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Abstract

Root-knot nematodes (Meloidogyne spp.) cause great economic impact in the sector of agriculture while the number
of existing commercial nematicides has been drastically reduced. The metal-based nanoparticles offer new
possibilities as agrochemicals. In the current study, we shed light on the role of copper/iron based nanoparticles as
bioactive agents against the root knot nematode Meloidogyne spp; along with the plant enhancement properties on
the nematode infested host. Same sized PEGylated Cu, CuFe and CuFeO, NPs, were solvothermally synthesized
characterized and evaluated against M. incognita and M. javanica nematodes, in terms of paralysis and biological
cycle arrest in tomato plants. Comparisons were made against the commercial nematicide fosthiazate. All the tested
compositions revealed nematicidal activity, but CuFe NPs were found best effective exhibiting the lowest ECx, value
calculated at 0.03 pg ai g/soil. Additionally, a fresh shoot and root weight increase was evident in tomato plants
treated with CuFe NPs.

Keywords: Meloidogyne incognita; Meloidogyne javanica; Micronutritients; Nanoparticles; Nanoagrochemicals;

Plant protection; Fertilizers

1. Introduction

Root-knot nematodes (Meloidogyne spp.) are the most notorious plant parasitic nematodes, amongst agricultural
pests suppressing crops while causing annually significant crop losses to the production of fruits and vegetables [1,
2]. Till now, nematicidal control has been mainly based on synthetic organic chemical nematicides [3]. However,

due to environmental problems, many of them such as the synthetic carbamate, organophosphate and
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organophthalide pesticides have been recently banned (Council Directive 91/414/EEC, Regulation 2009/1107/EC

OL and Directive 2009/128/EC). Therefore, there is an emergent need for the development of alternative nematode
control measures and green nematicidal products that will impose less toxicity on non-target organisms,

environment and humans [4].

Nanoagriculture involves the employment of nanomaterials, such as nanopesticides and nanofertilizers, in crop
protection, providing sustainable options to improve plant’s health [5-8]. In recent years, among a variety of
nanostructures, metal-based nanoparticles (NPs) are gaining interest due to their unique physicochemical properties
and biological activities. The impact of metal-based NPs on plant growth and their accumulation in food source
according to the applied dose are evident. The effectiveness of metal-based NPs are species dependent and is driven
by a series of factors, including the characteristics of the nanomaterial and the environmental conditions. The
physicochemical properties of the NPs, known as the so-called 4s' parameters (size, shape, surface chemistry and
structure), can highly affect their biological properties; while the environmental behaviour of the NPs (mobility,
reactivity, toxicity) needs to be completely understood. Thus, the effects of metal-based NPs formulations in
different soils and on diverse crop plants have to be explored to broaden the horizon of sustainable agricultural

production of higher and safer yields [6].

Copper (Cu) and iron (Fe) are essential micronutrients in crop plants and play a very important role in biochemical
functions such as the photosynthetic electron transport, the respiration of the mitochondria, the oxidative stress, the
metabolism of the cell wall and the synthesis of the DNA [5, 6]. At the same time, copper formulations can be used
as antagonists of plant antagonistic bacteria and fungi, with huge potential for use in pesticide formulations [2, 4].
Interestingly, Fe-based NPs exhibit great potential in the agricultural section as they are considered to be
biocompatible and of low-toxicity [9]. Additionally, iron deficiency is a widespread agronomic issue caused by poor
iron solubility in the vast majority of soils and consequential insufficient iron availability to plants [10]. Fe-based
NPs are reported to have insignificant antimicrobial activity against many bacteria species, such as Bacillus subtilis
and Escherichia coli [11] and their use is primarily as fertilizers. In fact, naked iron oxide (Fe;O4) NPs were found to
increase the shoot and root length of tomato plants [12] while the application of Fe,O3; NPs to peanut seeds, resulted
in stem and root growth and seed germination increase, indicating that Fe,O; NPs can replace traditional Fe

fertilizers in the cultivation [13].

