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Abstract
Since high microbiological loads in water pipes of medical facilities 

and dental units pose a risk for human health, the establishment of 
bactericide agents should be advanced to minimize the contamination 
level. We focused on the efficacy of plasma-activated water (PAW) as 
a novel disinfectant against waterborne microorganisms being present 
in medical in-house and dental unit water-lines (DUWL), considering 
a dilution effect of PAW when flushing the water bearing systems. The 
efficiency of PAW, activated under defined conditions (90 W for 30 
min) in a lab unit, was studied towards eight different waterborne species 
focusing on Pseudomonas aeruginosa, Acinetobacter spp. and Legionella 
spp. present in water-lines. PAW, presenting low pH at < 3.2 and high 
oxidation-reduction potential (763 mV) and conductivity (963 µS/cm) 
values, was applied in defined units to determine the minimum volume 
amount added to water for bacterial reduction. Six species failed in growth 
when exposed to the double PAW volume unit after 30 min incubation. 
A fivefold volume excess provided sufficient activity to inactivate the 
waterborne microorganisms while only Acinetobacter baumannii required 
a tenfold PAW surplus substantially reduction. Microorganisms show a 
species-specific susceptibility to PAW and cell count reduction strikingly 
correlates with added PAW volumes. PAW needs to be used in excess 
to achieve adequate cell reduction in aqueous environments, considering 
that dilution effects always accompany the disinfection. Our results 
indicate that PAW is a suitable disinfecting agent in a watery environment 
applicable for microbiological reduction in DUWLs.

Keywords: Dental chair unit; Plasma-activated water; Oxidant; 
Disinfection; Legionella; Pseudomonas aeruginosa; Acinetobacter 
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Introduction
High microbiological loads and contamination of water used in daily 

medical and dental applications poses a serious risk to human health. 
Since years, it is known that dental unit waterlines (DUWLs) are often 
contaminated with bacteria [1]. Most relevant microorganisms are the Gram-
negative species Legionella mainly present in warm water lines [2-3], but 
also in DUWLs [4]. The inhalation or aspiration of Legionella-contaminated 
aerosols and water can cause Pontiac fever or legionellosis that can be life-
threatening [5-8]. Pseudomonas aeruginosa is an opportunistic pathogen 
occurring mainly in cold water lines and often being present in DUWLs 
[9]. The organism can cause a variety of life-threatening infections such as 
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to the manufacturer´s protocol. Legionella spp. isolates and 
strains were cultivated resulting in colony forming units (cfu) 
on buffered charcoal yeast extract agar (BCYE), that was 
supplemented with glycine, vancomycin, polymyxin B and 
cycloheximide (GVPC) (Xebios, Düsseldorf, Germany), in 
a box under moist atmosphere at 36°C after 7 to 10 days. 
The other bacteria grew on R2A agar plates (Roth, Karlsruhe, 
Germany) at 36°C within 48h. 

Adaption of microorganisms to tap water and 
survival duration

Though isolated from agar plates, the physiology of 
waterborne microorganisms that live in water of pipes 
was adapted to this aqueous environment. To examine 
this condition regarding the susceptibility to PAW, the 
microorganisms of Legionella spp. (L. pneumophila SG1 and 
L. anisa), P. aeruginosa and A. baumannii were adapted to 
long term survival in tap water of the Institute of Hygiene, 
Münster, provided by the local tap water supplier. Briefly, 
single colonies taken from overnight cultures of A. baumannii 
and P. aeruginosa were suspended in Luria Bertani broth 
culture medium (LB; Roth, Karlsruhe, Germany) and 
cultivated at 36°C under constant rotation at 180 rpm for 
18-20 h. Sterile tap water was added in a nine-fold volume, 
and incubation continued at room temperature for 72 h under 
low shaking conditions (97 rpm). Microorganisms were 
washed three times and harvested by centrifugation steps 
(2.000 x g for 20 min each). Finally, cells were suspended 
in sterilized tap water in half of the original volume and 
incubation continued for experimental test duration at room 
temperature with constant low rotation (97 rpm) in order to 
avoid or reduce biofilm formation. For Legionella species, 
several well-grown colonies on buffered charcoal yeast 
extract agar (BCYE; Xebios, Düsseldorf, Germany) were 
inoculated directly in sterile tap water resulting in 109–1010 
cells/ml and were incubated under low shaking (97 rpm) at 
room temperature for a prolonged time-period. Aliquots of 
tap water adapted bacteria were periodically analysed for 
cultivability by dropping the suspension in dilutions on agar 
plates. Colony forming units (cfus) of A. baumannii and P. 
aeruginosa were counted on R2A plates after incubation at 
36°C for 24 and 48h. Legionella species were dropped on 
GVPC agar followed by cultivation under moist atmosphere 
at 36°C for at least 72h. The inactivation assays with PAW 
were carried out with water-adapted strains at ages of several 
weeks as indicated.

