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Abstract
Ubiquitination-site prediction is an important task because 

ubiquitination is a critical regulatory function for many biological 
processes such as proteasome degradation, DNA repair and transcription, 
signal transduction, endocytoses, and sorting. However, the highly 
dynamic and reversible nature of ubiquitination makes it difficult to 
experimentally identify specific ubiquitination sites. In this paper, we 
explore the possibility of improving the prediction of ubiquitination sites 
using ensemble machine learning methods including Random Forest (RF), 
Adaptive Boosting (ADB), Gradient Boosting (GB), and eXtreme Gradient 
Boosting (XGB). By doing grid search with the 4 ensemble methods and 
6 comparison non-ensemble learning methods including Naïve Base (NB), 
Logistic Regression (LR), Decision Trees (DT), Support Vector Machine 
(SVM), LASSO, and k-Nearest Neighbor (KNN), we find that all the four 
ensemble methods significantly outperform one or more non-ensemble 
methods included in this study. XGB outperforms 3 out of the 6 non-
ensemble methods that we included; ADB and RF both outperform 2 of 
the 6 non-ensemble methods; GB outperforms one non-ensemble method. 
Comparing the four ensemble methods among themselves. GB performs 
the worst; XGB and ADB are very comparable in terms of prediction, 
but ADB beats XGB by far in terms of both the unit model training time 
and total running time. Both XGB and ADB tend to do better than RF 
in terms of prediction, but RF has the shortest unit model training time 
out of the three. In addition, we notice that ADB tends to outperform 
XGB when dealing with small-scale datasets, and RF can outperform 
either ADB or XGB when data are less balanced. Interestingly, we find 
that SVM, LR, and LASSO, three of the non-ensemble methods included, 
perform comparably with all the ensemble methods. Based on this study, 
ensemble is a promising way of significantly improving Ubiquitination-
site prediction using protein segment data.

Keywords: Machine learning; Ensemble methods; Adaboosting; 
XGB; Random Forest; Ubiquitination; Ubiquitination-site; PCP; Protein 
physicochemical properties; Prediction.

Background
Ensemble learning is a technique that learns multiple models from the 

same dataset and then combines them to form an optimal learner, which 
is anticipated to have better prediction performance. Supervised learning 
provides algorithms to perform a searching task with limited hypothesis 
space to find an optimal hypothesis which will manage the prediction task 
successfully with a specific problem [1]. However, it can be challenging to 
find a suitable hypothesis for a particular problem, even when the hypothesis 
space is well designed. The ensemble method in machine learning, which 
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combines different hypotheses to hopefully construct a much 
better hypothesis, has been discussed for decades. With 
multiple models, it can reduce the classification error rate in 
a classification task [2].

Empirically, ensemble learning is expected to provide 
better results when a substantial diversity is found among 
models, which sometimes may cause over-fitting or under-
fitting [3,4]. With this experience, researchers tried to 
develop many ensemble learning methods which could 
take advantage of the diversity among different models and 
then combine them together [3,5,6]. Although it may not 
be intuitive, stochastic algorithms (e.g., random decision 
trees) could be used to generate stronger ensemble models 
than intentional algorithms (e.g., entropy-reducing decision 
trees) [7]. Moreover, using a variety of powerful learning 
algorithms has already been shown to be more effective than 
using techniques that try to simplify the model to promote 
diversity [8].

Although there can be many ways to implement 
ensemble learning, we focused on two approaches which are 
widely discussed and applied in practice [9–12]: bootstrap 
aggregating and boosting. Bootstrap aggregation, also called 
bagging (from bootstrap aggregating), is usually applied to 
decision tree methods, but can also be applied to any other 
method [13,15]. As implied in its name, bootstrap and 
aggregation are two key components of bagging. Bootstrap 
is a sampling method. Given a standard training set D of 
size n, bagging generates m new sub-training sets Di, each 
of size n', by sampling from D randomly with replacement. 
By sampling with replacement, some observations may be 
repeated in each Di, but some observations may not appear 
in any subset Di. When sampling uniformly, if n'=n, for 
large n, the set Di is expected to have the fraction (1 - 1/e) 
(≈63.2%) of the unique examples of the original set D, the 
rest being duplicates [16]. After the bootstrapped sampling, 
several sub-datasets are created. Each sub-dataset will be 
used by a machine learning method to train a model, which 
will result in multiple models trained using different sub-
datasets. Since each bootstrap set is randomly generated, the 
sets of the sub-datasets are expected to be diversified, and 
therefore, the individual models in the ensemble are expected 
to represent a different aspect of the original data. Due to 
this, when combining all sub-models together, the ensemble 
is expected to represent aspects of the original data. Finally, 
the ensemble will make predictions through simple statistics 
such as voting. Figure 1(a) on the left illustrates the general 
components and procedures of bagging.