On the other hand, Cu-based NPs reveal their effectiveness and specificity towards a broad spectrum of
microorganisms [14, 15]. It is a matter of concern, though, which form of copper (Cu, Cu,0O, CuQO) is more suitable,
since it is linked to the flexible Cu(l)/Cu(ll) redox activity and may undergo chemical transformations such as
reduction or oxidation when applied to the soil [16]. However, the application of nanomaterials hardly reaches field
experiments [17, 18] and the impact/ interaction of metal and metal oxide NPs on plants and soil are often
controversial. The toxicity of the NPs in plants and the environment is correlated to the size, concentration and
composition. In general, copper oxide NPs (CuQ) are reported to be more toxic on plants, than metallic copper NPs,

due to oxidative properties [19]. For instance, naked CuO NPs, of size <50 nm, prevented the growth of wheat in the

Journal of Nanotechnology Research 45



J Nanotechnol Res 2019; 1 (2): 044-058 DOI: 10.26502/jnr.2688-8521004

sand when tested at concentrations >10 mg CuO/kg [20]; while in the case of naked Cu NPs of 20 nm a dose
dependent decrease occurred in mung bean and wheat growth at concentrations >200 mg/L and >800 mg/L
respectively [21]. On the other hand, CuO NP were found to have a positive impact on waterweed aquatic plants
(Elodea densa), by stimulating photosynthesis even at low concentrations <0.25 mg/L [19]. Meanwhile, studies
concerning the interaction of Cu,O NPs with soil and plants have not been reported. Specifically, applications of
metal- based NPs, as nematicidal agents are very few. When ‘naked’ silver NPs were tested at 200 mg/mL against
Meloidogyne incognita J2 100% immobility and mortality was revealed, while treatment at 0.0007% (w/w) of nano-
silver completely controlled M. incognita in pot experiments; on the contrary, titanium oxide NPs tested at 800 and
400 mg/mL provoked 4.3 and 2% J2 mortality, respectively [22]. Interestingly, in other studies, when M. incognita

J2 were immersed into 30-150 pg/mL of silver NPs in water, >99% nematodes became inactive in 6 hours [23].

Previously we have reported on the enhanced antimicrobial activity of CuFeO, against Bacillus subtilis, Escherichia
coli and Saccaromyces cerevisiae [24]. The composition of CuFeO, as a bimetallic oxide with an inert iron (I11) and
a reactive copper (1) metals in the presence of the biodegradable polyethylene glycol (PEG8000), helping avoid
oxidation of the metal core and to protect plant cells from possible increased NPs toxicity by performing stealth
properties [25], sounds promising. In continuing our studies in the field of nanoagrochemicals [16, 24, 26], we report
on different species of copper/ iron-based NPs activity as nematicidals for the first time. In particular, in this study
we report results on (1) the synthesis and characterization of the same crystallite sized Pegylated Cu, CuFe and
CuFeO, NPs prepared solvothermally in the presence of the biodegradable polyethylene glycol (PEG8000) and (2)
evaluation of the nematicidal activity of all tested compositions against M. incognita and M. javanica both in terms
of J2s paralysis and biological cycle arrest of the parasite in host plant tissues. Last we report on the secondary

effects on tomato plants’ growth, by counting fresh shoot and root weight.

2. Materials and Methods

2.1 Reagents

The reagents that were necessary for the preparation of nanoparticles are the following: Copper(Il) nitrate trinydrate
Cu(NO3),:3H,0 (Merck, > 99.5%, M=241.60 g/mol), Iron(lll) nitrate nonahydrate Fe(NO3);-9H,O (Merck, >
99.5%, M=404 g/mol), polyethylene glycol (PEG) 8000 (Alfa aesar), hydrazine hydrate N2H4-H20 (Merck, about
100%, M=50.06 g/mol).

