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Abstract
Background: Accurate segmentation of pelvic bone tumors is crucial for 
effective treatment planning in radiotherapy and surgical interventions. 
Manual segmentation is labor-intensive and subject to variability, 
highlighting the need for automated solutions. This study evaluated the 
performance of four deep learning (DL) frameworks- U-Net, SegResNet, 
UNETR, and SwinUNETR-in automating the segmentation of pelvic bone 
tumors in a high- Complexity hospital setting, aiming to identify the most 
viable options for clinical integration.

Methods: A cohort of 78 patients with pelvic bone tumors from a tertiary 
care hospital, including patients aged 14-88 years, was used. The dataset 
underwent preprocessing, involving DICOM to NIfTI format conversion 
and focused cropping on tumor regions. These data were then divided 
into training, validation, and test sets. Each DL framework was trained on 
the same pre-processed data, with variations in hyperparameters such as 
image size, batch size, and data augmentation, to optimize performance. 
The models were evaluated based on the Dice similarity coefficient (DSC), 
95% Hausdorff distance (95% HD), and average surface distance (ASD), 
along with training time and qualitative visual assessment.

Results: Among the four frameworks, U-Net and SwinUNETR 
demonstrated the best balance between segmentation accuracy and 
computational efficiency. U-Net achieved a DSC of (81.79 ± 21.84)% 
with training times of 15 minutes and 36 seconds, making it particularly 
suitable for environments with	 limited	 computational resources. 
SwinUNETR, despite longer training times, delivered the highest DSC 
of (82.08 ± 0.23)%. Visual evaluations confirmed that SwinUNETR and 
UNETR indeed provided the most visually accurate segmentations, closely 
aligning with the ground truth. 

Conclusions: U-Net and SwinUNETR are identified as the most clinically 
viable DL frameworks for pelvic bone tumor segmentation, offering 
an optimal balance between accuracy, Computational efficiency and 
resource demands. Despite limitations in GPU memory and dataset size, 
this study contributes to the integration of automated segmentation into 
clinical workflows. These findings provide a strong foundation for further 
optimization of these models and their scalability across different tumor 
types, aiming to enhance patient care in oncology and improve medical 
imaging practices. 

Keywords: Artificial intelligence; Deep Learning; UNet; SegResNet; 
UNETR; SwinUNETR; Automated segmentation; Pelvic Bone Sarcoma; 
Radiotherapy; Convolutional Neural Networks.
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Introduction
Pelvic bone tumors, encompassing a diverse range of 

benign and malignant neoplasms, pose significant challenges 
in musculoskeletal oncology because of their complex 
anatomical location and proximity to critical structures [1,2]. 
Precise identification and delineation of tumor boundaries are 
paramount for effective treatment planning, particularly in 
radiotherapy and surgical interventions [3]. Traditionally, the 
segmentation of these tumors has relied heavily on  manual 
techniques, wherein radiologists and surgeons painstakingly 
outline tumor margins by imaging studies such as computed 
tomography (CT) [4] and magnetic resonance imaging 
(MRI)[5]. However, this manual process is not only time-
consuming but also subject to significant interobserver 
variability, which can introduce inconsistencies in treatment 
planning and potentially impact clinical outcomes [6]. The 
rapid advancement of computer technology, particularly in 
the areas of computer vision, image processing, and pattern 
recognition, has facilitated the development of digital image 
segmentation as a crucial tool in medical imaging [7]. 
Digital image segmentation involves partitioning an image 
into distinct regions based on specific attributes such as 
color, texture, and density [8]. This enables the quantitative 
analysis of medical images-a critical component for accurate 
diagnosis, treatment planning, and disease monitoring. Deep  
learning  (DL), a sophisticated  branch of  artificial  intelligence  
(AI),  has demonstrated remarkable potential across various 
domains, including medical imaging [9]. Convolutional 
neural networks (CNNs), a subset of DL algorithms, have 
revolutionized image segmentation by automating the process 
with high accuracy [10]. These algorithms are capable 
of learning intricate patterns and features from extensive 
datasets, allowing them to perform tasks that traditionally 
require human expertise. The application of DL to medical 
image segmentation has proven particularly transformative, 
significantly reducing the time and effort required to delineate 
tumor boundaries manually [11]. In radiotherapy, accurate 
image segmentation is indispensable [4]. Segmentation serves 
as a pivotal step in the radiotherapy workflow by precisely 
identifying the target treatment area while sparing adjacent 
healthy tissues from unnecessary irradiation [3]. However, 
the labor-intensive nature and inherent variability of manual 
segmentation can delay treatment initiation and adversely 
affect patient outcomes [6]. DL-based segmentation tools hold 
the promise of automating this process, thereby enhancing 
consistency, minimizing human error, and improving overall 
treatment efficacy [12,13]. These tools are assessed not only 
for their accuracy and efficiency in radiotherapy planning 
but also for their applicability in the surgical field, including 
3D preoperative training, the creation of 3D-printed surgical 
guides, and the facilitation of surgical navigation systems. In 
summary, despite technological advancements in imaging, 

