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Abstract 

Reversible epigenetic changes within the loci of genes that 

regulate critical cell processes have recently emerged as 

important biomarkers of disease pathology. It is then natural 

to consider the consequences for population health risk of 

such epigenetic changes during the aging process. 

Specifically, the interplay between dynamic methylation 

changes that accompany aging and mutations that accrue in 

an individual’s genome over time needs further 

investigation. The current study investigated the role of 

dynamic methylation acting together with gene variants in 

an individual over time to gain insight into the evolving 

epigenome–genome interplay that affects biochemical 

pathways controlling physiological processes during aging. 

We completed whole-genome methylation and variant 

analysis in a non-smoking Zoroastrian-Parsi individual, 

collecting two samples, 12 years apart (at 53 and 65 years 

respectively) (ZPMetG-Hv2a-1A (old, t0), ZPMetG-Hv2a-

1B (recent, t0+12)) and analyzing them using a GridION 
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Nanopore sequencer at 13X genome coverage overall. We 

further identified the single nucleotide variants (SNVs) and 

indels in known CpG islands by employing the Genome 

Analysis Tool Kit (GATK) and MuTect2 variant-caller 

pipeline with the GRCh37 (patch 13) human genome as a 

reference. We found 5258 disease-relevant genes that had 

been differentially methylated in this individual over 12 

years. Employing the GATK pipeline, we found 24,948 

genes, corresponding to 4,58,148 variants, specific to 

ZPMetG-Hv2a-1B, indicating the presence of variants that 

had accrued over time. A fraction of the gene variants 

(242/24948) occurred within the CpG regions that were 

differentially methylated, with 67/247 exactly coincident 

with a CpG site. Our analysis yielded a critical cluster of 10 

genes that were each significantly methylated and had 

variants at the CpG site or the ±4 bp CpG region window. 

Kyoto Encyclopaedia of Genes and Genomes (KEGG) 

enrichment network analysis, as well as Reactome and 

STRING analysis of gene-specific variants, indicated an 

impact on biological processes regulating the immune 

system, disease networks implicated in cancer and 

neurodegenerative diseases, and transcriptional control of 

processes regulating cellular senescence and longevity. 

Additional analysis of mutational signatures indicated a 

majority of C>T transitions followed by T>C transitions in 

the more recent sample, ZPMetG-Hv2a-1B. Our current 

study provides additional insight into the aging methylome 

over time and the interplay between different methylation 

and gene variants in the etiology of disease. 

 

1. Introduction 

Aging is a complex and time-dependent deterioration of 

physiological processes. Increased human life expectancy 

has resulted in higher morbidity rates, as advanced age is 

the predominant risk factor for several diseases, including 

cancer, dementia, diabetes, and Cardiovascular Disease 

(CVD) [1]. In addition to molecular and cellular factors, 

such as cellular senescence and telomere attrition, 

epigenetic changes that govern physiological processes 

comprise a significant component of the ageing process [2]. 

Methylation signatures specifically influence gene 

expression without altering the DNA sequence, connecting 

intrinsic and extrinsic signals. The most common 

methylation modifications involve the transfer of a methyl 

(CH3) group from S-Adenosyl Methionine (SAM) to the 

fifth position of cytosine nucleotides, forming 5-

methylcytosine (5mC) [3]. Methylation is a dynamic event, 

in which reversal occurs at certain sites, while progression 

with age causes methylation at many CpG sites in 

intergenic regions, such as Transcription Start Sites (TSSs) 

[4]. The interplay between epigenetic events is manifested 

in the regulation of major biological processes [5] such as 

development, differentiation, genomic imprinting, and X 

Chromosome Inactivation (XCI). DNA methylation, both 

heritable and dynamic, exhibits a strong correlation with 

age and age-related outcomes. Additionally, the epigenome 

responds to a broad range of environmental factors and is 

sensitive to environmental influences [6], including 

exercise, stress [7], diet [8], and sleep patterns. Epigenetic 

profiling of identical twins [9] indicates that methylation 

events are independent of genome homology, with global 

DNA methylation patterns differing between older and 

younger twins, consistent with an age-dependent 

progression [10] of epigenetic changes. Global methylation 

changes over 11 years in participants of an Icelandic cohort, 

as well as age- and tissue-related alterations in certain CpG 
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islands from an array of 1413 arbitrarily chosen CpG sites 

near gene promoters, further corroborate the evidence for 

dynamic methylation patterns over time [11]. Promoter 

hypermethylation has been shown to increase mutation 

rates, suggesting the influence of epigenetics on genetics. 