2.2 Preparation of Cu-based NPs

Cu NPs: 1 g (4 mmol) of Cu(NO3),-3H,0 was dissolved in 6 mL of deionized water to obtain a blue solution. Then
0.1g (20.5 mmol) of N,H,4-H,O was added dropwise to the blue solution and the color changed to yellow, indicating
the reduction of Cu (II). Successively, 1.5 g (1.9 mmol) of PEG 8000 was added. The resulting solution was stirred
thoroughly and then transferred into a 23 mL Teflon-lined stainless-steel autoclave. The crystallization was carried
out for 2 h, under autogenous pressure, at the temperature of 160°C. Then the autoclave was cooled naturally to

room temperature. The supernatant liquid was discarded after centrifugation at 5000 rpm. A black-brown precipitate
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was obtained and washed at least three times with ethanol, to remove the excess of ligands and the unreacted

precursors.

CuFe and CuFeO;, NPs: For the preparation of these compositions a modified synthetic protocol of our previous
studies was followed according [27]. In brief for CuFe NPs preparation: Fe(NO3);-9H,0 (0.5 mmol, 0.2 g) and
Cu(NO3),-3H,0 (0.5 mmol, 0.1 g) were dissolved in 8 mL of TEG, while for CuFeO, NPs: 0.5 mmol (0.2 g)
Fe(NO3)3-9H,0 and 0.1 g (0.5 mmol) of Cu(NOs3),-3H,0 were dissolved in 8 mL deionized water. Then 0.1 g (39.5
mmol) of N,H4-H,O was added dropwise to this solution and the color changed from yellow to brown. Successively
a solution of 1.9 mmol (1.5 g) PEG 8000 was added. In both cases the resulting solution was stirred thoroughly and
then transferred into a 23 mL Teflon-lined stainless-steel autoclave. The crystallization was carried out for 8 h,
under autogenous pressure, at the temperature of 160°C. Then the autoclave was cooled naturally to room
temperature. The supernatant liquid was discarded after centrifugation at 5000 rpm. A black-brown precipitate was

obtained and washed at least three times with ethanol, to remove the excess of ligands and the unreacted precursors.

Composition Surfactant (%0) Size by XRD (nm)  [Size by DLS (nm)
40%
Cu 40 200
PEG8000
39%
CuFe 40 146
PEG8000
20%
CuFeO; 36 257
PEG8000

Table 1: Experimental results and main characteristics of Cu, CuFe and CuFeO, NPs.

2.3 lonic release measurements

The release of copper and iron ions from the Cu, CuFe and CuFeO, NPs into distilled (DI) water was studied by
preparing a solution of 10 mg of NPs in 100 mL DI water. The solution was sonicated for 10 min. The suspension
was kept in a rotary shaker under the same experimental conditions as in paralysis bioassays for 24 h and then the
residual Cu®* and Fe®" concentration in the aqueous phase was determined using Inductively Coupled Plasma
Atomic Emission Spectroscopy (ICP-AES).

2.4 Dynamic light scattering measurements

Hydrodynamic diameters were determined with VASCO Flex™ Particle Size Analyzer NanoQ V2.5.4.0 dynamic
light scattering (DLS), by electrophoretic measurements, at 25°C. For the measurements of all the samples, the
dilution medium was filtered through a 0.2-micron membrane, at the concentration of 100 pg/mL because a high

purity of the suspension was required in order to remove unwanted agglomerates and/or dust contamination.

2.5 NPs characterization
The characterization of the NPs was performed by X-ray powder diffraction (XRD) on a Philips PW 1820

diffractometer at a scanning rate of 0.050/3 s, in the 20 range from 10 to 90°, with monochromatized Cu Ka
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radiation (A=1.5406 nm). TG analysis (SETA-RAM SetSys-1200) was carried out in the range from room
temperature to 900°C at a heating rate of 10°C min~ * under N, atmosphere, by Infrared spectra (280-4000 cm )

were recorded on a Nicolet and with FTIR 6700 spectrometer with samples prepared as KBr pellets.