traditional manual segmentation methods remain laborious 
and subjective, heavily reliant on the clinician's expertise 
and interpretation. These tasks are often repetitive and 
mechanical yet crucial, making them prime candidates for 
automation [12,13]. To address these limitations [14,15], this 
study focuses on evaluating existing CNN-based automatic 
segmentation9 methods designed to accurately identify and 
segment tumors in the pelvic region, specifically pelvic bone 
sarcomas. By utilizing AI tools, this study aims to streamline 
the segmentation process, reducing the burden on clinicians 
and enhancing consistency in treatment planning.

Materials and Methods
Aim and specific objectives
The primary objectives of this study are as follows:

•	 To prepare a dataset of tumor regions segmented by 
specialists; anonymization and adaptation for CNN 
training are ensured.

•	 The prepared dataset is used to train and optimize four 
existing CNN-based segmentation frameworks.

•	 To evaluate the performance of each framework, the Dice 
score coefficient

(DSC), 95% Hausdorff distance (95% HD), and average 
surface distance (ASD) are used to select the framework that 
yields the best overall performance for clinical application. 
Through this comparative evaluation, the study aims to 
identify the most effective tool for improving the accuracy 
and efficiency of pelvic tumor segmentation, ultimately 
enhancing radiotherapy and surgical planning. 

Study design and data acquisition
This study was conducted with datasets obtained from the 

medical database of a Musculoskeletal Sarcoma reference 
unit at a tertiary care hospital. Data were specifically 
extracted for 104 patients with pelvic bone sarcomas who 
received preoperative radiotherapy between 2015 and 2023. 
Of these, only 78 cases were deemed valid, where the gross 
tumor volume (GTV) had been manually segmented by 
radiotherapists. The dataset included both male and female 
patients, with 43.27% being women and 56.73% being men. 
The age range for females was 14-87 years, with an average 
age of 60.71 years, whereas for males, the age range was 14-
88 years, with an average age of 64.19 years. The data, which 
were originally in Digital Imaging and Communications in 
Medicine (DICOM)  format,  were  anonymized  and  converted  
to  Neuroimaging Informatics Technology Initiative (NIfTI) 
format for subsequent processing and analysis[16,17]. The 
entire study utilized the MONAI (Medical Open Network 
for AI) framework, a specialized platform for DL in medical 
imaging, encompassing data preprocessing, model training, 
and evaluation [18,19].



Fernández-Fernández T, et al., J Surg Res 2025
DOI:10.26502/jsr.10020449

Citation:	Tanya Fernández-Fernández, Lucía Cubero, Carmen Morote-García, Ana Álvarez González, Mercedes Muñóz-Fernández, Lydia 
Mediavilla-Santos, Rubén Pérez-Mañanes, Javier Pascau, José Antonio Calvo-Haro. Evaluating deep learning models for Pelvic Bone 
Tumor Segmentation: Implications for Radiotherapy and Surgical Applications. Journal of Surgery and Research. 8 (2025): 274-284.

Volume 8 • Issue 2 276 

slices along the z-axis to focus on the tumor region (slice 
cropping) and adjusting the area of each slice along the x- 
and y-axes to eliminate nonrelevant background information 
(image cropping).

