3b 
(iPSC824):
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Figure 3: Representative immunofluorescence staining images at each stage of the 6-stage 3D differentiation protocol for HUES8 (Fig. 3a) and 
iPSC824 (Fig. 3b) to qualitatively assess differentiation status using key relevant stage-specific markers. The images were acquired using a 20X 
magnification with a Zeiss LSM 780 confocal microscope (Carl Zeiss, Oberkochen, Germany). Negative staining images at each stage of the 
differentiation when only using the secondary antibodies (without primary antibodies) and negative control for NKX6.1 and insulin staining at 
stage 6 are shown in supplementary Figure 5.

Fig. 
4:

HUES8 iPSC824

Figure 4: Static glucose-stimulated insulin secretion of stage 6 HUES8 and iPSC824 clusters, un-treated or treated with 50 nM Exendin-4 
(paired two-sided t-test was used to compare low and high glucose in untreated and treated groups, n=7 for HUES8 and n=3 for iPSC824).

Figure 5: Relative expression of β-cell maturation genes, glucose sensing apparatus genes and mitochondrial markers in untreated (control) or 
treated with 50 nM Exendin-4 clusters differentiated from HUES8 (A) and iPSC824 (B). Relative expression was calculated by the comparative 
ΔΔCT method, and the fold change (2−ΔΔCt) were calculated. Data are mean ± 𝑆𝐸𝑀 (n=7 for HUES8; n=5 for iPSC824).

Fig. 
5
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exendin-4 treatment group, a 2.4-fold increase in c-peptide 
secretion was observed by clusters when challenged from 
low (2.8mM) to high (20 mM) glucose, (Figure 4) in spite 
no difference in β-cell number measured by NKX6.1/insulin 
double-positive cells as compared to control non-treated 
group, (Figure 2), suggesting a positive effect of exendin-4 
in enhancing the functionality of hPSC-derived pancreatic 
β-cells rather than an increase in cells number. 
Moreover, exendin-4 had no effect on glucagon (α-cells) 
and somatostatin (δ-cells) expression (supplementary 
figure 3). 

To determine whether the effect of exendin-4 on the 
functionality of stem cell-derived islets was cell line 
specific (i.e, HUES8 cell line) , we examined its effect on 
iPSC824-derived β-cells. Compared to HUES8-derived 
β-cells control clusters, iPSC824-derived β-cells control 
clusters showed a 1.6-fold increase in c-peptide release when 
challenged from low (2.8mM) to high (20 mM) glucose, 
indicating functional β-cells and treatment of exendin-4 
further improved the functionality with a 2.1-fold increase 
in c-peptide secretion when challenged with high glucose 
(Figure. 4). Taken together, our data indicate that exendin-4 
positively modulates GSIS without increasing β-cell number 
nor impacting glucagon (α-cells) and somatostatin (δ-cells) 
expression (supplementary figure 4)

Exendin-4 stimulates the expression of mitochon-
drial biogenesis and oxidative phosphorylation ma-
chinery genes

Dysfunction of mitochondria and/or its biogenesis has 
been linked to impaired GSIS [36-39]. Also, exendin-4 has 
been known to promote mitochondrial function [40]. We 
measured the expression of key representative mitochondrial 

marker genes following exendin-4 treatment. As shown 
in Figure 5, in both HUES8- and iPSC824-derived islets, 
addition of exendin-4 significantly increased the expression 
of mitochondrial biogenesis (PGC-1a, TFAM) and oxidative 
phosphorylation machinery (NDUSF1, NDUSF2) genes 
(Figure 5; P < 0.05). Consistent with this finding, exendin-4 
also triggered an increase in the expression of the protein 
levels of mitochondrial complexes (C-I, C-IV, C-III, C-V) 
involved in oxidative phosphorylation (Figure 6).

Exendin-4 stimulates the expression of β-cell mature 
markers and glucose-sensing apparatus genes.

The contribution of impaired maturation genes and 
glycolysis pathway to the immature phenotype of stem 
cell-derived islets is well established [7, 41]. We therefore 
investigated whether the GSIS-promoting effect of exendin-4 
is associated with upregulation of genes known to be 
expressed in mature β-cells and involved in the glucose 
sensing apparatus. Data displayed in Figure 5 indicate that 
3-day treatment of both HUES8- and iPSC824-derived
clusters with 50 nM of exendin-4 led to a marked increase
in the expression of NeuroD1, Six2, MAFA, GCK, Glut2,
G6PC2 mRNA (P < 0.05) as compared to untreated controls.
Additionally, the expression of the protein levels of MAFA
and NeuroD1 were upregulated following exendin-4
treatment (supplementary figure 4).