Generation and usage of plasma activated water 
(PAW)

Plasma-activated water (PAW) was generated from tap 
water (Institute of Hygiene, Münster) using a PAW lab unit 
(VitalFluid, Eindhoven, The Netherlands). According to 
manufacturer´s specifications, a volume of approximately 
500-600 ml tap water was activated at an electric power 

pneumonia, bacteraemia, sepsis and wound infection [10-13]. 
Further potentially human-pathogenic genera were identified 
in DUWLs such as Sphingomonas spp. and Acinetobacter 
spp. [14] being partially resistant to antibiotics. Acinetobacter 
spp. and P. aeruginosa are both intrinsically resistant to many 
antibiotics, but also capable of acquiring multiple resistance 
mechanisms, such as β-lactamases or carbapenemases, 
thus, posing a serious threat of therapeutic failures and 
necessitating extensive hospital hygiene precautionary 
measures [15]. Iatrogenic infections caused by DUWL 
contaminations [16] showed that decontamination deserves 
special attention. Therefore, it is not uncommon to use 
additional decontamination steps basesd on oxidative active 
disinfectants [17-18] and quaternary ammonium compounds 
(QACs) [19-20], which might increase stability and tolerance 
of the microorganisms to these agents. The application of novel 
techniques for efficient microbiological decontamination 
will be considered, whereby the use of oxidatively active 
substances is appropriate as a sustainable inactivation option. 
Plasma activated water (PAW) has gained attraction as a 
novel alternative that provides a biocidal effect on free and 
in biofilm living bacteria [21-24]. PAW is generated from 
interaction of atmospheric plasma with water, which leads 
to the formation of oxidative reactive chemicals, associated 
with a decrease to an acidic pH value [25-26]. Reactivity 
based on oxygen reactive agents such as hydrogen peroxide, 
atomic oxygen, superoxide and ozone [27-28] as well as on 
nitrogen reactive compounds as nitric oxide and peroxynitrite 
[29-30]. In this study, we examined the use of PAW for 
inactivation of various waterborne microorganisms present 
in DUWLs and watery environments. For this purpose, PAW 
had to be added to the aqueous milieu with the consequence 
of dilutions of PAW. We analyzed the susceptibility and 
tolerance of eight bacterial species out of five genera in two 
different physiological stages in dilutions of PAW. 

Material and Methods
Culturing and identification of bacterial isolates and 
strains

The reference strains Acinetobacter baumannii, 
Legionella pneumophila, serogroup 1 and serogroup 
5, respectively, L. anisa and Pseudomonas aeruginosa 
originated from American Type Culture Collection 
(ATCC) and the German Collection of Microorganisms 
and Cell Cultures (Leibniz Institute DSMZ, Braunschweig, 
Germany). The waterborne isolates A. puttii and A. junii, L. 
anisa, Sphingomonas paucimobilis and Stenotrophomonas 
maltophilia were obtained from tap water samples in dental 
units and households by routine analyses performed in 
Münster, Germany. The isolates, identified as accompanying 
flora, were sub-cultivated and the genus and species of 
the isolates were assigned by the MALDI-TOF biotyping 
technique (Bruker Daltonik, Bremen, Germany) according 
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level of 90 W for 30 min under rigorous stirring. During the 
activation process, reactive nitrogen and oxygen compounds 
were formed with the consequence of physical and chemical 
changes. The pH value and the electric conductivity were 
determined according to DIN EN 10523 and DIN EN ISO 
27888, respectively, using a pH and conductivity meter 
(Xylem Analytics, Weilheim, Germany). The oxidation-
reduction potential (ORP) was measured according to DIN 
38404 using a redox potentiometer (Hach, Düsseldorf, 
Germany) and the oxidizability was detected by means of 
permanganate index determination according to DIN EN 
ISO 8467 using a dosimat system (Methrom, Filderstadt, 
Germany). PAW was prepared freshly for each batch and 
the pH was checked to a maximum value of 3.2. PAW was 
stored for a maximum of 24h at room temperature and prior 
to inactivation studies, it was tested for sufficient activity to 
inactivate the control reference strain E. coli in each case.