3. Dataset Division: The dataset was divided into training, 
validation, and test sets, following an (80-10-10) % split 
to ensure sufficient data for training while keeping enough 
images for validation and testing [21].

4. Data Augmentation[15]: To increase model robustness, 
data augmentation techniques such as rotations, translations, 
and the addition of Gaussian noise were applied exclusively 
to the training dataset. The validation and test sets remained 
unaltered to ensure that the evaluation results were realistic 
and reflective of the model's performance on new data.

5. Parameter Optimization: This includes fine-tuning 
hyperparameters such as the learning rate, loss function, 
and optimizer settings to ensure optimal model performance 
[22]. These parameters were kept constant across all training 
sessions for consistency.

Preprocessing
The preprocessing phase was critical to prepare the dataset 

for DL applications. Initially, DICOM files, which serve 
as the standard format for storing and transmitting medical 
images, were manually converted to NIfTI format via 3D 
Slicer, a comprehensive software platform for the analysis 
and visualization of medical images [20]. This conversion 
was necessary to simplify the files for deep learning while 
retaining the essential image data and tumor masks [16]. The 
preprocessing steps followed a structured pipeline to ensure 
data consistency and quality (Figure 1).

1. DICOM to NIfTI Conversion[16]: The CT scans, which 
were originally in DICOM format, were converted to the 
NIfTI format. Each scan had a resolution of  [512×512] 
voxels in the x- and y-axes, with the number of slices 
varying depending on the tumor size, ranging from 75-389 
slices. The tumor volumes ranged from 17 to 101 slices. The 
heterogeneity in tumor size influences the cropping technique 
used.

2. Cropping: Cropping involves reducing the number of 

 
Figure 1: Preprocessing pipeline.

Model training and evaluation
Four CNN-based segmentation frameworks were 

selected for evaluation: U-Net, SegResNet, UNETR, 
and SwinUNETR. The models were trained on the 
prepared dataset, with experiments designed to optimize 
hyperparameters and assess the impact of preprocessing 
techniques on segmentation accuracy. All the models were 
trained on two NVIDIA TITAN X GPUs with 12 GB of 
RAM.Owing to memory limitations, only U-Net supported 
image sizes greater than [96×96×96]. The training process 
was managed remotely via the Secure Shell Protocol (SSH) 
using the Terminal application on Mac, and the code was 
implemented via Jupyter Notebooks. The first framework, 
U-Net, employs a U-shaped architecture comprising a 
contracting path for feature extraction and an expansive 
path for generating segmentation masks [10]. This design 
allows for the precise delineation of tumor boundaries, even 
with limited training data, by leveraging skip connections 
that combine features from different layers. Building on 
U-Net, SegResNet incorporates ResNet blocks within the 
encoder, enhancing feature extraction and providing robust 
performance in 3D image segmentation by mitigating the 

vanishing gradient problem through deep residual connections 
[23]. To address the limitations of traditional CNNs in 
capturing the global context and long-range dependencies, 
the UNETR framework integrates transformers into the 
U-Net architecture [24]. This innovation allows UNETR to 
effectively learn global features, making it particularly well 
suited for complex 3D medical image segmentation tasks. 
Finally, SwinUNETR represents an advanced variation of 
UNETR, incorporating a Swin transformer backbone. This 
model hierarchically processes image patches, utilizing 
shifted windows to capture  both  local and  global	
contextual representations efficiently [25]. Initially  developed  
for  brain  MRI  segmentation,  SwinUNETR’s application to 
pelvic bone sarcoma segmentation was explored in this study 
to assess its potential in a different clinical context. 

Post-processing
After training, the models produced labelled predictions 

where each voxel was classified as either background or 
tumor. A postprocessing step using MONAI’s AsDiscrete 
transform was implemented to refine the segmentation maps 
by assigning each voxel to the most likely class [18]. This 
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step was essential to ensure that the segmentation outputs 
were accurate and ready for clinical use. 

