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Estimation of COVID-19 Cases in Japanese Prefectures Using a Gumbel 
Distribution
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Abstract
Applying a model from extreme value theory (EVT), we provide 

a statistical study for the estimation of the daily number of COVID-19 
infections in Japan. The present study is carried out from a regional 
viewpoint. Selecting 16 prefectures from among the 47 prefectures of 
Japan, we obtain the regional growth rate of infection and the point of 
inflection. Among three fundamental functions of EVT, we use the 
Gumbel distribution function and estimate model parameters by fitting 
daily new cases in the 16 prefectures. The biggest advantage of the present 
method is its simplicity and straightforward- ness, which allow us to obtain 
preliminary results and an overall image of infection trends without using 
complicated mathematical tools.
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Introduction
Various mathematical models have been developed for capturing the 

spreading process of infectious diseases. Among these models, the basic 
Kermack- McKendrick model is a popular theory [1]. As a simple example, 
Kermack and McKendrick presented a compartment model, usually referred 
to as a susceptible, infected, recovered/removed (SIR) model [2, 3]. After 
some manipulation of the SIR model, we can derive the logistic growth 
model, which has been used in epidemiology as a standard method [4, 5]. 
In addition, many studies using an extended form of compartment models 
have been reported [6]. From the first wave of a pandemic in many regions, 
the daily plot of reported infections is single-peaked and skewed to the right. 
Time-series data in general have three phases: 

A. an exponential increase in the early stage,
B. a change from increasing to decreasing in the intermediate stage, and
C. a slowly decreasing final stage.

Although distributions of the exponential family have a simple form,
many studies have suggested that the exponential distribution can reasonably 
reproduce the data in the decreasing phase [7]. Applications of the EVT are 
relatively new in the mathematical modeling of epidemiology and are used 
for forecasting the outbreak of pathogenic influenza [8] and for analyzing 
spreading of SARS and COVID-19 [9]. However, the EVT has been widely 
used to analyze rarely occurring events in many applications [10, 11] such as 
reliability engineering [12] and mortality analysis [13]. In the EVT, there are 
three classes of distributions, which are widely known as Gumbel, Fr´echet, 
and Weibull families [11, 14]. There are two types of Gumbel functions: 
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the Gumbel function for maximum values and the Gum- 
bel function for minimum values. The present study uses 
the Gumbel function for maximum values, which is simply 
referred to as the Gumbel function. The Gumbel function 
has been used for analyzing COVID-19 time-series data in 
[15] and [16]. The Gumbel cumulative distribution function
is given as

FG(t) = exp{−e−y(t)},                y(t) = a(t − b),	                (1)

where a and b are parameters that decide the shape (a) 
and position (b), respectively, of the distribution [17]. The 
parameter b corresponds to the position of the node. We can 
find applications of the Gumbel distribution in the literature 
of evolutionary computation [18]. In some optimization 
problems, the number of steps necessary to obtain an 
optimum solution can be expressed by a Gumbel distribution 
[19], the mathematical derivation of which is given in [20]. 
As of March 31, 2022, Japan had recorded a total of 6, 565 k 
confirmed cases of COVID-19, including 28, 128 deaths. From 
January 1, 2022 to March 31, 2022, the numbers of confirmed 
cases and deaths were 4, 831 k and 9, 731, which are 73.5% 
and 34.6% of the respective totals. The surge of infections 
during this period is usually referred to as the sixth wave of 
the outbreak in Japan. Japan is divided into 47 administrative 
divisions, known as prefectures. Its population was estimated 
at 126, 476 k people in 2020. In most prefectures, time-series 
data of daily cases during the sixth wave have a single-peaked 
and right-skewed form. In the present paper, we report the 
estimation of the daily number of infections during the sixth-
wave outbreak in Japan and its constituent prefectures using 
a Gumbel distribution. We also analyze the nation-level daily 
number of deaths in Japan.

Preliminaries
Among the 47 Japanese prefectures, we analyze 12 

prefectures in three main cosmopolitan areas and four 
prefectures in other areas.