Treatment of bacteria with PAW and survival rate 
determination through cultivation

Single, freshly cultivated and well-visible colonies on 
plates of Acinetobacter, Pseudomonas, Stenotrophomonas, 
Sphingomonas and Legionella spp., as well as aliquots of 
tap water adapted bacteria were suspended in saline solution 
(0.85 % (w/v) NaCl; Roth, Germany) followed by adjustment 
to a density of 107–108 cells ml-1. For the series of tests, 
suspensions were diluted tenfold in sterile tap water. PAW 
was added to the dilutions in different volumes, and the 
mixtures were left to stand at room temperature for 30 min 
up to 24 hours as indicated. If not directly spotted in 10 µl 
volumes as triplicates onto plates, bacteria were previously 
harvested by centrifugation (8000 rpm, 5 min) followed by 
suspension in sterile tap water in the output volume. Survival 
was documented by counting the cfus after incubation at 
36°C. Samples without PAW application served as controls.   

Analysis of the data
All the assays were repeated to multiple times. The data 

presented resulted from the exemplary test approach with 
the worst outcome using the mean value from the triplicate 
plating determination. The total number was determined 
from the countable dilutions as arithmetic means (± standard 
deviation).

Results
Species specific susceptibility and stability to PAW 
treatment

The impact of PAW was studied on waterborne 
microorganisms in the planktonic state that are able to 
contaminate dentist´s chair units and water pipes. Bacteria 
were exposed to oxidative effective PAW (activated at 90 W 
for 30  min) for a contact time of 30 min, and the survival 
and the robustness were determined by cultivation, as the 
cell-counting assay is considered gold standard for the 

determination of living and active cells. The addition of 
the equal volume of activated PAW to the initial volume of 
bacterial suspensions with cell densities of 107 and 106 L. 
pneumophila cells ml-1 was not sufficient to achieve a cell 
reduction. Even prolonged incubation with less cells did not 
result in cell count reductions, neither after 30 min nor after 
prolonged incubation of up to 24 hours (Figure 1). 

With increasing PAW volume application the cell count 
came down. Doubling the PAW volume caused a dominant 
decrease in the number of survivals (Table 1), as no colonies 
were detected with S. maltophilia, A. junii, S. paucimobilis 
and P. aeruginosa in all repeated experimental sets. However, 
Legionella spp. demonstrated robust properties in most assays 
and came down by at least 1 up to 3.4 log10 levels under these 
conditions as well as A. putti (2 log10 levels) and A. baumanii 
(0.3 log10 levels) (Table 1). 

Simulating the situation of water stress, bacteria were 
adapted to life in tap water for several weeks in order to follow 
the physiological condition as planktonic microorganism 
regarding susceptibility and tolerance to PAW. Legionella 
spp., at an age of 5 weeks in tap water, showed higher 
susceptibility to PAW than cultured cells because the double 
PAW surplus was sufficient for total inactivation of both 
tested strains (Figure 2), proven for both, L. pneumophila 
and L. anisa. The waterborne pathogen P.  aeruginosa was 
not cultivable at all with double PAW volume while tap 
water adapted bacteria at an age of 15 weeks showed only 
reductions of 2-3 log10 levels in high cell concentrations while 
low densities (<4 log10) were totally inactivated under these 
conditions (Figure 2). Complete inactivation was achieved 
with five-fold PAW surplus. P.  aeruginosa was thus more 
robust after adaption to tap water than after short-term water 
incubation.