Boosting is the third main approach of ensemble learning, 
which involves incrementally building the ensemble and 
training new model instances by focusing on wrong results 
made by previous trained models [17–19]. Boosting comes 
from the famous question from Kearns and Valiant: “Can 

a set of weak learners create a single strong learner?”[20]. 
In 1990, Robert offered an answer to that question, which 
significantly influenced machine learning, and also led to 
the development of boosting [19]. Later, researchers have 
proved that boosting can have better accuracy than bagging 
in some cases, but it may not handle the over-fitting issue as 
well [21]. Figure 1(b) on the right shows the general idea of 
boosting: the same weight is given to each training data D1 
at the beginning. The base learner L1 will learn Model1 from 
D1. Then, the wrongly classified instances by Model1 will be 
given a larger weight than the correct ones. The second base 
learner L2 will learn Model 2 from the weighted data D2, and 
so on and so forth. The voting algorithm is applied in the final 
round to produce the results. 

Ubiquitination, also called ubiquitylation is an enzymatic 
and post-translational modification process in which 
ubiquitin, a small regulatory protein, is attached to substrate 
proteins [22,23] During the ubiquitination process, ubiquitin 
interacts with lysine (K) residues on protein substrates 
through three steps: ubiquitin-activating enzymes (E1s), 
ubiquitin-conjugating enzymes (E2s), and ubiquitin ligases 
(E3s) [22–24]. It needs to be mentioned that binding can 
be a single ubiquitin or a ubiquitin chain. It has been found 
that many regulatory functions of ubiquitination, such as 
proteasome degradation, DNA repair and transcription, 
signal transduction, endocytosis, and sorting, are important 
protein regulatory functions in biological processes [22–25].

Because ubiquitination plays an important regulatory role, 
extensive research has been conducted to further decipher 
the mechanism of ubiquitination and other regulatory roles 
at the molecular level. One of the initial and challenging 
steps in gaining a greater understanding of ubiquitination 
is to identify ubiquitination sites. To purify ubiquitinated 
proteins to determine ubiquitination sites, researchers have 
used different types of experimental methods, such as high-
throughput mass spectrometry (MS) techniques [26–29], 
ubiquitin antibodies and ubiquitin-binding proteins [29,30], 
and combined liquid chromatography and mass spectrometry 
[31]. However, experiments to purify ubiquitinated proteins 
are time-consuming, expensive, and labor-intensive because 
the ubiquitination process is dynamic, rapid, and reversible 
[24,32,33]. To reduce experimental costs and increase 
the effectiveness and efficiency of ubiquitination site 
identification, computational (in silico) methods based on 
informatics techniques have been introduced and developed 
for predicting ubiquitination sites based on prior knowledge 
of protein sequences [24,25,32,33].

A previous research applied some basic machine learning 
methods to predict ubiquitination-site with PhysicoChemical 
Property (PCP) datasets [34]. As we know, a protein is a 
biological molecule that consists of one or more long chains 
of amino acid residues; PCP datasets are generated from 
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protein sequences and then are processed by several steps, 
including segment extraction, creating AA-PCP matrix, and 
averaging [34]. Although the study demonstrated the potential 
of conducting this challenging task by taking the machine 
learning approach, results from the base machine learning 
methods were not completely satisfactory. Since ensemble 
methods are proved to do better than base learners in many 
cases, we conjectured that they are potentially powerful in 
predicting ubiquitination-sites. In this research, we considered 
four widely used state of art ensemble methods including 
Random Forest (RF), Adaptive Boosting (ADB), Gradient 
Boosting (GB), and eXtreme Gradient Boosting (XGB). 
To verify our conjecture, we conducted ubiquitination-site 
prediction by learning prediction models using these methods 
from previously published PCP datasets [34].

Methods
As described above, we did the experiments with two 

widely used types of ensemble methods, Bagging and 
Boosting. RF is one of the most famous Bagging approaches 
of ensemble learning [35]. RF was published in 2001 by 
Breiman, which utilizes Bagging to generate different subsets 
for entire training to build individual decision trees [35]. Then, 
RF has been applied into different fields research, including 
chemical, power transmission, ecology, etc. [14,36,37]. ADB, 
GB, and XGB are three Boosting approaches. AdaBoost was 
purposed by Freund and Schapire around 1996 [18,38]. In 
2001, Friedman proposed the GB method, opening the door 

to Boosting [39]. XGB, a new development based on GB, 
was proposed by Chen and He in 2005 [40]. Unlike RF, the 
other three methods are Boosting algorithms, and the main 
idea of boosting is to build models sequentially based on 
previous trained models [41].

Since ensemble methods were said to improve the 
performance of prediction models in many cases, we tried 
to apply them on the ubiquitination-site prediction task. 
Hyperparameter tunning with grid search is a state-of-the-art 
approach to improve prediction performance. In this study, 
we optimized 4 ensemble learning models by performing 
hyperparameter tuning via grid search. We next describe 
the six PCP datasets we used. We will then describe each of 
the four existing ensemble methods we used, including RF, 
ADB, GB, and XGB. We will also describe the grid search 
we conducted, the hyperparameter values we used in the grid 
search for each of these methods, and the evaluation metrics 
we used. 

Datasets
The six (PCP) datasets were curated and published 

in 2016 by Cai and Jiang [34]. As shown in Table 1, each 
dataset contains 531 features. These 6 datasets can be divided 
by 2 types. PCP 1-3 are balanced datasets, meaning each 
dataset contains the same number of positive and negative 
cases, while PCP 4-6 are imbalanced datasets with unequal 
numbers of positive and negative cases. Also, PCP 1 and 6 
are small-scale datasets with less than a thousand cases each, 

Figure 1: An illustration of Ensemble methods (a) Bagging (b) Boosting.
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and PCP 2-5 are large-scale datasets which contain thousands 
of data points each.