• Tokyo metropolitan area: Tokyo, Saitama, Chiba, and
Kanagawa

• Osaka metropolitan area: Osaka, Kyoto, Hyogo, and
Wakayama

• Nagoya metropolitan area: Aichi, Gifu, Mie, and Shizuoka

• Other areas: Hokkaido, Tochigi, Toyama, and Nagasaki

The total population of these prefectures is approximately
62.7% of the Japanese population. The present study uses 
the dataset of NHK, a Japanese government- owned public 
broadcaster. We downloaded two files from the website of 
NHK on April 4, 2022: nhk-news-covid19-domestic-daily-
data.csv and nhk-news- covid19-prefectures-daily-data.csv. 
https://www3.nhk.or.jp/news/special/coronavirus/data-all 
and data.

The dataset contains daily numbers of COVID-19 
infections and deaths from January, 2020 to April 3, 2022. 
Three daily numbers for April 2022 are used for the smoothing 
process of moving average.

Methods
The present paper uses the following notation: Ut indicates 

the cumulative numbers of infections or deaths on the t-th 
day, and ut indicates the daily count of infections or deaths 
on the t-th day. Since reported data of daily counts usually 
fluctuate around trend curves, we use a seven-day moving 
average

mt = {ut−3 + . . . + ut + . . . + ut+3}/7.

Using the relation ln FG(t) = −e−y(t), the probability density 
function for the Gumbel distribution fG(t) is given by

fG(t) = ae−y(t) FG(t). (2)

In order to estimate Ut and mt, it is necessary to know the 
total number N, and

Ut ≈ N FG(t),	 mt ≈ N fG(t).	 (3)

This method uses the value Mt defined as

 (4)

and Mt can be approximated by

(5)

Thus, we have

Mt ≈ ae−a(t−b)

We can obtain Mt from the reported daily numbers. The 
final task is to estimate the parameters in y(t) = a(t − b).

Applying a logarithmic transformation, we define Lt as

Lt = − ln Mt ≈ − ln a + a(t − b) = at + {− ln a − ab}.	   (6)

Thus, Lt may be approximated by a linear function of t as

Lt ≈ q0 + q1t,

and coefficients q0 and q1 can be obtained by the linear 
regression method. From these values, we have estimates of 
the Gumbel parameters,

a = q1,	 b = −(ln q1 + q0)/q1.	 (7)

The regression analysis uses two sets T and Y having 12 
elements

T = {ts, ts + 1, . . . , te},

where ts and te denote the starting time and ending time, 
respectively, of the regression with te = ts + 11, and

Y = {Lts, Lts+1, . . . , Lte}.
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The next step is an estimation of the total number Ne.  
We use the average of the ratio

(8)

Then, the estimate of Ut is given by

Ue(t) = Ne FG(t);

and we use Ue(t) for the estimation of daily number ne(t)

Results
This analysis uses daily numbers in Japan from September 

1, 2021 to April 3, 2022, and presents estimated daily numbers 
from January 6, 2022 (t = -25) to March 31, 2022 (t = 59).

Infections and Deaths in Japan
First, we consider the number of daily infections and 

deaths of Japan during the sixth outbreak. Table 1 presents 
the time windows for the regression analysis and the obtained 
model parameters: Ne, a, and b. Theories 1 and 2 indicate 
infection numbers, and Theories 3 and 4 indicate deaths.

Figure 1 shows a comparison of the reported daily 
number of infections in Japan and the Gumbel model. 
Model estimations for the time course of the sixth outbreak 
are carried out with two different time windows for the 
regression analysis. The left-hand panel shows the estimated 
daily numbers for Theories 1 and 2. Theory 1 uses a 12-day 
time window of 7 ≤ t ≤ 18, and Theory 2 uses 1 ≤ t ≤ 12. 
Theory 1 calculates the regression coefficients using the dates 
for six days later than those of Theory 2. We note that Theory 
2 underestimates the reported data of t ≥ 15 in the region of 
decreasing phase. In contrast, Theory 1 can satisfactorily fit 
the data for t ≤ 25, and deviation from reported data is smaller 
than that for Theory 2 for almost all dates. The right-hand 
panel shows Lt and estimated linear lines q0 + q1t of Theories 
1 and 2.

Figure 2 shows a comparison of the reported daily number 
of deaths and the Gumbel model estimation. The left-hand 
panel shows the estimated daily numbers for Theories 3 and 4, 
and right-hand panel shows Lt and two esti- mated linear lines 
q0 + q1t. As presented in right-hand panel, the window of [0, 
12] cannot be used for the regression analysis. The estimation
of Theory 3 almost perfectly reproduces the reported data.