These studies support the role of epigenome alterations in 

ageing-associated genetic changes. It has been reported that 

genes related to various tumors can be silenced by heritable 

epigenetic events involving chromatin remodeling or DNA 

Methylation (DNAm). In addition to dynamic methylation 

changes over time, recent studies have also suggested that 

epigenetic markers, and their maintenance, are controlled 

by genes and are tightly linked with DNA variants [12] that 

accrue in an individual genome over time. The methylation 

of cytosine to 5mC in the coding regions of genes increases 

the probability of mutations and consequent spontaneous 

hydrolytic deamination resulting in C>T transitions. 

 

The epigenetic milieu, therefore, provides a homeostatic 

mechanism at the molecular level that allows phenotypic 

malleability in response to the changing internal and 

external environments. The flexibility and dynamism of the 

methylome, as monitored through epigenetic profiling, 

suggests the importance and influence of lifestyle changes 

in the control of gene regulation. This also makes 

methylome studies an attractive means to identify 

epigenetic hotspots and evaluate the impact of lifestyle 

changes on ageing as well as provide potential targets for 

therapeutic intervention [13, 14]. Besides methylation 

changes, mutational signatures, including somatic 

variations, can change the preponderance of methylation of 

CpG islands. CpG–SNP interactions in the promoter regions 

are associated with various disorders, including type 2 

diabetes [15], breast cancer [16], coronary heart disease 

[17], and psychosis [13]. Therefore, a comparison of 

comprehensive methylation patterns in healthy individuals 

at multiple time points can determine whether such changes 

are early indicators of late-onset chronic disease. 

Identifying such indicators earlier can improve disease 

prognosis, with the potential for reversibility. Our current 

epigenetic study is unique in analyzing genome–epigenome 

interactions from an individual of the dwindling 

endogamous Zoroastrian Parsi community, which has a 

higher median life span and, as a result, a higher incidence 

of ageing-associated conditions, including 

neurodegenerative conditions, such as Parkinson’s disease; 

cancers of the breast, colon, gastrointestinal tract, and 

prostrate; auto-immune disorders; and rare diseases. To 

identify age- and disease-associated epigenetic changes in 

the Parsi population, we performed an intra-individual 

methylome profile of a Zoroastrian-Parsi individual with 

Nanopore-based sequencing technology using samples 

collected 12 years apart. The two samples, ZPMetG-HV2a-

1A (old) and ZPMetG-HV2a-1B (recent) (12 years apart) 

were sequenced using Oxford Nanopore Technology 

(ONT). Comparing the samples, we found that ageing 

increased global methylation frequencies for the equivalent 

CpG sites, with an overall increase of hypermethylated 

regions across genic regions compared with non-genic 

regions. Some genes (108) were significantly 

hypermethylated, while 304 genes were significantly 

hypomethylated. We also identified 10 unique CpG–SNP 

interactions in the form of variants occurring at a CpG site 

and across the CpG region that may affect the biological 

processes encoded in the genic regions. The enrichment in 

certain genes implicated pathways involved in the immune 
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response, cancer, neurogenerative diseases, and 

physiological processes regulating cellular proliferation, 

senescence, ageing, and longevity. 

 

2. Materials and Methods 

2.1. DNA Extraction 

High-Molecular-Weight (HMW) genomic DNA was 

isolated from the buffy coat of EDTA-treated whole blood 

using the Qiagen Whole Blood Genomic DNA extraction 

kit (cat. #69504). The Extracted DNA Qubit™ dsDNA BR 

assay kit (cat. #Q32850) was used in preparation for the 

Qubit 2.0® Fluorometer (Life Technologies™).  

 

2.3. DNA QC  

HMW DNA of optimal quality is a prerequisite for Nano 

pore library preparation. The quality and quantity of the 

gDNA were estimated using a Nanodrop spectrophotometer 

and a Qubit fluorometer using the Qubit™ dsDNA BR 

assay kit (#Q32850) from Life Technologies, respectively. 

  

2.4. DNA purification 

The DNA was subjected to column purification using the 

Zymoclean Large Fragment DNA Recovery kit (Zymo 

Research, USA), followed by fragmentation using the g-

TUBE device (Covaris, Inc.). The purified DNA samples 

were used for library preparation.  

 

2.5. Library preparation  

A total of 2 μg from each sample was used for Nano pore 

library preparation using the Nanopore Ligation Sequencing 

kit (cat. #SQK-LSK109, Oxford Nanopore Technology, 

Oxford, UK). Briefly, 2 μg of gDNA from each sample was 

end-repaired using a NEBnext Ultra II End Repair kit, (New 

England Biolabs, MA, USA) and purified using 1x AmPure 

beads (Beckman Coulter, USA). Adapter ligation (AMX) 

was performed at RT (20 ⁰C) for 20 min using NEB Quick 

T4 DNA ligase (New England Biolabs, MA, USA). The 

reaction mixture was purified using 0.6X AmPure beads 

(Beckman Coulter, USA), and the sequencing library was 

eluted in 15 μl of elution buffer provided in the ligation 

sequencing kit. 