Evaluation criteria
The networks were evaluated on three key criteria: 

training time, geometric evaluation metrics, and visual 
evaluation of the tumor segmentation predicted by the model. 
Geometric metrics, such as the DSC, 95% HD and ASD, 
provide a quantitative assessment of segmentation accuracy 
[26]. Additionally, the visual evaluation involved a detailed 
inspection of the segmentation maps generated by each 
network to assess the alignment with actual tumor boundaries. 
By analysing these factors, the performance and effectiveness 
of the networks were thoroughly assessed, offering valuable 
insights into their capabilities and clinical applicability. 

Results
Training Times

The training durations for each CNN architecture, 
specifically within the context of pelvic bone sarcomas, 
are detailed in figures 3-6. The experiments that achieved 
the highest DSCs on the test set are highlighted in bold, 
underscoring their superior performance. Importantly, 
comparisons between experiments 5 and 6 for U-Net with 
other architectures are limited because of the differences in 
image size and GPU memory constraints. In particular, the 

U-Net experiments involved doubling the image size, which 
was not feasible for the other architectures due to memory 
limitations. Additionally, the UNETR and SwinUNETR 
architectures require more epochs to reach convergence, 
leading to longer training times. These differences underscore 
the challenges of directly comparing training durations across 
architectures but highlight the significance of computational 
efficiency in clinical applications, where the speed of model 
training can be a critical factor.

Model evaluation
The evaluation of the CNN architectures was based on 

three key geometric metrics: the Dice score (DSC), 95% 
HD, and ASD. These metrics were computed specifically for 
tumor segmentation and provide a quantitative assessment of 
the model's performance. 

U-Net
U-Net exhibited variable performance across the 

experiments. The DSCs for the test set ranged from 59.08% 
to 81.78% (Table 1). Notably, experiments that maintain 
a balance between the image size and the inclusion of 
background in the Dice metric yielded the best results. Despite 
its good performance, U-Net struggled with the complexity 
of pelvic bone sarcoma segmentation, particularly when 
dealing with heterogeneous image sizes and the application 
of cropping techniques.

  Evaluation Metrics

N Metric Training Validation Test

1

Dice (%) 67.157 ± 20.870 72.721 ± 22.649 61.615 ± 14.480

Hausdorff Dist. 95 (mm) 5.566 ± 8.997 10.236 ± 11.202 8.444 ± 9.587

Average Surf. Dist. (mm) 2.365 ± 4.127 0.731 ± 0.814 3.711 ± 4.450

2

Dice (%) 72.680 ± 21.435 72.581 ± 23.041 64.955 ± 17.689

Hausdorff Dist. 95 (mm) 3.324 ± 6.525 9.235 ± 11.626 5.257 ± 6.103

Average Surf. Dist. (mm) 1.022 ± 1.972 0.970 ± 1.471 2.595 ± 2.968

3

Dice (%) 96.734 ± 5.979 75.393 ± 22.442 81.500 ± 21.440

Hausdorff Dist. 95 (mm) 0.799 ± 1.194 5.012 ± 5.012 5.329 ± 6.807

Average Surf. Dist. (mm) 0.379 ± 1.142 1.665 ± 2.122 1.972 ± 3.150

4

Dice (%) 98.810 ± 0.481 76.000 ± 0.225 81.788 ± 21.837

Hausdorff Dist. 95 (mm) 0.534 ± 0.200 8.392 ± 8.075 6.055 ± 7.2264

Average Surf. Dist. (mm) 0.070 ± 0.035 2.963 ± 3.758 2.295 ± 3.473

5

Dice (%) 63.604 ± 10.533 58.400 ± 6.879 59.077 ± 12.075

Hausdorff Dist. 95 (mm) 31.557 ± 14.063 33.203 ± 9.344 37.156 ± 18.142

Average Surf. Dist. (mm) 13.309 ± 6.665 11.053 ± 2.983 14.978 ± 9.833

6

Dice (%) 87.256 ± 9.820 77.058 ± 17.495 74.895 ± 19.462

Hausdorff Dist. 95 (mm) 19.789 ± 16.153 20.683 ± 20.681 36.047 ± 7.611

Average Surf. Dist. (mm) 6.540 ± 8.295 4.843 ± 5.425 12.257 ± 7.757

Table 1: Evaluation Metrics for the U-Net Framework in Pelvic Bone Sarcoma Segmentation.
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SegResNet: SegResNet demonstrated robust performance, with Dice scores reaching up to 81.24% on the test set (Table 2). 
The architecture's incorporation of ResNet blocks enhanced its ability to manage 3D image segmentation effectively. However, 
some experiments revealed a decline in accuracy, potentially due to the challenging nature of the dataset and the specific training 
conditions applied.