Ensemble Methods
Ensemble learning is a combination machine learning 

method that combines the prediction results from multiple 
models to have an overall good performance. Among the 
three most popular types of ensemble learning, there are 
some shared points. First, ensemble learning models all 
use individual models to train, which means they combine 
several trained models, unlike traditional machine learning 
models which are only trained once. However, all “small” 
prediction models may use different combinations to build 
the final ensemble model [42]. Bagging, stacking, and 
boosting are the three most popular methods of combination. 
Random Forest is one of the most popular bagging methods 
[35], AdaBoosting, Gradient Boosting, and Extreme Gradient 
Boosting are widely used boosting algorithms [39,43,44]. 
Second, while traditional machine learning methods usually 
need constraints on a dataset (for example, a balanced 
dataset), ensemble learning can handle imbalance problems, 
with a well-designed ensemble model, it can perform well 
[45]. In this study, we performed ensemble learning with the 
methods mentioned above, to analyze how they work with 
ubiquitination-site prediction.

4 ensemble ML methods	
We compared the performance of a set of ensemble 

machine-learning methods, including Random Forest (RF), 
Adaptive Boosting (ADB), Gradient Boosting (GB), and 
eXtreme Gradient Boosting (XGB). Like most machine 
learning methods, these methods have hyperparameters that 
can be tuned to provide optimal performance. We conducted a 
grid search for each method for 6 PCP datasets. We conducted 
5-fold cross-validation for each set of hyperparameter values 
and measured the performance by the AUC of ROC (Receiver 
Operating Characteristic). Below, we provide a summary of 
the hyperparameters and their values that we tested for each 
of these 4 ensemble methods. All the test values are shown 
in Table 2.

RF [7,11,35,36,46] is a typical model of bagging in 
ensemble learning, the trainer will randomly select a certain 
amount of sample data and create corresponding decision 

trees to form a random forest [11]. An advantage of random 
forest is that the independent character of each decision tree 
tends to reduce overfitting [36,46]. n_estimators: The number 
of decision trees in the random forest. We tested values 10, 
50, 100, 200, 300. The parameter max_depth indicates how 
deep the tree can be; the deeper the tree, the more splits it 
will have, and thus capturing more information about the data 
[7,11,35]. We fit a decision tree with depths ranging from 2 to 
32. The parameter min samples split represents the minimum 
number of samples required to split an internal node. The 
values we tested in our grid search were 0.1, 0.2, 0.3, 0.4, 0.6, 
0.8, 0.9 and 1. Max features indicated the maximum number 
of features allowed when building a decision tree [46,49,50]; 
we tested all values under ‘none’, ‘log2’ and ‘sqrt’. The 
parameter max leaf nodes controls the maximum number 
of leaf nodes of each decision tree [7,11,35], and we tested 
values 7, 10, 15, and none. The parameters max depth and 
max leaf nodes are important in controlling overfitting [36]. 
The function criterion was used to measure the quality of a 
split [7,11,35]; We tested with values ‘gini’ and ‘entropy’.

ADB [11,18,35,47,48] is a typical model of boosting 
in ensemble learning [11,35]. Unlike the random forest 
model, where each decision tree is independent, Adaboost is 
a classifier with a cascade structure, which means the next 
learner is based on the result of the previous weak learner 
[18,35]. During the learning process, if the current sample is 
classified incorrectly, the degree of difficulty of the sample 
will increase to make the next learner focus on the difficult 
part on which the previous model performed poorly [47,48]. 
N estimators: The number of weak learners. A model to 
overfit for large values of n estimators; The values of n 
estimators we tested include 10, 20,…, 100, 200, and 300. 
Learning rate: this is used to shrink the contribution of each 
classifier; We tested values include 0.002, 0.003, 0.004, …, 
0.01, and 0.02.

GB [39,41,49–52] is an ensemble of weak predictions 
models [39]. Unlike the bagging methods, boosting builds 
the mode in sequentially [52]. Boosting fits base learners 
additively to have better performance than random [41,50,51]. 
Learning rate, one of the most important hyper-parameters, 
we tested 0.01, 0.1, 0.3. The number of boosting stages to 
perform, n estimator, we tried 50, 100, and 150 to test. The 

  Total # of cases # Positive cases # Negative cases # Features
PCP-1 300 150 150 531

PCP-2 6838 3419 3419 531

PCP-3 12236 6118 6118 531

PCP-4 4608 363 4345 531

PCP-5 3651 131 3520 531

PCP-6 676 37 639 531

Table 1: Case counts of the datasets
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values of max depth we tested include 3, 6, and 9. criterion 
which is a function to measure the split, and here we tested 
two different criterions, ‘friedman mse’ and ‘mse’.