Discussion
Cellular replacement therapy is a promising treatment 

option for long-term blood glucose control in diabetes 
mellitus. While replenishment of malfunctioning pancreatic 
β-cells via human islet transplantation has an aptitude 
to restore normoglycemia and prevent hypoglycemia in 

iPSC824

OXPHO S

GAPD H

55

40

15

25

40

Exendin-4 (50nM):  -     +  MW

55

40

15

25

Exendin-4 (50nM): -    +   

HUES 8

C-V
C-III

OXPHO S

GAPD H40

C-IV 
C-I

Fig. 
6

Figure 6: Representative western blot confirming the positive effect of exendin-4 on the expression of mitochondrial proteins involved in 
oxidative phosphorylation. As compared to control, 3-day treatment with 50 nM of exendin-4 resulted in increased expression of mitochondrial 
complexes (C-I, C-IV, C-III, C-V). Actin and GAPDH were used as internal controls to monitor for protein loading differences. Full-length 
blots are displayed in Supplementary figure 6.

MW

C-V
C-III

C-IV
C-I



Diane A, et al., Fortune J Health Sci 2025 
DOI:10.26502/fjhs.285

Citation:	Abdoulaye Diane, Razik Bin Abdul Mu-U-Min, Asma Allouch, Noora Ali Al-Shukri, Nuha Taysir Swaidan, Shahryar Khattak and Heba 
Hussain Al-Siddiqi. Exendin-4 Enhances GSIS By Upregulating Genes Related to Maturation, Glucose-Sensing Apparatus and 
Mitochondrial Oxidative Phosphorylation Machinery in hPSC-Derived Islets Without Increasing β-Cell Number. Fortune Journal of 
Health Sciences. 8 (2025): 367-382.

Volume 8 • Issue 2 375 

diabetic patients, its potential is hampered by healthy islet 
donor shortage. Stem cell-derived pancreatic ‘pseudoislets’ 
generated in vitro could potentially become an infinite 
surrogate source of insulin-secreting β-cells to overcome 
the limited donor supply as a potential therapy for diabetes. 
However, many protocols developed to differentiate stem 
cells into insulin-expressing β-cells in vitro have encountered 
a major challenge: the resulting β-cells often exhibit an 
immature phenotype with impaired glucose-stimulated 
insulin secretion (GSIS) associated with low or absence 
of expression of key maturation transcription factors (e.g 
MAFA, NEUROD1, SIX2) compared to primary islets [7]. 
This limitation highlights the need for further refinement 
of differentiation protocols to achieve the generation of 
more mature and functional hPSC-derived β-cells. GLP-1 
agonists are thought to play an important role in improving 
β-cell morphology and function [42]. Exendin-4, a well 
characterized dipeptidyl peptidase IV (DPP-IV)-resistant 
GLP-1 analog, has been reported to stimulate both β-cell 
proliferation and insulin secretion in vivo or in isolated islets 
in vitro [43-45]. Consequently, exendin-4 has emerged as an 
important extrinsic factor to promote stem cell differentiation 
into insulin–producing β-cells. However, the exact 
mechanisms of action of exendin-4 during the differentiation 
process are not fully understood. In the present study, we 
added exendin-4 to investigate its role in the differentiation 
of hPSC cells into mature, functional β-cell using a more 
physiologically relevant 3D model that better mimics the 
in vivo cell niche compared to a 2D cell culture protocol 
[12]. Our results provide evidence that addition of 50 nM 
exendin-4 enhanced the functionality of hPSC-derived 
islets, as demonstrated by a greater than a 2-fold increase in 
c-peptide release when clusters were challenged with high
(20 mM) glucose compared to low glucose in a static GSIS
assay; replicating previous findings in other cellular systems
[40, 46]. The question arising from this investigation is the
mechanism underlying exendin-4-mediated enhancement
of the functionality of hPSC-derived islets. The most likely
mechanisms for GSIS induction involve activation of islet-
enriched transcription factors that regulate maturation as
well as stimulation of mitochondria; the master regulator
that couples glucose metabolism to insulin exocytosis. Under
our experimental conditions, we observed that exendin-4
supplementation increased the mRNA levels of genes
involved in mitochondrial biogenesis (PGC-1a, TFAM) and
oxidative phosphorylation machinery (NDUSF1, NDUSF2),
suggesting that exendin-4 may enhance GSIS by promoting
mitochondrial biogenesis and function. Glucose-sensing
factors such as Glut2 and GCK, are essential for glycolysis,
which subsequently coordinates with mitochondrial function
to produce ATP in GSIS [12]. In pancreatic β-cells, glucose
enters by facilitated diffusion through the glucose transporter
(GLUT2) and is phosphorylated by glucokinase (GCK),