  Evaluation Metrics

N Metric Training Validation Test

1
Dice (%) 57.075 ± 11.036 59.290 ± 9.719 55.036 ± 12.009

Hausdorff Dist. 95 (mm) 23.793 ± 10.096 21.958 ± 8.006 29.380 ± 10.414
Average Surf. Dist. (mm) 11.153 ± 6.943 7.379 ± 4.718 11.882 ± 4.795

2
Dice (%) 94.984 ± 2.843 82.173 ± 13.872 80.325 ± 0.201

Hausdorff Dist. 95 (mm) 1.007 ± 1.409 3.974 ± 3.566 3.843 ± 4.458
Average Surf. Dist. (mm) 0.169 ± 0.057 0.827 ± 1.069 0.705 ± 0.741

3
Dice (%) 95.923 ± 1.567 66.692 ± 32.627 61.764 ± 41.222

Hausdorff Dist. 95 (mm) 1.322 ± 1.633 7.070 ± 6.893 8.583 ± 9.969
Average Surf. Dist. (mm) 0.135 ± 0.036 2.059 ± 3.172 3.529 ± 4.359

4
Dice (%) 97.952 ± 0.730 83.224 ± 16.415 81.241 ± 21.094

Hausdorff Dist. 95 (mm) 0.661 ± 0.773 3.855 ± 3.876 4.562 ± 5.366
Average Surf. Dist. (mm) 0.070 ± 0.022 1.058 ± 1.624 1.797 ± 2.606

5
Dice (%) 94.602 ± 6.083 86.088 ± 0.121 79.562 ± 21.734

Hausdorff Dist. 95 (mm) 1.389 ± 1.441 4.789 ± 4.040 8.197 ± 9.479
Average Surf. Dist. (mm) 0.199 ± 0.039 1.189 ± 1.545 3.213 ± 4.836

Table 2: Evaluation Metrics for the SegResNet Framework in Pelvic Bone Sarcoma Segmentation.

UNETR: The integration of transformers within the UNETR architecture allows for improved capture of the global context 
and long-range dependencies in images, which is particularly advantageous for complex 3D medical image segmentation 
tasks. UNETR achieved DSCs of up to 81.66% (Table 3), reflecting its ability to handle the intricate anatomy of pelvic bone 
sarcomas. Nonetheless, the higher computational demands and longer training times are important considerations for practical 
implementation.

  Evaluation Metrics
N Metric Training Validation Test

1
Dice (%) 79.866 ± 10.810 70.415 ± 13.149 73.589 ± 14.005

Hausdorff Dist. 95 (mm) 4.613 ± 3.471 5.574 ± 3.047 5.115 ± 3.447
Average Surf. Dist. (mm) 1.426 ± 2.301 1.534 ± 0.973 1.655 ± 1.578

2
Dice (%) 87.572 ± 9.836 74.726 ± 15.721 77.284 ± 15.835

Hausdorff Dist. 95 (mm) 2.757 ± 3.476 4.402 ± 3.187 3.379 ± 2.784
Average Surf. Dist. (mm) 0.944 ± 2.146 1.866 ± 2.023 1.269 ± 1.345

3
Dice (%) 95.551 ± 7.096 75.816 ± 21.509 81.664 ± 21.216

Hausdorff Dist. 95 (mm) 0.514 ± 0.123 4.609 ± 4.404 4.192 ± 5.568
Average Surf. Dist. (mm) 0.080 ± 0.029 1.929 ± 2.300 1.599 ± 3.064

4
Dice (%) 82.901 ± 8.163 71.914 ± 12.563 74.622 ± 15.385

Hausdorff Dist. 95 (mm) 3.352 ± 2.313 6.982 ± 3.750 5.176 ± 4.509
Average Surf. Dist. (mm) 0.748 ± 0.426 2.178 ± 1.803 1.901 ± 2.908