 XGB [40,43,52,53] is another common approach for 
boosting in ensemble learning. Unlike ADB, it uses gradient 
boosting [52]. The XGB classifier is based on the difference 
between true and predicted values to improve model 
performance [40,53]. gamma: this is a pseudo-regularization 
hyperparameter in gradient boosting; gamma affects pruning 
to control overfitting problems. gamma values we tested were 
0, 0.01, and 0.1. alpha and lambda are both regularization 
hyperparameters which can help control overfitting [40]. The 
values we tested for each of them were 1e-3, 1e-2, and 1e-1. 
max depth is the maximum depth of the individual regression 
estimators. The values of max depth we tested were 3, 6, 
and 9. The learning_rate values we tested were 0, 0.01, 0.1,  
and 0.3.

Grid Search
Machine learning algorithms have been widely used in 

different types of tasks in the real world. To have the machine 
learning math perform well in a specific task, it often needs 
a tuning procedure with which we can find a good set of 

hyperparameters values [54], which we call a hypermeter 
setting. There are many ways to perform hyper-parameter 
searching, such as grid search, random search, and manual 
search [55]. Grid search is a systematic way of finding the 
best hyperparameter setting by training models using all 
possible settings automatically, which are determined by the 
preselected ranges of values of the hyperparameters. In this 
study, we incorporated grid search into our program by using 
the grid search procedure provided in the scikit-learn Python 
package [56]. We conducted grid search for all ensemble 
learning methods and all comparison methods included in 
this study.

With researchers devoting, grid search has been approved 
in various fields, as it has been found to improve the machine 
learning prediction model performance, such as the prediction 
of HIV/AIDS [57], text classification [58], and short-term 
PV power forecasting [37]. In this research, we proved that 
grid search can also improve the performance of ensemble 
learning in ubiquitination-site prediction tasks.

Performance metrics, 5-fold cross-validation, and 
statistical testing

We performed grid search and recorded 64 different 
output values for each of the models trained, organized using 
an output format that we designed. Contained within the 
output data is information about the computer system used, 
computation time, and measures for model performance. For a 
given binary diagnostic test, a receiver operator characteristic 
(ROC) curve plots the true positive rate against the false 
positive rate for all possible cutoff values [59]. The area 
under curve (AUC) measures the discrimination performance 
of a model. We conducted 5-fold cross-validation to train and 
evaluate each model in a grid search. The entire dataset was 
split into a train-validation set, containing 80 percent of the 
cases, and an independent test set, containing the remaining 
20 percent. We then performed a 5-fold cross validation by 
dividing evenly the train-validation set into 5 portions. The 
division was mostly done randomly except that each portion 
had approximately 20% of the positive cases and 20% of the 
negative cases to ensure that it was a representative fraction 
of the dataset. Training and testing were repeated five times. 
Each time, a unique portion was used as the validation set to 
test the model learned from the training set, which combined 
the remaining four portions. Training and testing AUCs were 
reported. The average training and testing AUC over all five 
times were also derived and reported. The best-performing 
set of hyperparameter values was chosen based on the highest 
mean test AUC. The best model would be the one refitted 
from the entire train-validation set using the best-performing 
set of hyperparameters values. We used this procedure for all 
methods. 

We conducted statistical testing to further evaluate the 
prediction performance of the ensemble methods. We did 

Method Hyperparameter Name Values

RF

n_estimators 10, 50, 100, 200, 300

var_smoothing 10-9, 10-8, 10-7, …, 10-1

criterion gini, entropy

splitter best, random

max_depth 2, 4, 6, …, 32

max_features auto, sqrt, log2

min_samples_split 0.1, 0.2, 0.3, …, 1.0

min_samples_leaf 1

max_leaf_nodes 7, 10, 15, None

class_weight None, balanced

ADB

algorithm SAMME, SAMME.R

n_estimators [10, 20, 30, …, 100, 200, 300]

learning_rate [0.002, 0.003, 0.004, …, 0.01, 
0.02]

GB

criterion frideman_mse, mse

learning_rate [0.01, 0.1, 0.3]

n_estimators [50, 100, 150]

max_depth [3, 6, 9]

XGB

gamma [0,0.01,0.1]

learning_rate [0.01,0.1,0.3]

n_estimators [50, 100, 150]

max_depth [3,6,9]

reg_alpha [1e-3,1e-2,0.1]

reg_lambda [1e-3,1e-2,0.1]

Table 2: Machine learning hyperparameters and values
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  PCP-1 PCP-2 PCP-3 PCP-4 PCP-5 PCP-6

RF

{'class_weight': 
'balanced', 'criterion': 
'gini', 'max_depth': 
12, 'max_features': 
'log2', 'max_leaf_

nodes': None, 'min_
samples_split': 0.1, 
'n_estimators': 10}

{'class_weight': 
None, 'criterion': 
'entropy', 'max_

depth': 30, 'max_
features': 'sqrt', 

'max_leaf_nodes': 
None, 'min_

samples_split': 0.1, 
'n_estimators': 100}

{'class_weight': 
'balanced', 

'criterion': 'entropy', 
'max_depth': 20, 
'max_features': 

'auto', 'max_leaf_
nodes': 15, 'min_

samples_split': 0.1, 
'n_estimators': 50}

{'class_weight': 
'balanced', 

'criterion': 'entropy', 
'max_depth': 8, 

'max_features': 'sqrt', 
'max_leaf_nodes': 