 

2.6. Sequencing and sequence processing 

Sequencing was performed on a GridION X5 sequencer 

(Oxford Nanopore Technologies) using a SpotON flow cell 

R9.4 (cat. #FLO-MIN106) as per the manufacturer’s 

recommendation. Nanopore raw reads (“fast5” format) were 

base called (“fastq5” format) using Guppy v2.3.4 software. 

Genomic DNA samples were quantified using a Qubit 

fluorometer. For each sample, 100 ng of DNA was 

fragmented to an average size of 350 bp by ultrasonication 

(Covaris ME220 ultrasonicator). DNA sequencing libraries 

were prepared using dual-index adapters with the TruSeq 

Nano DNA Library Prep kit (Illumina) as per the 

manufacturer’s protocol. The amplified libraries were 

checked on a Tape Station (Agilent Technologies) and 

quantified by real-time PCR using the KAPA Library 

Quantification kit (Roche) with the QuantStudio-7flex Real-

Time PCR system (Thermo Fisher Scientific). Equimolar 

pools of sequencing libraries were sequenced using S4 flow 

cells in a Novaseq 6000 sequencer (Illumina) to generate 2 

x 150-bp sequencing reads for 30x genome coverage per 

sample. 
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2.7. Extracting methylation base-called reads and QC 

Sequence information was encoded in signal-level data 

measured with a Nanopore sequencer. The raw signal data 

in Fast5 format was then demultiplexed using the Guppy 

base-caller, and the adapters were removed using Porechop 

to obtain the base-called reads. The quality of the reads (in 

Fastq format) following adapter removal was evaluated 

using Fastqc (Supplementary Figure 1). The adapter-

trimmed reads in Fastq format were then mapped to the 

human reference genome (GRCh37, patch 13, using the 

Minimap2 alignment program, version 2.17). The aligned 

reads were then used to identify the methylated sites using 

Nanopolish software (version 0.13.2). This tool provides a 

list of reads with the log-likelihood ratios (wherein a 

positive value is evidence that the cytosine is methylated to 

5-mC, and a negative value indicates that an unreacted 

cytosine is present). From this file, we obtained the 

consolidated methylation frequency file for both the 

sequenced samples. Average read lengths of 5.77 kb and 

12.15 kb were obtained for the ZPMetG-HV2a-1A (t0, old) 

and ZPMetG-HV2a-1B (t0+12, recent) respectively. 

 

2.8. Differential methylation analysis 

The reads with methylated CpGs from the methylation 

frequency files of the two samples (ZPMetG-HV2a-1A and 

ZPMetG-HV2a-1B) were compared using bedtools 

(Version.v2.29.2). Reads with corresponding entries 

available in the two samples were taken further for 

differential methylation analysis. To the above, methylated 

reads common to the samples, ZPMetG-HV2a-1A and 

ZPMetG-HV2a-1B annotations were provided from the 

GRCh37 GTF file. 

 

Annotations were provided in the following manner:  

• Promoter regions were defined as extending 2 kb 

upstream of genic regions 

• TSS for genes on the “+” strand, column 2 and column 

3 for genes on the “- “strand 

• Genic and nongenic regions were extracted based on 

the tags provided in the third column of the GTF file 

 

2.9. Hypomethylated and hypermethylated regions 

The porechopped Fastq reads for the two samples were 

mapped back to the reference genome GRCh37 (patch 13) 

using the Minimap2 program, and the aligned outputs in the 

binary alignment map (BAM) were then represented in 

BED format, which was carried out to identify the regions 

sequenced in both samples. The unique regions in each 

sample that were methylated corresponded to 

hypomethylated or hypermethylated regions. A region was 

tagged as only “hypermethylated” if there were reads 

available for the given region in the sample ZPMetG-HV2a-

1A but not reported in the Nanopolish-generated 

methylation frequency file. It was tagged as only 

“hypomethylated” if it was reported in the Nanopolish-

generated methylation frequency file for ZPMetG-HV2a-

1A but no such corresponding record in ZPMetG-HV2a-1B 

for a region sequenced with reads was available. The gene 

annotations for these regions were obtained in the same 

manner as discussed in the previous section. 