5
Dice (%) 90.988 ± 8.187 76.442 ± 16.032 77.950 ± 21.732

Hausdorff Dist. 95 (mm) 1.624 ± 0.699 8.217 ± 7.264 7.857 ± 8.671
Average Surf. Dist. (mm) 0.363 ± 0.079 1.813 ± 2.039 2.923 ± 4.032

6
Dice (%) 60.714 ± 6.233 66.669 ± 13.382 62.481 ± 12.865

Hausdorff Dist. 95 (mm) 21.073 ± 4.059 15.356 ± 4.849 17.104 ± 4.726
Average Surf. Dist. (mm) 7.727 ± 2.170 4.882 ± 2.504 5.594 ± 2.487

Table 3: Evaluation Metrics for the UNETR Framework in Pelvic Bone Sarcoma Segmentation.
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SwinUNETR: SwinUNETR, an advanced variation of UNETR that incorporates a Swin transformer backbone, showed 
promising results, with Dice scores reaching up to 82.08% on the test set (Table 4). This model's ability to efficiently process 
image patches hierarchically and capture both local and global contextual representations made it particularly well suited for the 
segmentation of pelvic bone sarcomas. However, similar to UNETR, SwinUNETR's increased computational complexity and 
training times must be considered in its potential clinical application.

Visual evaluation
In addition to geometric metrics, visual evaluation was conducted to assess the quality of the predicted segmentation. figures 

(2-5) present the ground truth and predicted segmentations for a selected pelvic bone sarcoma case. The visual comparison 
demonstrates the models' abilities to capture the overall shape and structure of the tumor, with UNETR (Figure 8) and SwinUNETR 
(Figure 2) providing the most visually accurate segmentations, closely aligning with the ground truth.

  Evaluation Metrics

N Metric Training Validation Test

1

Dice (%) 93.195 ± 6.880 74.053 ± 19.501 80.434 ± 18.616

Hausdorff Dist. 95 (mm) 1.461 ± 2.845 5.343 ± 4.947 4.758 ± 5.510

Average Surf. Dist. (mm) 0.337 ± 0.581 2.222 ± 2.196 1.647 ± 2.566

2

Dice (%) 97.915 ± 1.023 75.526 ± 20.505 81.025 ± 21.502

Hausdorff Dist. 95 (mm) 0.518 ± 0.215 5.458 ± 5.151 5.031 ± 6.532

Average Surf. Dist. (mm) 0.085 ± 0.049 1.896 ± 1.891 2.188 ± 3.427

3

Dice (%) 99.408 ± 0.431 78.070 ± 21.291 82.080 ± 0.225

Hausdorff Dist. 95 (mm) 0.273 ± 22.060 4.669 ± 4.545 5.235 ± 7.412

Average Surf. Dist. (mm) 0.024 ± 0.017 1.840 ± 1.893 2.367 ± 3.840

4

Dice (%) 94.764 ± 6.879 77.109 ± 19.380 80.741 ± 20.880

Hausdorff Dist. 95 (mm) 0.687 ± 0.812 5.037 ± 4.925 5.295 ± 7.185

Average Surf. Dist. (mm) 0.112 ± 0.028 1.874 ± 1.912 2.072 ± 3.293

5

Dice (%) 94.525 ± 5.859 75.988 ± 19.366 80.398 ± 20.416

Hausdorff Dist. 95 (mm) 1.134 ± 1.425 8.387 ± 8.001 6.403 ± 7.597

Average Surf. Dist. (mm) 0.191 ± 0.036 2.929 ± 3.154 2.505 ± 3.601

6

Dice (%) 73.788 ± 15.866 74.529 ± 13.245 73.788 ± 15.866

Hausdorff Dist. 95 (mm) 8.547 ± 4.577 10.292 ± 8.084 8.547 ± 4.577

Average Surf. Dist. (mm) 2.582 ± 2.243 2.085 ± 1.659 2.582 ± 2.243

Table 4: Evaluation Metrics for the SwinUNETR Framework in Pelvic Bone Sarcoma Segmentation.