 
Figure 1: Survival kinetics of L. pneumophila in tap water mixed 
in a 1:1 ratio with PAW. Colony forming unit concentrations (cfu/
ml) of L. pneumophila serogroup 5 as tenfold dilutions in tap water, 
marked by columns from black to light grey, were mixed with an 
equal PAW volume unit (+ 1 vol. PAW) followed by contact time of 
30 min up to 24 hours. Aliquots were spotted on plates and cfus were 
counted after incubation. Values represent the mean values from one 
experimental set-up in the triple approach with standard deviation 
of cells numbers counted and extrapolated in appropriate dilutions.
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Strain/isolate Origin + 2 vol. PAW*
Acinetobacter baumannii DSM 30007 0.3

Acinetobacter puttii Environmental isolate 591 2

Acinetobacter junii Environmental isolate 412 Ng

Legionella pneumophila SG1 ATCC 33152 2.6

Legionella pneumophila SG5 ATCC 33737 1

Legionella anisa DSM 17627 3.1

Legionella anisa Environmental isolate 137 3.4

Pseudomonas aeruginosa ATCC 27853 Ng

Sphingomonas paucimobilis Environmental isolate 649 Ng

Stenotrophomonas maltophilia Environmental isolate 650 Ng

*Plasma activated water (PAW) was added in the double volume unit (+ 2 vol. PAW) to isolates and strains with an initial concentration of 6 log10 
ml-1 for 30 min. The log-level reduction is given after cultivation. Ng = no growth 

Table 1: Reduction of cultivatable microorganisms by adding a double PAW volume unit to the bacterial suspension

 
Figure 2: Inactivation of microorganisms by PAW. Tenfold dilutions of microbial species L. spp., P. aeruginosa and A. baumannii, taken from 
plates and suspended in tap water as well as adapted to tap water for several weeks, were subjected to PAW at double (+2 vol. PAW), fivefold 
(+5 vol. PAW) and tenfold (+10 vol. PAW) volumes for 30 min. Plate counting, given as cfu/ml, was carried out in triplicates (± standard 
deviation).
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quality is a prerequisite for health protection of patients and 
staff, who are frequently exposed to water and aerosols. 
Generally, water is colonized with microorganisms 
composed mostly of non-pathogenic but may also have 
pathogenic potential [31,32]. In this study, we investigated 
the use of plasma-activated water (PAW) generated from tap 
water for reduction and inactivation of waterborne bacteria 
in watery environmental systems. The antimicrobial efficacy 
of PAW has been evidenced for several microorganisms, 
yeasts, spores and viruses [33-37], at which the organisms 
were directly in contact with PAW. Here, the PAW efficacy 
was analyzed in a watery environment including bacteria by 
adding defined PAW volume units with the aim to include 
dilution effects through the matrix. We analysed the minimal 
addition of PAW to microorganisms, firstly, to achieve a high 
antimicrobial effectiveness and secondly, to avoid premature 
damages of the pipes and hoses caused by the oxidative 
substances. 

Physical and chemical parameters in plasma 
activated water

During the plasma activation process many reactive 
oxygen and reactive nitrogen species arise accompanied with 
physicochemical changes [38]. The pH dropped down and 
at the same time the electrical conductivity, the oxidation-
reduction potential (ORP) and the oxidizability rose. The 
parameter ORP, directly related to the pH value but with 
inverse correlation [39], correlated positively to inactivation 
ability. High ORP values are associated with damages of 
inner and outer membrane integrities of microorganisms [40]. 
The high conductivity value resulted from the generation of 
charged species and ions in the water [38]. The compositions 
and the quantity of reactive substances are not uniform and 
change over time; however, the pH remained acid [41]. The use 
of plasma discharges and sources [42], the choice of storage 
conditions [29] and the water chemistry, especially hardness 
[35], are parameters that can reduce the antimicrobial effect of 
PAW. However, a decrease in biological inactivation efficacy 
was not observed in our hands, even with storage of freshly 
generated PAW for several hours, which has the advantage of 
longer usage. However, chemical parameters may be changed 
and short half-life molecules might disappear.

Interestingly, A. baumannii turned out to be highly 
robust to PAW treatment. Since still surviving in saline 
dilutions following PAW treatment (not shown), the strain 
showed higher robustness after suspension in tap water. The 
double PAW volume addition caused minimal reduction in 
cell numbers, and even the fivefold excess of PAW caused 
decrease of only 1.9  log10 levels of the individual dilutions 
(Figure 2). Even with a 10-fold excess of PAW, complete 
inactivation was not always to be expected. Even though the 
data of the lowest inactivation rate from the various tests are 
presented here, it was shown that complete inactivation could 
not always be expected in the case of massive contamination 
with A.  baumannii in high concentrations under these 
conditions. The tap water-adapted A. baumannii, incubated 
in tap water for approximately 10 weeks, was slightly more 
susceptible to PAW treatment, but again, high excess of PAW 
was required for unique cell reduction (Figure 2). Cell counts 
decreased by 1.3 and 2.6 log10 levels after treatment with the 
double and fivefold PAW volume, respectively, starting from 
an initial concentration of 106 cells ml-1. Using the tenfold 
PAW volume, from initial concentrations of ≤5  log10 no 
bacteria were cultivable after 30 min, and cell counts from 
the 6 log10 dilution decreased by 4.8 log10 levels.