None, 'min_
samples_split': 0.1, 
'n_estimators': 100}

{'class_weight': 
'balanced', 

'criterion': 'entropy', 
'max_depth': 20, 
'max_features': 

'auto', 'max_leaf_
nodes': 15, 'min_

samples_split': 0.1, 
'n_estimators': 10}

{'class_weight': 
None, 'criterion': 

'entropy', 
'max_depth': 4, 
'max_features': 

'sqrt', 'max_leaf_
nodes': 10, 'min_

samples_split': 0.2, 
'n_estimators': 10}

ADB

{'algorithm': 
'SAMME.R', 

'learning_rate': 0.02, 
'n_estimators': 200}

{'algorithm': 
'SAMME.R', 

'learning_rate': 0.02, 
'n_estimators': 300}

{'algorithm': 
'SAMME.R', 

'learning_rate': 0.02, 
'n_estimators': 300}

{'algorithm': 
'SAMME.R', 

'learning_rate': 
0.006, 'n_

estimators': 300}

{'algorithm': 
'SAMME.R', 

'learning_rate': 0.01, 
'n_estimators': 300}

{'algorithm': 
'SAMME.R', 

'learning_rate': 0.02, 
'n_estimators': 50}

GB

{'criterion': 'mse', 
'learning_rate': 0.3, 

'max_depth': 6, 
'n_estimators': 50}

{'criterion': 'mse', 
'learning_rate': 0.1, 
'max_depth': 3, 'n_
estimators': 100}

{'criterion': 
'friedman_mse', 

'learning_rate': 0.1, 
'max_depth': 3, 'n_
estimators': 100}

{'criterion': 'mse', 
'learning_rate': 0.1, 
'max_depth': 6, 'n_
estimators': 150}

{'criterion': 
'friedman_mse', 

'learning_rate': 0.1, 
'max_depth': 6, 'n_
estimators': 150}

{'criterion': 
'friedman_mse', 

'learning_rate': 0.01, 
'max_depth': 3, 'n_
estimators': 100}

XGB

{'booster': 'gbtree', 
'colsample_bytree': 
1.0, 'gamma': 0.01, 
'learning_rate': 0.1, 

'max_depth': 3, 
'min_child_weight': 
1, 'n_estimators': 
100, 'objective': 
'binary:logistic', 

'reg_alpha': 0.001, 
'reg_lambda': 0.1, 

'scale_pos_weight': 
1, 'subsample': 1.0}

{'booster': 'gbtree', 
'colsample_bytree': 
1.0, 'gamma': 0.01, 
'learning_rate': 0.1, 

'max_depth': 3, 
'min_child_weight': 
1, 'n_estimators': 

50, 'objective': 
'binary:logistic', 

'reg_alpha': 0.001, 
'reg_lambda': 0.01, 
'scale_pos_weight': 
1, 'subsample': 1.0}

{'booster': 'gbtree', 
'colsample_bytree': 
1.0, 'gamma': 0.0, 

'learning_rate': 0.1, 
'max_depth': 3, 

'min_child_weight': 
1, 'n_estimators': 
100, 'objective': 
'binary:logistic', 
'reg_alpha': 0.1, 

'reg_lambda': 0.1, 
'scale_pos_weight': 
1, 'subsample': 1.0}

{'booster': 'gbtree', 
'gamma': 0.1, 

'learning_rate': 
0.1, 'max_depth': 
9, 'n_estimators': 

50, 'objective': 
'binary:logistic', 
'reg_alpha': 0.1, 

'reg_lambda': 0.01}

{'booster': 'gbtree', 
'gamma': 0.01, 
'learning_rate': 

0.1, 'max_depth': 
6, 'n_estimators': 
100, 'objective': 
'binary:logistic', 

'reg_alpha': 0.001, 
'reg_lambda': 0.001}

{'booster': 'gbtree', 
'gamma': 0.1, 

'learning_rate': 
0.3, 'max_depth': 
9, 'n_estimators': 

50, 'objective': 
'binary:logistic', 

'reg_alpha': 0.01, 
'reg_lambda': 0.001}

Appendix Table 1: The hyperparameter values of the best-performing models learned from six datasets.

Figure 2: ROC curves of different best models selected by grid search
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both two-sided and one-sided tests. Wilcoxon rank-sum tests 
to rank the 4 ensemble methods in terms of their prediction 
performance. We also compared the ensemble methods 
with traditional machine learning methods, again using both 
two-sided and one-sided Wilcoxon rank-sum tests. With 
the two-sided testing, we try to determine whether there is 
a significant difference between the comparison methods in 
terms of their prediction performance, and if there is, we then 
try to determine which method is better with the one-sided 
test.  