 

Figure 2: U-Net model prediction vs. ground truth for pelvic bone sarcoma segmentation.
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This image compares the ground truth segmentation of a pelvic bone sarcoma (top row) with the segmentation predictions 
generated by the U-Net model across six different training scenarios (bottom two rows). The ground truth image shows the actual 
tumor segmentation, whereas the adjacent image overlays the tumor on the patient's CT scan for reference. The six prediction 
images demonstrate how the model's accuracy varies depending on the specific training conditions, highlighting differences in 
tumor shape and boundary delineation.

This image shows the ground truth segmentation of a pelvic bone sarcoma (top row) compared with the SegResNet model 
predictions from six training scenarios (bottom two rows). The ground truth and its overlay on the patient's CT scan are provided 
for reference.

 
Figure 3: Visual representation of the SegResNet results.

 
Figure 4: Visual representation of the UNETR results.
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This image shows the ground truth segmentation of a pelvic bone sarcoma (top row) compared with UNETR model 
predictions from six training scenarios (bottom two rows). The ground truth and its overlay on the patient's CT scan are provided 
for reference.

 
Figure 5: Visual representation of the SwinUNETR results.

 
Figure 6: Visual 3D representation of the original (red) and predicted (grey) pelvic bone sarcomas.

A: Ground truth. B: Prediction from this dataset’s best model.

The 3D volumetric representations of the tumors further illustrate the models' capacity to comprehend the full spatial extent of 
the tumor within the CT scans (Figure 6). These visualizations underscore the importance of evaluating models not only through 
quantitative metrics but also through qualitative assessment to ensure clinical relevance and applicability.

Impact of training conditions

Throughout the experiments, several patterns were 
observed regarding the impact of different training conditions 
on model performance (Table 5). Increasing the batch size 
generally led to improved Dice scores, whereas the inclusion of 
the background in the Dice metric stabilized the performance. 
However, increasing the image size and introducing data 
augmentation during preprocessing sometimes results in 
decreased performance, highlighting the importance of 
careful consideration of these factors in model training. The 

use of cropped patient images had mixed results, and no clear 
conclusions could be drawn regarding its impact.

This table summarizes the effects of various training 
modifications on the performance of four different CNN-based 
frameworks used for tumor segmentation. Modifications such 
as increasing the batch size and the number of epochs generally 
improved Dice scores, although at the cost of longer training 
times. Conversely, increasing the image size and introducing 
data augmentation often results in decreased performance, 
highlighting the trade-offs inherent in optimizing model 
training across different architectures.
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Discussion
Recent advancements in DL have significantly enhanced 

the state-of-the-art in medical image segmentation, with 
artificial neural networks (ANNs) at the forefront of these 
developments. Notably, segmentation strategies using DL 
algorithms have demonstrated a marked improvement in 
accuracy and robustness, particularly for challenging cases 
such as bone metastases and pelvic bone tumors [27]. These 
networks leverage the powerful feature extraction capabilities 
of convolutional neural networks (CNNs) and the ability to 
capture intricate spatial dependencies through transformer-
based models [10]. As a result, these models have set new 
benchmarks in segmentation performance, often achieving 
DSCs well above the 0.7 commonly accepted threshold for 
adequate model performance; notably, many models now 
surpass this benchmark, achieving DSCs above0.85 in a few 
cases [28]. In the present study, we aimed to evaluate the 
effectiveness of four DL frameworks—U- Net, SegResNet, 
UNETR, and SwinUNETR—in segmenting pelvic bone 
tumors within a high-complexity hospital environment. This 
research holds particular significance due to its potential 
to enhance treatment planning and patient outcomes by 
automating the traditionally labor-intensive and variable 
process of tumor segmentation. Using the MONAI framework, 
we systematically explored these architectures to identify the 
most viable solutions for clinical implementation. Among the 
architectures evaluated, U-Net emerged as the most balanced, 
providing robust segmentation results with relatively low 
computational demands. Its best performance for pelvic bone 
sarcoma was a DSC of 81.788 ± 21.837, which was achieved 
with training times of just 15 minutes and 36 seconds. This 
efficiency and accuracy make U-Net particularly suitable 
for clinical settings with limited computational resources. 
SegResNet, however, faces challenges due to GPU memory 
constraints, limiting its ability to utilize data augmentation 
and larger image sizes. Despite these limitations, SegResNet 
demonstrated satisfactory performance, with a DSC of 
81.241 ± 21.094 in some cases, although it required careful 
parameter tuning depending on the clinical conditions. 