2.6 Nematode bioassays

2.6.1 Nematode cultures: Two separate nematode species were raised by a single egg mass of M. incognita and
another of M. javanica as characterized and kindly provided from the collection of E. A. Tzortzakakis of Hellenic
Agricultural Organization-Demeter, Heraklion, Crete (ELGO). The obtained populations were reared on six-leaf
stage tomato plants cv. Belladonna. Forty days after inoculation the roots were washed free of soil, cut into 2 cm
pieces and eggs were extracted from a tomato plant roots, according to the sodium hypochlorite procedure [28] as
described by Ntalli et al. [29]. Second-stage juveniles (J2) were allowed to hatch in modified Baermann funnels at
27°C. The first 3-day (J2) hatching was discarded. All freshly hatched (24 h) second-stage juveniles (J2) collected

thereafter were used in the experiments.

2.6.2 Effect of NPs on J2 motility: Effects of Cu and CuFeO, or CuFe NPs on J2 motility, were tested at the dose
rate of 25-200 pug/mL or 12.5-200 pg/mL, respectively, in CellstarR 96-well cell culture plates (Greiner bio-one). In
all cases, NPs were dispersed in water to form test solutions, which were mixed in 96-well culture plates at a ratio of
1:1 v/v with suspensions of 20 J2 per well. Distilled water was used as control. All the plates were covered with
plastic lids and kept in the dark at 27°C. The exact number of transferred J2 nematodes into the wells, was verified
under an inverted microscope (Euromex, The Netherlands) at 40X. After 24, 48 and 72 h the mobile and immobile
Juveniles (J2) were observed with the aid of the inverted microscope. The five treatment replications were

completely randomized and each experiment was performed twice.

2.6.3 The NPs effect on the nematode’s life cycle: The soil that was used for the pot experiments was an RKN-free
clay loam soil containing 1.3% organic matter-pH 7.8 and was collected from a non-cultivated field of the
University Farm. A 3-mm sieve was used in order to separate soil from debris. The sieved soil was then partially air-
dried overnight. Measurements of soil moisture and maximum water holding capacity (MWHC) were performed
according to Pantelelis et al. [30]. After the confirmation of the absence of nematodes using the modified Baermann
funnel method, the soil was mixed with sand at a ratio of 2:1 to obtain the mixture hereafter referred to as soil.
Plastic bags of 1.0-kg subsamples were prepared representing the experimental treatments. 12.500 J2 were applied
to each plastic bag and the soil was mixed thoroughly by shaking, then sieved and equilibrated in the dark, for 24 h,
at room temperature. The fortification of the soil with NPs took place at doses of 0.025 to 0.4 pg ai/gr soil. For this,
appropriate amounts of CuFe, CuFeO, and Cu NPs were weighed, dispersed in distilled water and the produced

solutions (10 mL each) were mixed with the soil so as to achieve the test concentrations.

A treatment with water and a treatment with Nemathorin150EC at the registered dose, 2 pg ai/gr soil (a.i. fosthiazate
15%, Hellafarm Co.) were used as controls. The soil in the plastic bags was mixed and sieved again, through a 3-

mm sieve, to ensure uniform distribution and then returned into the plastic bags, mixed thoroughly by shaking and

Journal of Nanotechnology Research 48



J Nanotechnol Res 2019; 1 (2): 044-058 DOI: 10.26502/jnr.2688-8521004

left to equilibrate in the dark, for another 24 h, at room temperature. The moisture content of the soil never exceeded
24% of MWHC. After sieving again, the treated soil was divided into 200 g/ plastic pots (1kg x 5 treatments) and
tomato plants cv. Belladonna were transplanted. Plants used for the experiment were 7-week old and at the six-leaf
stage. The plants were watered every two days with 20 mL of water and were kept at 27°C, 60% RH at 16 h
photoperiod. After forty days, the plants were uprooted and their roots were washed very gently in running tap water
to remove all soil particles. In order to count nematode females in plant tissues, they were stained with an acid
fuchsin solution [31]. The number of female nematodes per gram of root were counted at 10 x magnification under
uniform illumination by transparent light within tissue sample. Measurements of fresh root and fresh shoot weight
parameters were performed as well. The experiment was replicated once, and the treatments were always arranged

in a completely randomized design with five replicates.