Results
We compared the prediction performance of the best 

models which were selected by grid search in different 
aspects. The results are shown in Table 3-8 and Figure 2-5. 
Table 3 shows the side-by-side comparisons of the validation 
AUCs of the best performing models of all four ensemble 
methods for each of the six PCP datasets. Also included in 
Table 3 are the average and maximum validation AUCs for 
each method over all datasets and for each dataset over all 
methods. Based on Table 3, on average of all datasets, the 
ranking of the four ensemble methods is as follows: XGB 
(1st, AUC 0.721), ADB (2nd, 0.720), RF (3rd, 0.706), and GB 
(4th, 0.689). Table 4 contains the running time information 
and number of models trained via grid search in this study. 
The hyperparameters settings for the best models identified 
by grid searches shown in Appendix Table 1

Figure 2 shows the side by side comparisons of the ROC 
curves of the four ensemble methods. It contains 4 sub-figures, 
one for each of the 6 PCP datasets. Based on Figure 2, all 
methods performed comparably for the datasets PCP-1, and 
PCP-2. The performance differs somewhat for datasets PCP-
1, PCP-4, and PCP-5, and differs the most for dataset PCP-6. 
Figure 3 shows the boxplots we generated to compare side by 
side the prediction performance of all methods based on the 
mean and standard deviation of mean testing AUCs resulted 
from 5-fold cross-validation across all hyperparameter 
settings of the grid search.

As shown in Table 5, we conducted two-sided pair-wise 
Wilcoxson rank-sum tests among the four ensemble methods. 
Based on this table, at a significance level of 0.05, none of the 
p-values is small enough for us to reject the null hypothesis, 
which states that the two comparison methods perform the 
same. However, when we raise the significance level to 0.1, 
we are confident in rejecting the null hypothesis for the pair 
of ADB and GB. When we raise the significance level to 
0.15, we are confident in rejecting the null hypothesis for the 
pairs of XGB and GB, and RF and GB. So based on Table 5, 
no evidence shows that the four methods perform differently 
when we allow up to 5% chance of type I error, but when 
we allow higher error rates, we are more confident in stating 
that GB performs differently from the other three methods. 
Table 6 contains our one-sided pair-wise Wilcoxson rank-
sum test results. Based on Table 6, at the significance level 

Figure 3: Mean test AUCs of all methods for each of the datasets
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of 0.05, ADB performed better than GB. At the significance 
level of 0.1, we are confident that both XGB and RF perform 
better than GB. Both Table 5 and Table 6 show XGB, ADB, 
and RF do not perform differently when the type 1 error rate 
is not allowed to exceed 5%. However, based on Table 6, 
when we allowed the type I error rate to be as high as 25%, 
both XGB and ADB would perform significantly better than 
RF. Therefore, our statistical testing results show that XGB 
and ADB overall perform the same, and they both perform 
significantly better than RF if we allow up to 25% change 
for type 1 error. When we allow up to 10% error rate, we are 
confident that GB is the worst performer among all methods. 
Based on the p-values found in Table 5 and Table 6, we rank 
these 4 methods as follows: XGB≈ADB>RF>GB.

We also compared the ensemble methods with some of the 
non-ensemble methods including Naïve Base (NB), Logistic 
Regression (LR), Decision Trees (DT), Support Vector 
Machine (SVM), LASSO, and k-Nearest Neighbor (KNN). 
Table 7 shows the validation AUC results we obtained for the 
six non-ensemble methods using grid search. Appendix Table 
2 shows all the 24 two-sided pair-wise Wilcoxon rank-sum 
test results between the 4 ensemble and the 6 non-ensemble. 
Based on this table, at the significance level of 0.1, we found 
the following pairs performed significantly differently (bold): 
RF vs NB, RF vs DT, ADB vs NB, ADB vs DT, GB v DT, 
XGB vs NB, XGB vs DT, and XGB vs KNN. When a two-
sided pairwise test showed significant results, we further 
conducted a one-sided (greater than) pair-wise Wilcoxon 
rank-sum test for the corresponding pair. These results are 
contained in Table 8.

  PCP-1 PCP-2 PCP-3 PCP-4 PCP-5 PCP-6 Average

RF 0.704 0.665 0.698 0.719 0.732 0.718 0.706

ADB 0.767 0.671 0.707 0.708 0.745 0.723 0.72

GB 0.693 0.682 0.711 0.704 0.691 0.65 0.689

XGB 0.747 0.683 0.716 0.746 0.742 0.69 0.721
Average 0.728 0.675 0.708 0.719 0.728 0.695 0.709

Maximum 0.767 0.683 0.716 0.746 0.745 0.723 0.721

Table 3: The validation AUCs of the best-performing models recommended by grid search

  RF ADB GB XGB
PCP-1 (sec) 0.315 0.969 5.308 322.697

PCP-2 (sec) 2.309 21.539 169.597 348.412

PCP-3 (sec) 3.714 37.987 307.798 1134.892

PCP-4 (sec) 1.707 14.369 158.285 455.265

PCP-5 (sec) 1.187 11.746 126.562 404.557

PCP-6 (sec) 0.426 2.167 19.597 261.493

# of Models Trained 864000 7200 1620 21870

Total Time (day) 16.1 1 2.5 123.5

Table 4: Experiment time per model, number of models trained, and total running time

two-tailed W p-value 95% confidence

RF vs ADB 12 0.3939 [-0.049, 0.025]

RF vs GB 27.5 0.1488 [-0.01301250, 0.04803801]

RF vs XGB 13 0.4848 [-0.048, 0.028]

ADB vs GB 29 0.09307 [-0.004, 0.073]