Physical and chemical property changes of PAW 
dilutions

Plasma activated water was generated from institute´s 
tap water whereby physical and chemical properties changed 
during the process (Table 2). The pH dropped down from pH 
8 to acid conditions with an average value of pH 3.2 resulting 
as means from three water samples. When PAW was added 
in excess to tap water, which was the basis for the bacterial 
background environment, the pH values decreased according 
to the excess volume of PAW. The ORP in PAW of 763 mV 
remained quite high in the dilutions with five-fold excess to 
1:1 mixture (732 to 753 mV, respectively) compared with tap 
water indicating only 441 mV. The electrical conductivity in 
PAW was almost twice as high as in tap water and ranged 
from 600 to 687  µS/cm in the dilutions. Interestingly, the 
oxidizability (O2 in mg/l) values increased to > 6 mg/l O2 in 
the dilutions compared with the initial solutions. 

Discussion
In medical facilities and dental practices, a good water 

parameter PAW tw
tw tw tw

+ 1 x PAW + 2 x PAW + 5 x PAW
pH 3.22 ± 0.23 8.03 ± 0.04 5.62 ± 1.44 4.29 ± 0.92 3.87 ± 0.39

conductivity (µS/cm) 963 ± 256 511 ± 3 600 ± 45 687 ± 143 680 ± 56

oxidation-reduction potential (mV) 763 ± 9 441 ± 2 753 ± 14 745 ± 9 732 ± 14

oxidizability (O2 in mg/l) 4.12 ± 1.1 1.87 ± 0.1 6.83 ± 1.0 6.31 ± 0.6 6.21 ± 1.5

Plasma activated water (PAW) was mixed with tap water (tw) in excess at given volume ratios

Table 2: Physical and chemical parameters of PAW in dilutions with tap water
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Plasma activated water has an antimicrobial effect 
on waterborne microorganisms

The antimicrobial effect of PAW was analyzed on 
recurrent microorganisms of five different genera, Legionella, 
Pseudomonas, Acinetobacter, Stenotrophomonas, 
Sphingomonas, and eight species. These bacteria are 
primarily colonists of waterlines and able to survive, to grow 
and to persist in the aqueous environment [43]. Waterborne 
microorganisms can attach to surfaces and form biofilms [44-
46] and are characterized by high tolerances to disinfectants 
and antibiotics as shown for P. aeruginosa and A. baumannii, 
which are expressing many efflux pumps [47,48]. We focused 
on these Gram-negative bacteria because, in general, the 
majority of well-known waterborne bacteria belong to this 
group. A double membrane, that is an inner and an outer 
membrane, provides the microorganisms different properties. 
Nevertheless, it should be emphazised that in this context, it 
is known that Gram-positive bacteria generally demonstrate 
higher tolerance to PAW treatment than Gram-negatives 
[39]. A 1:1 ratio dilution of the bacterial suspension with 
PAW resulted in no count reduction, not even after a longer 
incubation period. However, doubling the excess PAW volume 
led to total inactivation of several microorganisms as P. 
aeruginosa, S. paucimobilis and S. maltophilia. Interestingly, 
species of the genus Acinetobacter varied in susceptibility 
and stability. A. junii came completely down while A. puttii 
only reduced by 2 log10 levels and no reduction occurred with 
A. baumannii. Such a species-specific difference was not 
recognized for the genus of Legionella with L. anisa and L. 
pneumophila. The four different strains and isolates showed 
similar stabilities to double PAW volume. Our results clearly 
prove various but genus- and species-specific stabilities and 
sensitivities to PAW treatment, which means that a selection 
of several and specific bacteria is necessary to analyze an 
efficient disinfection process. Changes of environmental 
conditions may lead to altered surface properties with protein 
and lipid syntheses and expressions due to the adaptation of the 
bacteriological physiology. Bacteria exposed to water stress 
for a prolonged period changed their physiological nature 
compared to sub-cultured microorganisms from plates [49]. 
Our results gave a differentiated picture of the bacteria with 
regard to PAW stability. Tap water adapted P.  aeruginosa 
reduced less compared with sub-cultured bacteria, while both 
Legionella species, L. anisa and L. pneumophila, exposed 
to tap water for several weeks, came completely down with 
twice the PAW volume and sub-cultured cells only reduced 
in numbers. In contrast, A. baumannii demonstrated an 
impressive stability to this oxidative water dilution. PAW had 
to be added in a very high excess before a high-marked cell 
decline occurred, with tap water adapted bacteria being only 
slightly more susceptible than sub-cultured microorganisms. 
Thus, one can conclude that Gram-negative genera and 
their respective environment-adapted physiology differ 