thereby initiating glycolysis [47]. The main end product 
of glycolysis, pyruvate, is imported into mitochondria to 
fuel the tricarboxylic acid (TCA) cycle. Activation of TCA 
cycle lead to ATP production via oxidative phosphorylation 
(OXPHOS), which is required for the KATP channel-dependent 
pathway to trigger insulin exocytosis [48]. Furthermore, the 
critical role of GCK in GSIS is demonstrated by MODY2 (a 
form of monogenic diabetes) caused by mutation in the GCK 
gene [49]. Reduced GCK activity in β-cells has been reported 
as the primary contributor to hyperglycemia in MODY2. 
Therefore, our data indicate that the GSIS-promoting effect of 
exendin-4 may be associated with the upregulation of Glut2 
and GCK mRNA, the principal sensors of glucose flux in 
β-cells, consistent with previous studies [50, 51]. It is known 
that multiple islet-enriched transcription factors are involved 
in pancreas development and the maturation and function of 
β-cells. Among these, MAFA, and NeuroD1 are known to 
be vital for maintaining the function of mature β-cells [52-
55]. These transcription factors coordinate the stimulation of 
insulin synthesis by activating the insulin gene promoter in 
response to glucose challenge [56]. Six2 is reported to play 
an essential role in regulating the functional maturity and fate 
of human pancreatic β-cells, as the loss of Six2 markedly 
reduces insulin secretion and impairs the expression of 
genes governing β-cell insulin processing and output in 
primary human pseudoislets [53]. Similarly, studies on MafA 
mutant mice (global MafA–/–, pancreas-specific MafA-/-, and 
β cell–specific MafA-/-) have established a key role for this 
transcription factor in promoting β-cell maturation and GSIS 
[57-59]. Moreover, NeuroD1 has been shown to be required 
for pancreatic β-cells to achieve and maintain functional 
maturity [55, 60, 61]. Thus, in the present study, the GSIS-
enhancing effect of exendin-4 observed in the treated group 
may be driven by the upregulation of MAFA, Six2 and 
NeuroD1 following treatment.

Conclusion
This study reveals the beneficial enhancing effects of 

exendin-4 on GSIS in hPSC-derived insulin-producing 
β-cells. The principal novel finding of this study is that 
exendin-4 upregulates genes associated with maturation, 
glucose-sensing apparatus, and mitochondrial oxidative 
phosphorylation machinery, which underlie the molecular 
mechanisms to promote β-cell functions (GSIS). These 
findings also provide a unique approach to substantially 
improving the 3D differentiation protocol for generation 
mature-like and functional hPSC-derived β-cells, with 
potential applications in drug screening and β-cell replacement 
for T1DM and severe forms of T2DM in the future. However, 
despite the improvements in hPSC-derived β-cells function 
(GSIS) observed in this study; a limitation remains: further 
investigations, including in vivo testing in animal models of 
diabetes, are needed to validate whether exendin-4-treated, 
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functional HUES8 and iPSC824-derived islets could lead to 
diabetes reversal.
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Supplementary figure 1: Dose-dependent effect of exendin-4 on cell viability (A) and GSIS (B). Cell viability significantly decreased after 3 
consecutive days addition of 100ηM and 150ηM of exendin-4 (p < 0.001). The concentration of 50ηM showed comparable cell viability to the 
vehicle (control) along with increased GSIS in response to high glucose (20 mM).

Supplementary figure 2: iPSC824 line generated from commercially available consented healthy donors' dermal fibroblasts. a). The cells 
express high levels of the four tested Bonafide pluripotency markers (SOX2, OCT4, SSEA4, TRA1-60). b) spontaneous differentiation into 
various germ layers was performed in 10% FBS media culture. Immunostaining for Tuj1, smooth muscle actin (SMA) and SOX17 confirm 
ectodermal, mesodermal and endodermal lineages, respectively. c) G binding karyotyping showed normal karyotype of the 20 metaphase 
counted nuclei.

SUPPLEMENTARY FILES
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Supplementary figure 3: effect of exendin-4 on glucagon (α-cells) and somatostatin (δ-cells) expression using both gene expression with RT-
PCR and immunofluorescence

Supplementary figure 4: effect of exendin-4 on MAFA and NeuroD1 protein expression.
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Supplementary figure 5: Fluorescence images demonstrating negative staining at each stage when omitting primary antibodies and only using 
the secondary antibodies. Stem cells clusters (stage 0) were also used as a negative control for NKX6.1 and insulin staining at stage 6.

Supplementary figure 6: Exendin-4 induces the expression of mitochondrial proteins involved in oxidative phosphorylation proteins in 
HUES8 and iPSC824 cells as revealed by western blots (full blots). Clusters were treated for 3 days with 50ηM of exendin-4. GAPDH was 
used as internal control.
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Supplementary Table 1: List of antibodies used
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