 

2.10. Read mapping and variant calling for Illumina 

sequencing (ZPMetG-HV2a-1A and ZPMetG-HV2a-1B) 

Single-nucleotide variants (SNVs) and indels were called 

using four different pipelines through a combination of two 

read mappers and two variant callers. The GRCh37 (patch 
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13) human genome was used as the reference genome to 

map the paired-end reads. The two read mappers used were 

BWA-MEM (version 0.7.17) and Bowtie2 (version 2.4.1). 

The variant-calling pipeline was implemented using GATK 

(version 7.3.1). The GATK pipeline included additional 

read- and variant-processing steps, such as duplicate 

removal using Picard tools, base quality score recalibration, 

indel realignment, and genotyping and variant quality score 

recalibration using GATK, all performed according to 

GATK best-practice recommendations [18]. The MuTect2 

tool [19] was employed for identifying putative somatic 

variants, following which Snpeff (build 2017-11-24) was 

used to annotate the variants and make functional 

predictions. As described later in the Results section, 

variants identified using the BWA + GATK pipeline were 

used for all downstream analyses. Variants in the 

intersection of all four pipelines (two read mappers and two 

variant callers), in which the intersection is defined as 

variant calls for which the chromosome, position, reference, 

and alternate fields in the VCF files were identical, were 

confidently identified. 

 

2.11. Pathway mapping of genes to assess physiological 

implications 

A compendium of genes obtained from Gene Set 

Enrichment Analysis (GSEA) was extracted that 

corresponded to tumor suppressors and oncogenes. 

Housekeeping genes were collated from (source). Genes 

associated with ageing-regulating pathways were obtained 

from KEGG and other published work(s). KEGG pathway 

genes associated with different neurological and 

physiological disorders were extracted. For this set of 

genes, epigenetic changes between the two samples were 

examined. These epigenetic changes were measured in 

terms of differences in methylation frequencies for 

ZPMetG-HV2a-1A and ZPMetG-HV2a-1B. The frequency 

of methylation is given by the ratio of the number of 

methylated reads in a gene region (mr) and the total number 

of reads detected in the gene region (Tr).  

 

fmeth= mr/Tr 

 

The difference in methylation frequency (Δfmeth) between 

the ZPMetG-HV2a-1B (t0+12) and ZPMetG-HV2a-1B (t0 

years) was obtained by subtracting the methylation 

frequency for t0 from that of t0+12. 

 

Δfmeth = (Δfmeth) t0+12 - (Δfmeth)t0 

 

The degree of methylation was primarily classified as hypo 

methylated, hemi-hypo methylated, hemi-hyper methylated, 

and hyper methylated based on the int Δfmeth intervals. 

Here, the term “background” was also defined as 

corresponding to low-confidence scores of CpG 

methylation, namely, –0.2 ≤ Δfmeth < +0.2. Hypo 

methylation was defined as a gradient of hypo methylation 

(Δfmeth < 0.6) and hemi-hypo methylation (–0.6 ≤ Δfmeth < –

0.2). Hyper methylation was defined as a gradient of hyper 

methylation (Δfmeth > than 0.6) and hemi-hyper methylation 

(0.2 ≤ Δfmeth < 0.6). The weighted difference in methylation 

frequency (Δfmeth_weighted) for each read within a gene region 

was obtained by factoring in the number of CpG islands 

(cpgnum) detected for that gene region. Thus, the weighted 

methylated frequency was obtained as a product of the 

difference in methylation frequency and the number of CpG 

reads in the gene region. 
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Δfmeth_weighted = Δfmeth * cpgnum 

 

The normalized weighted methylation frequency score 

(Fmeth_norm) per degree of methylation was obtained by 

normalizing the summed Δfmeth_weighted score with the total 

number of reads (Tr). 

 

Fmeth_norm = Σ (Δfmeth_weighted) degree / Tr 

 

The normalized weighted difference in methylation 

frequency score was assigned to a specific gene and used in 

downstream analysis.  

 

2.12. Mutational signature analysis 

The non-negative matrix factorization (NMF) method 

described by Alexandrov et.al [20]., was used to detect 

mutational signatures for disease-associated KEGG gene 

sets in ZPMet-Hv2a-1A and ZPMet-Hv2a-1A WGS. To 

determine the contribution of each signature in a sample, we 

used flexible functions in the MutationalPatterns21 routines, 

available in the R package, to assign the mutations in each 

sample to the signatures identified by NMF. 

 

3. Results  

3.1. Analysis of individual methylome modifications over 

time 

To account for differences in coverage depth, we extracted 

the nucleotide ranges for which base-called entries were 

present in the methylation frequency files for both samples. 