ADB vs XGB 17 0.9372 [-0.039, 0.040]

GB vs XGB 8 0.132 [-0.064, 0.008]

Table 5: Two-sided Wilcoxon Rank-Sum Test

greater W p-value 95% confidence

RF vs ADB 12 0.8452 [-0.047, inf]

RF vs GB 27.5 0.07441 [-0.006072549, inf]

RF vs XGB 13 0.803 [-0.043, inf]

ADB vs RF 24 0.197 [-0.012, inf]

ADB vs GB 29 0.04654 [0.003, inf]

ADB vs XGB 17 0.5909 [-0.038, inf]

GB vs RF 8.5 0.9457 [-0.03900343, inf]

GB vs ADB 7 0.9675 [-0.063, inf]

GB vs XGB 8 0.9535 [-0.056, inf]

XGB vs RF 23 0.2424 [-0.016, inf]

XGB vs ADB 19 0.4686 [-0.029, inf]

XGB vs GB 28 0.06602 [-0.001, inf]

Table 6: One-sided Wilcoxon Rank-Sum Test
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To further understand a dataset influences ensemble 
learning, we grouped the 6 datasets in terms of both data 
imbalance and the size of the data. Based on data balance, 
we created two groups: PCP-1, PCP-2, and PCP-3 belong to 
the balanced group, and PCP-4, PCP-5, and PCP-6 belong 
to the imbalanced group. The comparison between these 
two groups is shown in Figure 4. Based on the size of the 
data, we created large-scale and small-scale groups. The 
large scale group contains PCP-2, PCP-3, PCP-4 and PCP-5, 

and the small-scaled group contains PCP-1 and PCP-6. The 
comparison between these two groups is shown in Figure 5.

Discussion
As shown in the results section, we compared the 

prediction performance of the four ensemble methods. GB 
comes with the worst validation AUC (with PCP-6) among 
all methods and datasets. Our statistical tests also show 
that GB tends to perform worst among all methods. This 
is perhaps because GB is one of the earlier and therefore 
less mature boosting methods. As shown in Figure 4 and 5, 

Two-sided W p-value 95% confidence
RF vs NB 29 0.09307 [-0.026, 0.116]

RF vs LR 21.5 0.6304 [-0.03901531, 0.18101214]

RF vs DT 35 0.004329 [0.021, 0.082]

RF vs SVM 16 0.8182 [-0.052, 0.045]

RF vs LASSO 22.5 0.5211 [-0.03304188, 0.17704976]

RF vs KNN 23 0.4848 [-0.034, 0.101]

ADB vs NB 30 0.06494 [-0.013, 0.148]

ADB vs LR 26 0.2403 [-0.035, 0.187]

ADB vs DT 35 0.004329 [0.027, 0.112]

ADB vs SVM 18 1 [-0.047, 0.054]

ADB vs LASSO 26 0.2403 [-0.028, 0.183]

ADB vs KNN 27 0.1797 [-0.03, 0.12]

GB vs NB 26 0.2403 [-0.047, 0.101]

GB vs LR 19 0.9372 [-0.055, 0.106]

GB vs DT 32 0.02597 [0.007, 0.067]

GB vs SVM 10 0.2403 [-0.075, 0.030]

GB vs LASSO 19 0.9372 [-0.053, 0.162]

GB vs KNN 23 0.4848 [-0.051, 0.085]

XGB vs NB 29 0.09307 [-0.011, 0.134]

XGB vs LR 24 0.3939 [-0.027, 0.199]

XGB vs DT 35 0.004329 [0.035, 0.105]

XGB vs SVM 22 0.5887 [-0.036, 0.068]

XGB vs LASSO 25 0.3095 [-0.019, 0.195]

XGB vs KNN 29 0.09307 [-0.022, 0.119]

Appendix Table 2: Two-sided Wilcoxon Rank-Sum Test on 
Ensemble Methods vs ML Methods

  PCP-1 PCP-2 PCP-3 PCP-4 PCP-5 PCP-6

NB 0.758 0.619 0.659 0.653 0.686 0.549

LR 0.748 0.635 0.665 0.702 0.743 0.484

DT 0.684 0.623 0.651 0.655 0.644 0.637

SVM 0.726 0.674 0.713 0.725 0.658 0.77

LASSO 0.751 0.636 0.665 0.697 0.735 0.488

KNN 0.738 0.647 0.678 0.624 0.597 0.744

Table 7: Validation Score of ML Methods

Greater W p-value 95% confidence

RF vs NB 29 0.04654 [0.006, inf]

RF vs DT 35 0.002165 [0.034, inf]

RF vs KNN 23 0.2424 [-0.025, inf]

ADB vs NB 30 0.03247 [0.012, inf]

ADB vs DT 35 0.002165 [0.039, inf]

ADB vs KNN 27 0.08983 [-0.015, inf]

GB vs NB 26 0.1201 [-0.009, inf]

GB vs DT 32 0.01299 [0.013, inf]

GB vs KNN 23 0.2424 [-0.045, inf]

XGB vs NB 29 0.04654 [0.004, inf]

XGB vs DT 35 0.002165 [0.039, inf]

XGB vs KNN 29 0.04643 [0.002, inf]