Infections of 16 Prefectures
Table 2 presents the time windows for the regression 

analysis, and the three Gumbel model parameters obtained 
using the data for 16 prefectures. The time window is fixed at 
[1, 12] for three metropolitan areas.

We define the ratio R(t1, t2) of the cumulative number 
of infections to the estimated cumulative number in period 

Theory ts te Ne a b

Theory 1 7 18 4,595,822 0.05264 7.16368

Theory 2 1 12 3,976,705 0.0627 4.64185

Theory 3 19 30 11,828 0.05296 23.23294

Theory 4 13 24 13,942 0.04568 26.70866

Table 1: Daily number of infections and deaths in Japan.
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Figure 1: Gumbel model estimation of the daily number of infections based on time-series data for Japan. Reported data are indicated by black points. The 
theoretical estimations are indicated by solid red lines (Theory 1) and blue dotted lines (Theory 2). Estimation are obtained using parameters presented in Table 
1. Day 1 is February 1, 2022. Right-hand panel: The seven-day moving average of daily counts mt and theoretical estimations. The vertical axis shows the daily 
counts. Left-hand panel: Linear function Lt and theoretical estimations.
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2022 (t = -4) and was lifted on March 21, 2022 (t = 49). In 
Wakayama, this measure began on February 5, 2022 (t = 5) 
and was lifted on March 6, 2022 (t = 34). Figure 4 shows 
the daily number of infections for four prefectures in the 
Osaka area. The plots for Osaka and Wakayama demonstrate 

reasonable fitting of the model to the reported data. Although 
the fitting qualities of Kyoto and Hyogo are not so good as 
Osaka and Wakayama, the Gumbel model can fit the data 
at a reasonable level. Table 3 illustrates the goodness-of-fit 
with small values of Pc for Osaka and Wakayama and with 

Figure 2: Gumbel model estimation of daily number of deaths based on the time-series data for Japan. The results of the reported data are indicated by black 
points. The theoretical estimations are indicated by solid red lines (Theory 3) and blue dotted lines (Theory 4). These estimations are obtained using the 
parameters presented in Table 1. Day 1 is February 1, 2022. Panel (a): The seven-day moving average of daily counts mt and theoretical estimations. The vertical 
axis shows the daily counts. Panel (b): Linear function Lt and theoretical estimations.

Prefecture ts te Ne a b

Tokyo 1 12 668,895 0.07426 2.61559

Saitama 1 12 247,215 0.06121 6.91471

Chiba 1 12 249,688 0.05369 9.88659

Kanagawa 1 12 346,513 0.0634 6.30677

Osaka 1 12 548,486 0.06349 4.86782

Kyoto 1 12 103,433 0.0676 3.46218

Hyogo 1 12 220,298 0.06729 5.07825

Wakayama 1 12 22,377 0.06062 4.75907

Aichi 1 12 286,662 0.05443 7.44127

Gifu 1 12 46,182 0.05139 7.60166

Mie 1 12 30,851 0.06427 5.1695

Shizuoka 1 12 80,283 0.05542 5.83218

Hokkaido 1 12 138,372 0.06707 5.69137

Tochigi -11 0 44,910 0.04841 9.97202

Toyama 13 24 27,997 0.04189 22.22591

Nagasaki -11 0 19,630 0.0789 -1.723

Table 2: Parameters of analysis of infections.

Window for regression analysis, and estimated model parameters.

t1 ≤ t ≤ t2. Table 3 presents the ratios for three periods: Ra = 
R(−25, 0), Rb = R(1, 12), and Rc = R(13, 59).

Tokyo Metropolitan Area: Ratings of population in 
Japan are Tokyo (1), Kanagawa (2), Saitama (5), and Chiba 
(6). The total population of these prefectures is approximately 
29.3% of the Japanese population. A quasi-state of emergency 
began in these prefectures on January 21, 2022 (t = −10) as 
Japan tried to minimize the economic impact to specific areas 
where infections were again rising, and lifted this state on 
March 21,2022 (t = 49).