This enabled identifying any distinctive increase or 

decrease in methylation between the two temporally 

separated samples. These comparable nucleotide ranges 

extracted from the methylation base-called regions 

accounted for 18,758,642 regions, which covered 98% and 

84% of reported regions in fastq files of ZPMetG-HV2a-1A 

(old) and ZPMetG-HV2a-1B (recent) respectively. The 

overall analysis pipeline is detailed in (Figure 1A). We 

examined the overall distribution in methylation frequency 

between ZPMetG-HV2a-1A (old) and ZPMetG-HV2a-1B 

(recent) We applied a nonparametric statistical test (Mann–

Whitney U test) and observed a statistically significant 

difference between the two sample distributions (Figure 

1B). The chromosome-wise distribution of methylated 

frequencies in CpG dinucleotides, which was also examined 

to discern changes in methylation between the samples, 

showed similar profiles for genic and intergenic regions. 

Notable exceptions were observed for chromosomes 21, 22, 

and X for genic regions (Supplementary Figure 2). The 

median of the distribution is given for each chromosome 

within the entire frequency distribution (Figure 1B). 
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Figure 1: (A) Workflow for the analysis of individual methylome and mutational (SNP) variations for two samples from the 

same individual collected 12 years apart. (B, upper) Methylation frequency distributions for comparing base-called regions, 

shown for ZPMetG-Hv2a-1B (recent, green) and ZPMetG-Hv2a-1A (old, red). On the right is shown a histogram 

demonstrating the distribution to be non-Gaussian. (B, lower) Median values of the chromosome-wise methylation frequency 

distribution for ZPMetG-HV2a-1A (old, in red) and ZPMetG-HV2a-1B (recent, in green). 

 

3.2. Functional motif-based characterization of CpG’s 

common to ZPMetG-Hv2a-1 and ZPMetG-Hv2a-1 

The methylation base-called regions compared between 

ZPMetG-HV2a-1A (old) and ZPMetG-HV2a-1B (recent) 

were mapped to GRCH37 (human reference genome from 

NCBI). Based on the tag “gene”, we extracted putative 

genic regions, while other regions (excluding even CDS, 

mRNA, and tRNA) were extracted to examine the non-

genic regions (Figure 2A). A majority of the CpGs were 

found in the genic and gene promoter regions (Figure 2B). 
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The distribution across chromosomes for genic and non-

genic regions in the two samples indicated that a majority of 

the CpGs occurred within genic regions and were rarest 

within TSS regions. The distribution of CpGs was similar 

across all chromosomes for the genic regions compared 

with the distribution for TSS, non-genic, and genic 

promoter regions, which displayed a staggered distribution 

across chromosomes (Figure 2C). 

 

 

 

Figure 2: (A) The distribution and classification of methylation imprints (CpG) based on genome architecture and classifiers. 

(B) The classification of common methylation imprints (CpG) based on genomic characterization. (C) Chromosome-wise 

distribution of CpGs common to samples ZPMetG-Hv2a-1 and ZPMetG-Hv2a-2 classified based on their distribution across 

genomic motifs. 
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3.3. Prioritization of gene families 

Characterization of the methylated regions indicated that 

26,019 genes are found in the regions methylated in 

ZPMetG-HV2a-1B (recent) compared to ZPMetG-HV2a-

1A (old) and selective filtering and prioritization of the 

26,019 genes (normalized score) based on a curated dataset 

of 3050 gene families from the GSEA database [22], 168 

from the Epigenetic Modifier Gene database [23], 2833 

housekeeping genes from HRT Atlas v1.0 [24], and 3527 

pathway- and disease-specific genes from the KEGG 

database [25] yielded 5214 unique genes. Followers of the 

Zoroastrian faith consider smoking a taboo, resulting in 

generations of the community that have refrained from 

smoking. To address the epigenetic changes associated with 

smoking-related genes and their relevance to the non-

smoking Parsi community, we also curated a list of 44 

documented genes that were differentially methylated in 

smokers. Taken together, our total gene list was comprised 

of 5258 genes (Supplementary Table.2). Hierarchical 

clustering of differentially methylated regions in ZPMetG-

Hv2a-1B compared to ZPMetG-Hv2a-1A We performed 

hierarchical clustering of the differentially methylated genes 

by first obtaining the frequency of CpG methylation across 

the entire gene length. Based on the weighted score for CpG 

methylation (Materials and Methods), the CpG frequencies 

across genes were classified as hypo-, hemi-hypo-, hemi-

hyper-, and hypermethylated regions. The weighted score 

common across all genes was defined as the background, 

which served as an internal control. The hierarchical 

clustering of row-wise Z score of common differentially 

methylated gene regions (Supplementary Table 3) in 

ZPMetG-Hv2a-1B identified a cluster of 103 genes that 

were significantly hypermethylated and 307 

hypomethylated genes (Figure 3A, Supplementary Table 7). 