Table 8: One-sided Wilcoxon Rank-Sum Test on Ensemble 
Methods vs ML Methods

Figure 4: Performance comparison of balanced vs. imbalanced 
datasets

Figure 5:  Performance comparison of large-scale and small-scale 
datasets
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we investigated the possible effect of the dataset itself on 
the performance of a method. We notice that GB tends to 
perform comparably with other ensemble methods for large 
and balanced datasets such as PCP-2 and PCP-3. For small-
scale and/or imbalanced datasets such as PCP-1 and -6, GB 
tends to perform the worst. This may indicate that GB is less 
adaptive to data scarcity and imbalance. We notice that GB 
has a less number of hyperparameters than the later boosting 
methods such as ADB and XGB. It may be in the lack of 
hyperparameters that can be tuned to adapt to unfavorable 
data conditions. 

Our results also show that ADB and XGB are overall very 
comparable in terms of their prediction performance, and 
each leads for three of the six datasets; that is, ADB performs 
the best with PCP-1, PCP-5, and PCP-6; while XGB performs 
the best with PCP-2, PCP-3, and PCP-4. We also found that 
both ADB and XGB perform better than RF in most cases. 
As shown by Figure 3, XGB and GB can provide much stable 
results in all datasets regardless of what hyperparameter 
values are given, while RF’s interquartile ranges are the 
largest across all datasets, which can range from 0.5 up to 
0.75. ADB has a mixed situation: it has a stabler performance 
for dataset PCP-1, PCP-2, and PCP-3 than it does for dataset 
PCP-4 through PCP-6.

We also compared the ensemble methods with some of 
the non-ensemble methods including NB, LR, DT, SVM, 
LASSO, and KNN. Based on results, XGB performs 
significantly better than KNN, XGB, ADB, and RF perform 
significantly better than both NB and DT, and all ensemble 
methods perform better than DT. So, XGB performs better 
than most of the non-ensemble methods that we included in 
the study, ADB and RF performs better than half of the non-
ensemble methods included. Even GB, the ensemble method 
that did the worst in this study, performed significantly better 
than DT. However, on the other hand, we notice that the 
non-ensemble methods SVM and LASSO, when using grid 
search, perform comparably with all the ensemble methods. 
The non-ensemble method KNN performs comparably with 
three of the four ensemble methods. 

We also looked into how these ensemble methods perform 
differently in terms of a specific dataset by paying attention to 
data scarcity and imbalance issues. We notice from Table 3 
that ADB, even though ranks No. 2 on average, can achieve 
a validation AUC as high as 0.767 (with PCP-1), which is the 
highest score we ever obtained using these PCP datasets. In 
terms of PCP-6, a small and imbalanced dataset, again ADB 
and XGB outperformed the other two, and ADB reached a 
validation AUC of 0.723, which is the highest we observed 
for PCP-6.

Based on Figure 4 and 5, XGB outperforms ADB for all 
datasets except for datasets PCP-1, and PCP-6. Note that 
PCP-1 and PCP-6 are the two small-scale datasets; this may 

indicate that ADB tends to handle small-scale datasets better 
than XGB. RF performs worse than XGB for all the datasets 
except for PCP-6, which is both a small-scale and imbalanced 
dataset. This may indicate that RF tends to handle this type of 
dataset better than XGB. Based on Figure 4, we also notice 
that RF tends to perform better with the imbalanced datasets 
than it does with the balanced datasets. 

Grid search helps greatly to identify the best 
hyperparameter setting for each method by training a large 
number of models. Based on Table 5, RF is the method for 
which the largest number of models are trained in grid search. 
This is because RF has more hyperparameters than other 
methods. However, as shown in Table 5, it takes the least 
amount of time to train a model with RF among all methods. 
RF ends up being No. 2 in terms of the total amount of time 
it takes to run the grid search. ADB takes the least amount of 
time for grid search, because it is relative fast to train a ADB 
model and the total number of ADB models trained in grid 
search is way less than RF. XGB is the bottleneck in terms of 
grid search running time among all methods. This is because 
its unit model training times are the longest and the number 
of models trained in grid search ranks at No. 2 among all 
methods. 

Conclusion
Based on this study, ensemble is a promising way of 

improving Ubiquitination-site prediction using PCP data. We 
find that all four ensemble methods significantly outperform 
one or more non-ensemble methods included in this study. 
XGB outperforms 3 out of the 6 non-ensemble methods that 
we included; ADB and RF both outperform 2 of the 6 non-
ensemble methods included. GB performs better than one 
non-ensemble method. Comparing the four ensemble methods 
internally, GB performs the worst; XGB and ADB are very 
comparable in terms of prediction. But ADB beats XGB by 
far in terms of both the unit model training time and total 
running time (ADB’s 1 day vs XGB’s 123 days). Both XGB 
and ADB tend to do better than RF in terms of prediction, 
but RF has the shortest unit model training time out of the 
three. In addition, we notice that ADB tends to outperform 
XGB when dealing with small-scale datasets, and RF can 
outperform either ADB or XGB when data are less balanced. 
Interestingly, we find that SVM, LR, and LASSO, three of 
the non-ensemble methods included, perform comparably 
with all the ensemble methods. 
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