Figure 3 demonstrates the daily number of infections 
for four prefectures in the Tokyo area. The theory provides 
a lower estimation than reported data for Tokyo, Saitama, 
and Kanagawa. In particular, the discrepancy is significant 
for Tokyo. As listed in Table 3, the ratio Rc of Tokyo is 
the second largest among 16 prefectures. In contrast, the 
calculated time-series data for Chiba approximately follow 
the trend of the reported data, and Pc for Chiba is very small 
compared with Pc for the three other prefectures.

Osaka Metropolitan Area: Ratings of population in 
Japan are Osaka (3), Hyogo (7), Kyoto (13), and Wakayama 
(40). The total population of these prefectures is approximately 
14.1% of the Japanese population. In Osaka, Kyoto, and 
Hyogo, a quasi-state of emergency began on January 27, 
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Figure 3: Gumbel model estimation of daily number of infections based on the data of pre- fectures in the Tokyo area: (A) Tokyo, (B) Saitama, (C) Chiba, and 
(D) Kanagawa. The results of the reported data are indicated by black points. The theoretical estimations are indicated by solid red lines. The vertical axis shows 
the daily counts, which were obtained using the parameters presented in Table 2.

Prefecture Ra Rb Rc Prefecture Ra Rb Rc

Tokyo 0.976 1.02 1.827 Aichi 0.977 1.027 1.273

Saitama 0.984 1.027 1.626 Gifu 0.963 1.028 1.271

Chiba 0.993 1.026 1.179 Mie 0.978 1.033 1.786

Kanagawa 0.982 1.014 1.599 Shizuoka 0.984 1.026 1.513

Osaka 0.955 1.028 1.257 Hokkaido 0.961 1.036 1.426

Kyoto 0.99 1.007 1.427 Tochigi 0.971 1.025 1.271

Hyogo 0.965 1.027 1.422 Toyama 1.026 1.009 1.02

Wakayama 0.982 1.031 1.146 Nagasaki 0.992 1.037 2.581

Table 3: Reported data and theoretical estimation.

Ratios between reported data and estimation in three periods [−25, 0], [1, 12] and [13, 59].

relatively larger values for Kyoto and Hyogo. Overall, the 
quality of fitting to the reported data for the Osaka region is 
better than that for the Tokyo region.

Nagoya Metropolitan Area: Ratings of population in 
Japan are Aichi (4), Shizuoka (10), Gifu (17), and Mie (22). 
The total population of these prefectures is approximately 
11.8% of the Japanese population. A quasi-state of emergency 
began in Aichi and Gifu on January 21, 2022 (t = -10) and 
was lifted on March 21, 2022 (t = 49). In Mie, this measure 
began on January 21 (t = -10) and was lifted on March 6 (t = 
34). In Shizuoka, this measure began on January 27 (t = -4) 
and was lifted on March 21 (t = 49). Figure 5 presents the 
results of the Gumbel model estimation for daily numbers for 

four prefectures in the Nagoya area. The Gumbel model can 
explain well the reported data for Aichi and Gifu. In contrast, 
the model gives poor results for Mie and Shizuoka. The Pc 
values for Aichi and Gifu are approximately the same as that 
for Osaka. Kanagawa is a neighboring prefecture of Shizuoka, 
and the Pc of both Kanagawa and Shizuoka prefectures are 
similar at 1.6 and 1.5.

Other Areas: Ratings of population in Japan are Hokkaido 
(8), Tochigi (18), Nagasaki (27),  and Toyama (37). The total 
population of these prefectures is approximately 7.5% of the 
Japanese population. A quasi-state of emergency began in 
Hokkaido and Tochigi on January 27, 2022 (t = -4) and was 
lifted on March 21, 2022 (t = 49). In Nagasaki, this measure 
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Figure 5: Gumbel model estimation of the daily number of infections based on the data for prefectures in the Nagoya area: (A) Aichi, (B) Gifu, (C) Mie, and 
(D) Shizuoka. The results of reported data are indicated by black points. The theoretical estimations are indicated by solid red lines. The vertical axis shows the
daily counts, which are obtained using parameters presented in Table 2.