GSEA-based enrichment indicated enrichment in genes 

coding for transcription factors and protein kinases in the 

hyper- and hypomethylated clusters. Among the hyper-

methylated genes, homeodomain proteins were highly 

represented, while among the hypomethylated genes, cell 

differentiation markers, tumor suppressors, and translocated 

cancer genes predominated by comparison (Figure 3B, 

Supplementary Figure 3A). PANTHER-based gene 

annotation classified these genes based on their molecular 

and protein functions (Supplementary Figure 3B). 

Hypermethylated and hypomethylated clusters varied in 

their functional classification with the presence of genes 

that function to increase transcription regulator activity 

(Supplementary Figure 3B). 
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Figure 3: (A) Hierarchical clustering of row-wise Z scores of common differentially methylated gene regions in sample s2. 

Clusters of hypermethylated (inlay figure; right, top) and hypomethylated (inlay figure; right, bottom) genes. (B) GSEA-based 

classification of hyper- and hypomethylated clusters. 

 

3.4. Characterization of variants unique to ZPMetG-

Hv2a-1B compared with ZPMetG-Hv2a-1A 

While dynamic methylation events constitute a major 

mechanism of epigenetic modification, variants in the form 

of SNPs, in addition to dynamic methylation events, are 

known to be critical to epigenome function through the 

modification of genomic information. To this end, we 

employed the GATK variant characterization pipeline to 

identify variants specific to ZPMetG-Hv2a-1B viz., which 

are variants that have accumulated in the individual because 

of ageing. We identified 4,58,148 variants corresponding to 

24,948 unique genes. We next sought to identify genes 

common to both dynamic methylated regions (CpGs) and 

variants specific toZPMetG-Hv2a-1B. We found a direct 

correlation between gene length, CpG count, and variant 

count. This association is specifically significant for the 

correlation between variants and CpG (Pearson correlation 

coefficient, r=0.86, Figure 4A, Supplementary Figure 4A, 
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B). Analysis of the 5258 ZPMetG-Hv2a-1B-specific 

differentially methylated genes post disease/GSEA 

prioritization filter for somatic variants yielded 4409 

differentially methylated genes (Supplementary Table 5) 

that are specific to ZPMetG-HV2a-1B (recent) and that 

harbour somatic variants (Supplementary Figure 4C). The 

location of variants with respect to their occurrence in CpG 

regions is crucial to the effect on epigenomic imprinting in 

the form of methylation changes. Variants that occur 

exactly at the CpG site may modulate the resulting 

methylation, thereby affecting methylation changes. In this 

context, we classified ZPMetG-HV2a-1B variants based on 

their locus of incidence within the CpG region. We 

classified variant occurrence as those that occur exactly 

within the CpG region and variants that occur within a 

distance window of 1-4 bp on either side of the CpG region 

(±4 bp). Our analysis indicated 242 variants classified as 

“modifier” variants occurring within the CpG region of 177 

differentially methylated genes specific to ZPMetG-Hv2a-

1B (Figure 4B, Supplementary Table 6). A fraction of 

variants (67/242 or 27.68%) occurred exactly at the CpG 

site and 175/242 variants (72%) occurred in the CpG region 

at a locus window of ±4 bp (Figure 4B). A vast majority of 

classified variants occurred on Chr. 1, with most variants 

occurring within a ±4-bp window across all chromosomes 

except for Chr. 4, in which more variants are observed 

exactly at the CpG site compared with the window size 

(Supplementary Figure 5A). The number of variants within 

genes varied from 1-7 variants (Supplementary Figure 5B). 

Characterization of the pathway association and interaction 

networks differed between the genes harbouring variants at 

the CpG site compared with genes with variants in the CpG 

region (Supplementary Figures 6 and 7). 

3.5. Interplay of the genome and epigenome in the 

context of ageing and disease etiology 

The presence of genome variants can affect epigenetic 

modification. We, therefore, sought to understand the 

biological processes of the genes in our study that carried 

both methylation changes and harboured variants in the 

CpG regions. To this end, we compared 412 genes with 

significant hypermethylation (108 genes) and 

hypomethylation (304 genes) changes (Supplementary 

Table 7) for gene-specific variants within the CpG regions. 