with respect to susceptibility to PAWs. However, in any 
case, a surplus of PAW enables adequate cell reduction for 
disinfection processes under these conditions. We showed 
that high cell densities led to reduced inactivation of all 
bacterial genera. Other studies confirmed this impact of 
high microbial loads to lower inactivation rates by PAW 
[36,50-51]. This observation may be due to the behavior of 
bacteria in high densities to PAW. Generally, bacteria tend 
to clumb and form aggregates, especially in biofilms [52,53]. 
It is conceivable that planktonic microorganisms, present in 
high densities, also tend to aggregate which might result in 
protection and consequently in an increasing tolerance to 
PAW. On the other hand, the ratio of the reactive nitrogen and 
oxygen species of PAW to the individual bacterium surface 
changes. The more bacteria, the fewer reactive species can 
act on each individual bacterium. Another phenomenon 
would be a depletion effect of the oxidative substances at 
high cell densities. Additionally, the presence of inorganic 
and organic substances in tap water increase the depletion as 
shown for oxidative disinfectants as chlorine dioxide [54-56]. 
To obtain an effective reactive species of PAW-to-bacterium 
ratio at different contamination levels, activation properties 
can be changed and regulated. Studies showed that prolonged 
activation times resulted in increased disinfection efficacy 
with high cell reductions [35,57,58]. Our lab device had a 
regulation unit that allowed an adjustment of electric power 
and activation time. With these prerequisites the disinfection 
procedures could be adjusted to an efficient decontamination 
under certain conditions using lowly or highly activated water. 
In addition to the contamination level, several other aspects 
play an important role for an efficient but environmentally 
and material friendly application of PAW. Both, the oxidized 
nitrogen and oxygen species could be reactive and corrosive 
to surfaces causing material damage, and the plastic and other 
material surfaces could be able to consume the reactive species 
of PAW. Furthermore, the PAW oxidation products should 
have a minimal impact on pollution. In order to be able to 
initiate the optimal disinfection measures, the optimized PAW 
activation conditions and respective operating conditions can 
be determined by monitoring prior to the disinfections.

Conclusion
In conclusion, this study demonstrated that PAW is 

suitable as a disinfectant to reduce numbers of waterborne 
microorganisms present in DUWLs. Tap water, plasma-
activated at 90 W for 30 min, was characterized by high levels 
of electrical conductivity, oxidation-reduction potential and 
oxidizability and by acidic pH. This PAW had an antimicrobial 
effect after 30 min contact time to microorganisms, especially 
when added in excess to bacteria in tap water. The higher the 
PAW surplus, the more efficient was the inhibitory effect. The 
amount of generated reactive oxygen and nitrogen species, 
thus the antimicrobial conditions, were sufficient to inhibit 
growth of seven species out of five different genera such as 
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Sphingomonas paucimobilis, Stenotrophomonas maltophilia, 
Pseudomonas aeruginosa, Legionella pneumophila, 
L.  anisa and Acinetobacter species by addition of surplus 
volume units of PAW to bacteria in tap water. In contrast, 
A. baumannii, the third species studied from the genus 
Acinetobacter besides A. junii and A. puttii, was highly stable 
to PAW treatment, so that only a tenfold PAW excess in our 
hands led to growth inhibition. Nonetheless, we conclude 
that PAW with optimized plasma-activation conditions and 
inactivation potential is a suitable disinfection agent for 
inhibition of tolerant and robust microorganisms, and it can 
also be considered as a suitable disinfectant.
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