2.7 Statistical analysis

Nematode bioassays were performed twice with five replicates per treatment. Because ANOVA indicated no
significant treatment by time interaction (between runs of experiment), means were averaged over the experiments
and the data were analyzed (ANOVA) combined over time. The percentages of immotile J2 in the microwell assays
were expressed as a percentage increase in the number of immotile J2 in the water control according to the
Schneider Orelli’s formula: corrected % = {[mortality % in treatment — mortality % in control]/[100 — mortality %
in control]} x 100 [32]. Data was subjected to probit linear regression analysis and the concentration of
nanoparticles (ECs, values) required for 50% death/paralysis of nematodes was calculated. The data from the pot
experiments were expressed as a percentage decrease in the number of females per gram of root corrected according
to the control, using the Abbott’s formula: corrected% = 100 % {1—[females number in treated plot/females number
in control plot]}. A probit linear regression analysis was performed for ECs, calculation. In this regression equation,
the test compounds was the independent variable (x) and the number of female nematodes percentage decrease over
water control, was the dependent variable (y). Treatments means for plant growth parameters were compared using
Tukey’s test at P=0.05 [33]. Statistical analysis was performed using IBM SPSS Statistics program while the dose-

response curves were created using the program Origin Pro 8 (Graphing and Analysis).

3. Results

3.1 Characterization of Cu-based NPs

In the XRD patterns of the samples studied (Figure 1) the Bragg reflections correspond to the crystal structures of
Cu, CuFe and CuFeO, NPs with Cards pdf.04-0836, pdf.03-065-7002 and pdf.75-2146 respectively. The reflections
at almost 18,5° and 19,1° are associated with the presence of the organic coating (PEG8000) in Cu and CuFe NPs
revealing the high crystallinity of the NPs. MDI's Jade software was used and lattice parameters were calculated.
They were found to be a = 3.59 A, 3.6170 A, 3.05 for Cu and CuFe, respectively. For the rhombohedral structure of
CuFeO, the lattice parameters were found to be a = 3.04A and ¢ = 17.12A. The average crystalline sizes of pure Cu,
CuFe and CuFeO, NPs were determined by using the Scherrer equation and taking the full width at half maximum

(fwhm) of the most intense peak and were found to be 40 nm, 40 nm and 36 nm respectively.
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FTIR spectra of Cu, CuFe and CuFeO, NPs with the corresponding pattern of PEG8000 is given in Figure 2. The
surfactant PEG8000 was confirmed by the comparison of the two IR patterns in each sample. Peaks at 2880 cm *are
assigned to the stretching vibrations of methylene groups (-CH,), in the surfactant molecules. There is a broad peak
around 1635 cm* ascribed to the hydrogen bonds which is formed from the hydroxide groups. The C-O-C ether
stretch band at 1110 cm ™ is indicative of the presence of PEG8000 on the samples. The vibrations around 1340 cm™
and 1470 cm™ are associated with (C-H) and (C-H,) bending respectively. Finally, in the case of CuFeO, NPs we
can observe a sharp peak at 424 cm™ indicating the metal oxide nature of the NPs. The amount of the surfactants on
the samples was evaluated by thermogravimetric analysis (TGA). Under nitrogen atmosphere the temperature range
was high as 800°C. The percentage of the cumulative organic content was estimated at 40, 39 and 20 wt% for the
PEG8000- capped Cu, CuFe and CuFeO, NPs respectively (Figure 3).
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Figure 1: XRD patterns of Cu, CuFe, CuFeO, NPs.
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Figure 2: FTIR spectra of the samples Cu, CuFe, CuFeO, NPs.

Journal of Nanotechnology Research 50



J Nanotechnol Res 2019; 1 (2): 044-058 DOI: 10.26502/jnr.2688-8521004

weight loss (%)

50 <

] T b 1 1 hd T i b T
100 200 300 400 500 €00 0 800
Temperature (C)

Figure 3: Thermogravimetric curves of Cu, CuFe and CuFeO; NPs.