Our analysis yielded a critical cluster of 10 genes that were 

significantly methylated (hyper- or hypo-) and have variants 

at the CpG site or within the ±4 bp CpG-region window 

(Figure 5A, Supplementary Table 8). Only two genes 

(CASP8 and PCGF3) were significantly hypomethylated 

and carried variants at the CpG site, whereas both 

significantly hyper/hypo-methylated genes carried variants 

in the CpG window region (3 hypermethylated genes and 6 

hypomethylated genes). Most genes were critical 

housekeeping genes, followed by transcription factors, 

protein kinases, and genes implicated in neurodegenerative 

diseases (Figure 5B). To identify the relevance of these 10 

genes in pathways related to disease and homeostasis, we 

clustered the 10 genes with 1000 genes that harboured 

variants and CpGs (Supplementary Table 9, based on the 

normalized cumulative CpG.Variant score). Using Network 

analyst [26] -based clustering and a KEGG-based disease 

enrichment module showed that the majority of the 

clustered genes were implicated in cell proliferative 

pathways regulating cancer; cancer subtypes; 

neurodegenerative diseases, such as Parkinson’s disease, 

Alzheimer’s disease, Huntington’s disease; and pathways 

implicated in cellular senescence and longevity-regulating 
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gene clusters (Figure 5C, Supplementary Table 10). 

Reactome analysis of the biological diversity of gene 

function showed the association of the clustered genes with 

pathways involved in the immune system, DNA repair, 

DNA transcriptional activity, the cell cycle, and disease-

related pathways (Figure.5D). 

 

 

 

 

Figure 4: A) Correlation between CpG and variant counts in ZPMetG-Hv2a-1B. The Pearson correlation coefficient, r, is 

displayed at the side of the plot. B) Distribution of ZPMetG-HV2a-1B (recent) specific variants across differentially 

methylated regions specific to ZPMetG-HV2a-1B (recent). 
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Figure 5: A) Distribution of CpG variants (exact, inexact) across significantly hyper- and hypomethylated genes in ZPMetG-

Hv2a-1B B) Categorization of 10 critical genes based on biological activity. C) Network analysis using a KEGG-based 

disease-enrichment module for 10 critical and 1000 high-priority variants. D) Reactome analysis of biologically relevant 

pathways of 10 critical and 1000 high-priority variants. 
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3.5. Mutational signatures associated with ageing in the 

ZPMetG-Hv2a-1B across all genes and CpG-specific 

regions of functionally relevant genes 

We next proceeded to categorise mutational signatures that 

are characteristic combinations of mutation types arising 

from specific mutagenesis processes that involve alterations 

related to DNA replication, repair, and environmental 

exposure. Our analysis showed the presence of 110,616 

mutations, with a majority associated with C>T transitions, 

followed by T>C transitions. The same analysis of 4409 

prioritized genes that showed differential methylation and 

variants specific to indicate a similar signature for C>T 

transitions, followed by an increase in C>A and T>A 

mutations, while T>C mutations were reduced compared 

with the cumulative variants in ZPMetG-Hv2a-1B (Figure 

6A). Further categorization of the approach using gene sets 

that consist of epigenetic modifiers, disease-specific lists, 

and smoking-related genes (sensitive to environmental 

exposure) showed a high prevalence of C>T transitions, 

especially at the CpG sites for gene sets regulating 

Alzheimer’s and Parkinson’s disease pathways, while 

smoking-associated genes had a decreased incidence of 

C>T transitions at CpG sites but an increase in overall C>T 

transitions (Figure 6B). Analysis of the complete 96 

mutational signatures indicated the prevalence of signatures 

for Parkinson’s, Alzheimer’s, and Huntington’s diseases, 

while mutational signatures for smoking-associated genes 

were not highly represented (Figure 6C). 
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Figure 6: A) Distribution of mutational signatures across the genome and specific to CpG regions in 4409 prioritized genes 

and cumulative variants across ZPMetG-Hv2a-1B. B) Mutational signatures indicating transitions and transversions specific to 

ZPMetG-Hv2a-1B across different disease categories. C) Analysis of the relative contribution of the complete repertoire of 

mutational signatures (96) specific to ZPMetG-Hv2a-1B. 
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4. Discussion 

Ageing is an important contributor to chronic diseases. 

Epigenetic modifications in the form of methylation of CpG 

dinucleotides play a crucial role in regulating physiological 

processes, which vary as age progresses. Differential 

methylation at CpG sites between younger and older 

subjects is associated with genes, including MTOR, 

ULK1, ADCY6, IGF1R, CREB5, and RELA, that are 

linked to metabolic traits [27], and CREB5, RELA, 

and ULK1 have been statistically associated with age. We 

found 5258 genes to be significantly altered in terms of 

methylation differences over time in an individual assessed 

after 12 years. DNAm levels of several CpG sites located 

within genes involved in longevity-regulating pathways can 

be examined for DNAm in metabolic alterations associated 

with age progression. Along with epigenetic modifications, 

variants at the CpG sites have been shown to adversely 

affect gene function and activity, especially for disease-

associated traits [28]. Many studies have reported that 

CpG–SNP interactions are associated with different 

diseases, such as type 2 diabetes, breast cancer, coronary 

heart disease, and psychosis, that show a clear interaction 

between genetic (SNPs) and epigenetic (DNA methylation) 