Figure 4: Gumbel model estimation of daily number of infections based on the data for prefectures in the Osaka metropolitan area: (A) Osaka, (B) Kyoto, (C) 
Hyogo, and (D) Wakayama. The results for the reported data are indicated by black points. The theoretical estimations are indicated by solid red lines. The 
vertical axis shows the daily counts, which were obtained using the parameters presented in Table 2.
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Figure 6: Gumbel model estimation of the daily number of infections based on the data for prefectures in other areas: (A) Hokkaido, (B) Tochigi, (C) Toyama, 
and (D) Nagasaki. The results for the reported data are indicated by black points. The theoretical estimations are indicated by solid red lines. The vertical axis 
shows the daily counts, which are obtained using the parameters presented in Table 2.

Figure 7: Probability density functions for Kyoto and Hyogo. The probability density for Kyoto is indicated by blue points, and that for Hyogo is indicated by 
red points. The vertical axis shows the probability. Day 1 is January 30 for Kyoto and February 1 for Hyogo.
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began on January 21 (t = -10) and was lifted on March 6 (t = 
34). Figure 6 reports the results of the analysis for prefectures 
in other areas. The model reproduces the data of Hokkaido 
in t ≤ 23 and then begins to underestimate the data in the 
decreasing phase. As shown in Fig.6 (B), the data for Tochigi 
shows a double-top shape, and we cannot use the window 
of [1, 12]. The estimate using the window of [-11, 0] well 
reproduces the reported data in t ≤ 35. For Toyama, the model 
well estimates almost all data points and has the smallest 
value of Pc. Although Nagasaki reports the largest value of 
Pc among 16 prefectures, the model can reproduces the data 
in t ≤ 10.

Discussion
The present method makes use of the Gumbel distribution 

as a model for the daily number of infections. In the model, 
there are three parameters: total

Number Ne, shape parameter a, and position parameter 
b. For the estimation of the parameters, the present study
applies two-step transformations to the sum of daily numbers
Ut. The first step involves taking the ratio Mt of the seven-day
moving average mt to Ut as given in Eq. (4). By this step, the
parameter Ne is eliminated from the equation. The second step
is the logarithmic transformation Lt given by Eq. (6). Then,
parameters a and b can be estimated by regression analysis.

The present research is inspired by the analysis of 
COVID-19 data by Nakano and Ikeda [21]. Nakano and Ikeda 
introduced a new indicator Kt as a measure of spread rate

(9)

Note that Kt does not have the parameter of total number. 
It is easy to show that Kt can be rewritten as

Which has similar form as Mt.

Table 2 reports that the shape parameters of Kyoto and 
Hyogo take almost equal values, and Fig. 4 shows the close 
resemblance of plots for both prefectures. Figure 7 shows 
the probability density functions for Kyoto and Hyogo. The 
estimation of the probability function is obtained by dividing 
the seven-day moving average mt by the estimated total 
number Ne. Since the difference of position parameter b is 
5:078 − 3:462 ≈ 2, we shift the data for Kyoto to a position 
two days later. The result meets our expectation, and the 
probability density functions for both prefectures match 
well. Kyoto and Hyogo are neighbouring prefectures, and a 
large amount of traffic volume is supported by railroads and 
highways spread throughout the Osaka area. However, the 
result may not be explained by this observation alone and 
requires more detailed analysis.

Conclusion
A mathematical model that captures the characteristic of 

infections is a key tool to support science-based decision-
making and to provide a quantitative assessment of exit 
strategies. In the present study, we apply the Gumbel 
distribution function of the EVT for the analysis of time-
series data of the sixth-wave COVID-19 outbreak in Japan. 
Selecting 16 prefectures out of the 47 prefectures in Japan, 
we estimate the growth rate of infection and the point of 
inflection for each prefecture. For seven prefectures, the 
daily numbers of infections are well described by the Gumbel 
distribution model. The value of Pc in Table 3 is less than 
1.3 for Chiba, Osaka, Wakayama, Aichi, Gifu, Tochigi, 
and Toyama. This table also indicates lack-of-fit for several 
prefectures. The value of Pc is greater than 1.5 for Tokyo, 
Saitama, Kanagawa, Mie, Shizuoka, and Nagasaki. Thus, this 
fact suggests that more detailed modeling would be required. 
The present model assumes that future data can be estimated 
by extrapolation of a linear function. However, Fig. 1 indicates 
that the reported data for infection deviate significantly from 
the linear trend. We are now trying to develop a method to 
overcome this problem.
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