3.2 lon release measurements

The stability of the NPs was investigated in aqueous suspensions and the ions released from Cu, CuFe and CuFeO,
NPs into the water were estimated after 24 h. The concentration of copper ions released in water after 24 h was
found at 19.8, 13.3 and 1.6 ug/mL for CuFe, CuFeO,, Cu, respectively (Table 2). On the contrary, release of Fe ions
was found low at 0.5 and 0.2 pg/mL for CuFe and CuFeO, respectively.

Sample Cu Fe
Cu 1.6 -

CuFe 19.8 0.5
CuFeO, 13.3 0.2

Table 2: Concentrations (ug/mL) of Cu and Fe ions in water after 24 h dispersion of Cu-based NPs (100 pg/mL) in

water.

3.3 Effect of NPs on J2 motility

The effect of Cu, CuFe, CuFeO, NPs on the motility of root-knot nematodes was evaluated. When the NPs were
tested against M. incognita and M. javanica, a clear dose response relationship was established and after 24 h a
significant paralysis of J2 was evident (Figure 4). The dose response curves of Cu, CuFe, CuFeO, NPs after 24 h of
J2 immersion in NPs solutions are presented in Figure 4. The calculated ECs, values for all tested NPs against both
nematode species after J2 immersion for 24, 48 and 72 h, are shown in Table 3. Among the three tested
compositions, CuFe NPs exhibited the highest nematicidal activity, causing 100% paralysis to both Meloidogyne
species, after 72 h of J2 exposure at the lowest dose. The ECs, values of Cu, CuFe and CuFeO, NPs, after 24 h
immersion of M. incognita J2 in test solutions, was calculated at 75, 18 and 73 pug/mL respectively. A similar trend
was shown 48 h after the experiments’ establishment (Table 3), confirming once more the high nematicidal activity
of CuFe NPs. Finally, increasing the exposure period to 48 or 72 h resulted in same ECsg values (70 and 72 pg/mL
72 h after M. incognita J2 immersion to Cu and CuFeO2 NPs, respectively, Table 3). This fact demonstrates that all
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J2 found immotile after 24 h of immersion to test solutions had been dead and did not regain their activity later. The
paralysis activity of the tested NPs against M. javanica was found similar (Table 3) and the ECs, values of Cu, CuFe
and CuFeO; NPs, after 24 h immersion of M. javanica J2 in test solutions, were calculated at 65, 15 and 75 pg/mL,
respectively. Again, the activity of all tested NPs was retained after 72 h of exposure. Natural death in control for M.
incognita and M. javanica did not exceed 5% for all assessment dates. In all cases, J2 found immotile after 72 h of
exposure were recorded as dead because they did not regain their motility after moving to water. For comparison,

copper sulfate and fosthiazate were used as chemical control, with estimated ECsg/o4n of 32.9 and 0.79 pg/mL, or

24.5 and 0.89 pg/mL for M. incognita or M. javanica J2, respectively.
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Figure 4: Dose response curves of (A) M. javanica and (B) M. incognita nematodes treated with Cu, CuFe and
CuFeO, NPs solutions for 24 h. Each point represents the average percent number of paralyzed nematodes of five

replicates per treatment (x two experiments replications) after elimination of natural death counts in the control.

ECso (ng/mL), 24 h ECso (ng/mL), 48 h ECso (ng/mL), 72 h
sample M. incognita  |M. javanica M. incognita  |M. javanica M. incognita  |M. javanica
Cu 75+5 65 + 4 72+2 63 +5 70+ 3 61 +2
CuFe 18+3 15+2 0+2 13+2 -* -*

CuFeO, 734 75+3 73+2 74+ 4 72+4 72+3

*100% paralyzed at the lowest concentration dose.
Table 3: Estimated ECsx, values for Cu, CuFe and CuFeO, NPs calculated after 24, 48 and 72 h of M. incognita and