regulation. The introduction or removal of CpG 

dinucleotides (possible sites of DNA methylation associated 

with the environment) has been suggested as a potential 

mechanism through which SNPs influence gene 

transcription and expression via epigenetics. Our analysis 

showed the presence of 242 variants, classified as 

“modifier” variants, occurring within the CpG region of 177 

differentially methylated genes specific to ZPMetG-Hv2a-

1B. These are genes involved in longevity-regulating 

pathways, cellular proliferation, and transcriptional 

regulation. Recent reports using tissue-specific methylation 

data describe a strong association between C>T mutations 

and methylation at CpG dinucleotides in many cancer types, 

driving patterns of mutation formation throughout the 

genome. In our analysis, the variants occurring at the CpG 

sites were C>T transitions that occur within two genes, 

CASP8 and PCGF3. Incidentally, in our analysis PCGF3 

displays transitions not only at the CpG site but also within 

the CpG region. Pcgf3/5 mainly functions as a 

transcriptional activator, driving the expression of many 

genes involved in mesoderm differentiation, and Pcgf3/5 is 

essential for regulating global levels of the histone modifier 

H2AK119ub1 in embryonic stem cells [29]. CASP8 

methylation has been shown to be relevant in cancers and 

may function as a tumor-suppressor gene in neuroendocrine 

lung tumors [30]. Our study points to a crucial interplay 

between CpG methylation levels and variant incidence. It is 

therefore critical to extending the study to other individuals 

to understand the diversity of mutational signatures that 

accrue in CpG regions of functionally important genes to 

further dissect the role of the epigenome–genome 

interactions in homeostasis, disease, and ageing. Mutational 

signatures associated with ageing and cancer subtypes have 

been studied and indicate a strong correlation towards 

cytosine deamination at CpG sites, which results in an 

increase in the frequency of C>T transitions with the age of 

diagnosis, as age allows more time for deamination events, 

leading to an accumulation of their effects [31]. In line with 

these observations, we found that C>T transitions constitute 

most of the mutational changes in ZPMetG-Hv2a-1B, 

indicating their accumulation over age. Specifically, we 

found an increase in the frequency of the same transitions at 

CpG sites in genes that participate in Alzheimer’s and 
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Parkinson’s disease pathways, but their relative contribution 

is decreased in smoking-associated genes. Further analysis 

of the same signatures in a larger cohort corresponding to 

disease and smoking status will be critical in identifying the 

combinatorial effect of mutational signatures associated 

with epigenome modifications in the context of ageing. 

Using personal methylome analysis, our study furthers 

understanding of the interactions between the epigenome 

and genome in the form of CpG–gene variant interactions. 

This approach promises to be helpful in identifying 

significant genomic loci that reflect the effects of 

methylation modifications in combination with genetic 

variations that accrue in an individual, thereby aiding in 

identifying associations with longevity and associated traits, 

such as the timing of disease onset. 
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Supplementary Figures 

 

 

 

Figure 1: QC scores (FastQC) of s1 and s2 following adapter trimming. 
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Figure 2: Chromosome-wise distribution of methylation frequency across genic and nongenic regions for ZPMetG-

Hv2a-1B. 
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Figure 3: Molecular and protein classification of significantly hyper- and hypomethylated genes. A) GSEA-based 

categorization of selected hyper- and hypomethylated genes specific to ZPMetGHv2a-1B. B) PANTHER-based 

annotation of hyper- and hypomethylated genes based on biological and molecular functions 
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Figure 4: A) Correlation between the number of variants and gene length. B) Correlation between the number of 

CpGs and gene length. C) Intersection of s2-specific gene variants and prioritized methylated genes specific to 

ZPMetG-Hv2a-1B. 
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Figure 5:  Classification and variant information specific to ZPMetG-Hv2a-1B. A) Chromosome-wise distribution 

of variants across the CpG region of differentially methylated genes specific to ZPMetG-Hv2a-1B. B) Variant count 

per gene for genes specific to ZPMetG-Hv2a-1B. 
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Figure 6: Biochemical targets (Reactome) and pathway association (STRING) of ZPMetGHv2a-1B (recent) 

variants occurring at the CpG site (exact). 
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Figure 7: Biochemical targets (Reactome) and pathway association (STRING) of ZPMetGHv2a-1B (recent) 

variants occurring at the CpG window region (inexact). 

 