Modification Training time Dice (test)
Increase batch size ↑ ↑
Include background = True in the 
Dice Metric ∼ ↑

Increase number of epochs ↑ ↑
Introduce Data Augmentation in 
preprocessing ↑ ↓

Increase image size ↑ ↓
Introduce cropped patient ∼ -

Legend: ↑ increased, ↓ decreased, ∼ no apparent effect, - conclusions 
could not be drawn

Table 5: Impact of training modifications on the performance of the 
four CNN-based frameworks.

UNETR, while theoretically advanced in capturing complex 
spatial dependencies, underperformed, with the best DSC 
of 81.664 ± 21.216. This suggests that UNETR may need 
further optimization or greater computational power to fully 
exploit its potential in clinical practice.SwinUNETR has 
emerged as the most promising architecture, outperforming 
UNETR in both accuracy and consistency. It achieved the 
highest DSC (82.080 ± 0.225), although this was achieved 
with longer training times, such as 38 minutes and 20 
seconds. While SwinUNETR’s superior performance is 
compelling, the increased computational cost could limit its 
adoption in settings where rapid model training is necessary. 
Despite these promising findings, several limitations of this 
study must be acknowledged. The limited GPU memory (12 
GB of RAM) significantly constrained the size of the images 
that could be processed, potentially leading to the loss of 
critical information. This also limits the use of extensive data 
augmentation, potentially impacting model generalizability. 
Additionally, the restricted dataset size may have impacted 
the models' robustness, particularly given the variability 
in tumor shapes and locations. Generalizability remains a 
critical issue. While the models were evaluated in a specific 
clinical context, broader validation across different settings 
and tumor types is necessary [27]. The success of models 
trained on large public datasets [29] underscores the need 
for global efforts in this area. A recent study by Wu et al. 
(2024) introduced an advanced FCNN-4 s + CRF algorithm, 
which achieved superior DSCs- 91.000 (89.82, 92.57) -and 
real-time performance, highlighting the rapid advancements 
in this field [30]. Lastly, the present study did not explore the 
integration of more recent architectural advancements, such 
as transformer-based models beyond SwinUNETR, which 
may offer additional benefits in segmentation performance 
[25]. However, our study focuses on accessible segmentation 
tools that can be integrated into public hospital workflows, 
where large patient volumes and constrained computational 
resources are common challenges. In summary, this study 
underscores the importance of evaluating and optimizing 
accessible DL tools for clinical use, particularly in resource-
constrained settings. U-Net and SwinUNETR stand out as 
the most feasible options for enhancing pelvic bone tumor 
segmentation efficiency. Future research should aim to 
enhance these models for broader clinical applications, 
ensuring scalability and generalizability across various tumor 
types. Integrating automated segmentation into routine clinical 
practice has the potential to significantly improve patient care 
and streamline radiotherapy and surgical planning processes.

Conclusions
Four DL frameworks —U-Net, SegResNet, UNETR, 

and SwinUNETR— have been evaluated for their ability 
to segment pelvic bone tumors within a high-complexity 
hospital setting. U-Net and SwinUNETR have emerged 
as the most clinically viable methods, as they balance 
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accuracy, efficiency, and resource use. Limitations, including 
GPU memory constraints and dataset size, affect model 
performance and generalizability. Despite these challenges, 
by identifying the most efficient frameworks for pelvic 
bone tumor segmentation, this study contributes to ongoing 
efforts to integrate automated segmentation into routine 
clinical workflows. The results provide a foundation for 
future research aimed at further optimizing these models to 
develop a generalized, scalable solution capable of accurately 
segmenting tumors in the pelvic region and beyond. This 
work underscores the potential of DL to transform medical 
imaging and improve patient care in oncology. 
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