M. javanica J2 immersion in test solutions and expressed as ECsy + SD (ug/mL).

3.4 Effect of NPs on the nematode’s life cycle
Cu, CuFe and CuFeO, NPs were evaluated in vivo in pot experiments (Table 4) against M. incognita and clear dose

response relationships were established based on the numbers of females and galls/g of root tissues. The ECs, values
corresponding to the reduction of females/ g of root tissues for CuFe, Cu and CuFeO, NPs, were calculated at 0.03,
0.05 and 0.2 pg/g soil respectively (Table 4). Similar ECsy values were found considering the reduction of galls/g of
root tissues (data not shown). Fosthiazate tested at the registered dose of 2 pg ai g/soil resulted 100% efficacy.
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Interestingly, a significant increase was observed in the fresh shoot and root weight of tomato plants treated at the

three higher doses of CuFe NPs (Table 5) (Figure 5). In all cases, no phytotoxicity was observed in the tomato plants

after treatment with metal composts. The infestation in control plants was 80 females/g of root tissues.

Females/g root reduction

Sample

ECso (ng/g soil) SD
Cu 0.05 0.01
CuFe 0.03 0.01
CuFeO; 0.20 0.02

Table 4: ECg, values as calculated in pot experiments following M. incognita exposure to soils amended with Cu,
CuFe and CuFeO, NPs, expressed as ECsp = SD (ug/g soil).

Treatment Fresh shoot weight* (g) Fresh root weight* (g)

ng/g soil Cu NPs CuFe NPs Cu NPs CuFe NPs
0 (Control) 5.050° 5.050° 1.532° 1.532°

0.2 5.286" 6.172° 1.540° 1.647°

0.1 5.474° 5.746° 1.498° 1.612°
0.05 5.188" 5.344™ 1.526° 1.530°
0.025 4.538° 4.710° 1.366° 1.516°

*Data are presented as means of five replicates with standard deviations. Means followed by the same letter in the

same column are not significantly different according to Tukey’s test (P < 0.05).

Table 5: Growth parameters (fresh shoot and root weight) of tomato plants (Solanum lycopersicum) in soil infested

with M. incognita nematodes and containing the different rates of Cu and CuFe NPs.

e

Figure 5: Tomato plants and their roots treated with Cu, CuFe and CuFeO, NPs at the dose of 0.2 pg g/soil in

comparison to the untreated-control plants.
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4. Discussion

The root-knot nematodes, Meloidogyne spp. are difficult to control and the agricultural sector needs green and
effective nematicides towards that direction. Nanotechnology could offer novel approaches for the solution of this
problem since the performances of conventional pesticide formulations are often ameliorated through the
construction of nanotechnology [34, 35]. A plethora of chemical, physical and biological techniques continues to
evolve leading to the production of noble metal nanoparticles, some of whom are of use against nematodes [36].
Recent research on silver nanoparticles (Ag-NP), “naked” or of botanical products, showed significant nematicidal
effect against M. incognita [37, 38]. In that vein, different compositions of Cu/Fe NPs were synthesized in the
presence of the biocompatible surfactant PEG8000 and evaluated as nematicidals for the first time. Two nematode
species were investigated, namely M. incognita and M. javanica, and similar ECs, values were established. CuFe

NPs was the best effective product in paralyzing M. incognita, with an ECsgjp4n value of 18 pg/mL.

The nematicidal activity of the NPs was determined in the descending order of CuFe (Cu®) > Cu (Cu%) = CuFeO,
(Cu™), with the last two compositions revealing similar efficacy. Copper salts have already been reported of
nematicidal activity when used in combination with maleimide derivatives [39], while metal complexes have been
found effective both against the root-knot nematodes and the soil born fungi Fusarium oxysporum [40]. In specific
copper sulphate, principally used as a fungicide but also for treating copper-deficient soils, has been reported to
exhibit an ECsq value of 280 pug/mL against M. javanica [41] while Eloh et al. [39] reported an ECs, value of 48.6
pug/mL against M. incognita. Also, application of a mixture of maleic acid and copper sulfate reduced RKN disease
on tomato by 51.72% in a pot experiment, suppressed gall formation on melon and decreased nematode population
density in the soil [42]. Regarding copper based NPs, in previous studies, against plant pathogenic bacteria, among
NPs of the same sizes with varyin compositions such as Cu (Cu%), Cu,0 (Cu'*) and CuO (Cu*") NPs, metallic

copper has been found the most potent [14].

In this study the CuFe NPs exhibited the highest activity, but we can’t overlook the fact that in the case of CuFe NPs
a higher ionic release occurs, after 24 h dispersion in water, than in the case of Cu NPs (19.8 pg/ml and 1.6 pg/mL,
respectively). Considering that the nematicidal activity of copper sulfate has been determined at ECsgpoqn = 32.9
pg/mL, the potent activity of CuFe NPs could partially be attributed to copper ions released 24 hours after dispersion
of CuFe NPs in water. On the contrary iron has not significant antimicrobial properties [43], while the nematicidal
activity of iron sulfate against M. incognita has been reported at 126 + 48 pg/mL [39], much higher than the
concentration of free iron (0.5 pg/mL) released after 24 h of dispersion and therefore the effect of copper/iron based
NPs on Meloidogyne spp. has further to be studied.

Furthermore, Cu, CuFe and CuFeO, NPs arrest the biological cycle of M. incognita in tomato roots when used in pot
experiments. Among the tested compositions, CuFe NPs revealed once again the highest efficacy and the lowest
ECso=0.03 pg/g soil. Finally, the nematicidal activity followed the same descending order of CuFe(Cu®) > Cu(Cu®) >
CuFeO,(Cu™). The fact that no phytoxicity was observed in tomato plants treated with the tested compositions,
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while the bimetallic CuFe NPs resulted in significant increase of fresh shoot and root weight in the three higher
doses, indicate an additional beneficial role (Figure 5) (Table 5) and should be considered together with the efficacy

parameters in case it would be addressed as a pest management tool.

On the other hand, both copper and iron are essential trace elements for plants’ growth [44] participating in basic
photosynthesis processes and bio functions of plants at the cellular level; while their lack may lead to structural
damages [43]. Although recent published results report on root exposure of plants to NPs, the plant root uptake of
NPs is still controversial [47]. Recent studies on Fe NPs revealed the fate of iron in soil being associated with its
additive form. Coated NPs, as in the present study, were proved to alter the surface chemistry and interaction with
the environment [45]. Specifically pegylation has been suggested to insert stealth characteristics to NPs and promote
the biofunctions in comparison to the uncoated NPs [46]. Hydrodynamic sizes of the NPs were found under 260 nm
(Figure 1S-Supplementary file) indicating aggregation effects. The particle size of NPs is one of the most important
properties impacting their plant root uptake, although published results are contradictory [47]. NPs with sizes up to 3

u have been reported to transport in plant tissues from root to shoot through the apoplastic pathway [47].

However, when NPs are applied to soil, usually biotic and abiotic transformations such as redox reactions,
aggregation and dissolution of NPs occur, resulting in changes in their bioavailability, toxicity and fate of the NPs.
Thus, NPs exposed to plants in the soil may retain different properties from their original ones. Therefore, it is
possible their transformation into bioavailable ionic forms such as Cu?*/Cu* and Fe**/Fe** and further transportation
in the plant tissues. The fact that only CuFe NPs were found to enhance growth parameters might be attributed to a
combined effect of the two elements. Plants evaluate iron in the ionic forms of Fe?*and Fe®", but only Fe?* stimulates
growth parameters [43]. In fact, in case of CuFeO, where iron participates as Fe®" there is no evidence of growth
enhancement. Considering CuFe NPs, we assume that the metallic form of iron transforms to the ionic bioavailable
Fe?*: although the combination with soil micronutrients cannot be excluded. This is in agreement with previous
studies, reporting treatments of metallic Cu combined with metallic Fe NPs on wheat seeds resulting in an increase
of sugar content [48]. Conclusively, copper/iron based NPs were found promising to control nematodes while CuFe
NPs can be further suggested as plant growth enhancers.
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