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Abstract
Chimeric antigen receptor (CAR)-T cell therapy has been highly 

successful in the treatment of hematological malignancies, yet its 
effectiveness in solid tumors remains limited. To develop CAR-T cell 
therapy for solid tumors, identifying new target antigens is crucial. NKp46, 
a critical natural cytotoxicity receptors (NCRs) on NK cells, play a pivotal 
role in their antitumor function. Interaction between NKp46 and its ligands 
activates NK cells, prompting the release of antitumor effector molecules. 
We found that NKp46 ligands (NKp46L) were specifically expressed in 
various tumor cells but absent in normal tissue cells, warranting further 
investigation. Consequently, we have developed novel second-generation 
CAR constructs featuring NKp46 extracellular immunoglobulin-like 
structural domains and demonstrated their in vitro cytotoxic activities 
against tumor cells. In conclusion, NKp46-based chimeric antigen receptors 
show promise in cancer immunotherapy but require further explorations.
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Introduction
Cancer has emerged as a significant threat to human health, necessitating 

the pursuit of innovative treatments. In recent years, chimeric antigen receptor 
(CAR)-T cell therapy, a notable emerging from of cancer immunotherapy, has 
garnered substantial research attention as a potential cancer treatment. It now 
stands as the fourth major treatment modality for tumors, alongside surgery, 
radiotherapy and chemotherapy [1]. Globally, several CAR-T cell products 
have been approved for clinical use in treating tumors; however, these 
primarily target CD19 or BCMA and are exclusively used for hematological 
cancers [2]. While research of target antigens for CAR-T cell therapy is 
extensive, the majority focuses on tumor-associated antigens (TAAs) that are 
overexpressed in tumor tissues but present in low levels in normal tissues. 
Tumor-specific antigens (TSAs), which are exclusively overexpressed in 
tumors and absent in normal tissues, are exceptionally scarce, thus hampering 
the safety and efficacy of CAR-T cell therapy [3]. Therefore, discovering 
novel target antigens for CAR-T cells holds immense promise for advancing 
cancer therapy. Natural killer (NK) cells are belong to the lymphocytes of 
the innate immune system in the body, which possesses the capability to 
recognize tumor cells and virus-infected cells, directly attacking these cells 
and participating in the regulation of various cellular immune responses [4]. 
NK cells primarily execute their functions through the expression of activating 
receptors that identify their ligands, thereby mediating antitumor immunity. 
These activating receptors consist mainly of CD16, NKG2D, and natural 
cytotoxicity receptors (NCRs), which include NKp30, NKp44, and NKp46 
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[5]. When these activating receptors on NK cells (NK) are 
stimulated, they can kill infected, cancerous and stressed cells 
[6]. A significant proportion of NK cells and some innate 
lymphoid cells (ILCs) express the activating receptor NKp46, 
encoded by the NCR1 gene, which is the most evolutionarily 
conserved NK cell receptor [7, 8]. The NKp46 receptor is 
a vital component of the immune system, particularly in 
recognizing and eliminating infected or transformed cells [9]. 
Studies have indicated that blockade of NKp46 impairs the 
tumoricidal effect of NK cells [10]. NKp46 is a crucial NCR 
on NK cells, and its expression levels are closely linked to the 
progression of various immune-related diseases, including 
viral infections and tumors [11]. During the recognition and 
attack of tumor cells by NK cells, NKp46 interacts with its 
ligands, activating NK cells and prompting them to release 
various antitumor effector molecules [12]. Previous study 
has shown that NKp46 recognizes externalized calreticulin 
(ecto-CRT), which translocate from endoplasmic reticulum 
(ER) to the cell membrane during ER stress. This recognition 
plays a pivotal role in the immune response against cancer 
cells and viral infection, such as Zika virus (ZIKV) infection. 
Furthermore, NKp46 recognition of ecto-CRT also controls 
the invasion of B16 melanoma and RAS-driven lung cancer in 
mice, suggesting its critical role in controlling tumor growth 
and viral infection by enhancing NK cell degranulation and 
cytokine secretion [13].

Although recent study has confirmed that ecto-CRT serve 
as an endogenous ligand for NKp46, playing a pivotal role 
in NK cell recognition, viral infection control, ER stress 
alleviation, and senescent cell elimination, and the control 
of melanoma and lung cancer in mice, a comprehensive 
exploration of ecto-CRT expression in human tumors and 
its function in tumor control is still lacking. In addition, the 
discovery of eco-CRT was made in a model of Zika virus 
infection, not within tumor cells, suggesting the existence 
of other tumor-associated ligands beyond eco-CRT that 
remained unexplored. The identification of ecto-CRT, along 
with potential undiscovered ligands for NKp46, holds promise 
for advancing NKp46-based CAR-T cell therapies. Currently, 
reported CAR-T cell therapies leveraging NK cell-activated 
receptors encompass CD16 CAR-T [14], NKG2D-based 
CAR-T [15], NKp30-based CAR-T [16], and NKp44-based 
CAR-T [17]. However, NKp46-based CAR-T cell therapies 
have yet to been reported, and the antitumor effects of such a 
therapy remain uncertain and warrants further investigation.

Materials and Methods
Cell Lines and Cell Culture

Unless specified otherwise, all cell lines were obtained 
from the American Typical Culture Collection (ATCC, 
Manassas, VA, USA), including lung cancer cells (A549, Calu-
3), hepatocellular carcinoma cells (Huh-7, HepG2, Hep3B), 
myeloid leukemia cells (Kasumi-1, K562), lymphoma cells 

(Raji, Daudi, SU-DHL-2,), acute B-lymphoblastic leukemia 
cells (SUP-B15, NALM6), osteosarcoma cells (H929, U266, 
KMS-2), glioblastoma cells (SF268), esophageal carcinoma 
cells (KYSE150), breast cancer cells (ZR-75-1) colorectal 
cancer cells ( HCT116, RKO), head and neck cancer 
cells (SCC47), oral squamous cell carcinoma (SCC090), 
cervical cancer cells (SiHa), and human embryonic kidney 
cell (HEK293T). These cells were maintained at 37°C in a 
humidified atmosphere of 95% air and 5% CO2. They were 
cultures in DMEM or RPMI1640 medium (Corning, USA) 
supplemented with 10% fetal bovine serum (FBS; Corning, 
USA), and 1% Penicillin-Streptomycin-Neomycin-Solution 
(PSN; Yeasen, China).

Construction and Preparation of NKp46-based 
CAR-T Cells

The construction and preparation of NKp46-based 
CAR-T cells involved multiple steps, including gene 
synthesis, plasmid construction, lentiviral preparation, T-cell 
activation, lentiviral transduction, CAR-T cells expansion 
and phenotypic analysis. The brief protocol outlines are as 
follows:

(1)	The extracellular region of NKp46 was applied to 
construct the second-generation CAR incorporating 
4-1BB costimulatory domain and CD3ξ signaling 
domain. Various NKp46-based CARs were genetically 
synthesized and cloned into the lentiviral expression 
plasmid (pLV-EF1α-MCS-P2A-EGFP), ultimately 
yielding the recombinant lentiviral expression plasmid;

(2)	The recombinant lentiviral expression plasmid, along 
with psPAX2 and pVSVG helper plasmids, were co-
transfected into HEK293T cells to package the lentiviral 
vectors;

(3)	Peripheral blood mononuclear cells (PBMC) were 
cultured in serum-free X-VIVO15 medium (Lonza, 
USA), supplemented with 50 IU/mL interleukin-2 (IL-2), 
5 ng/ml recombinant human interleukin-7 (IL-7), and 10 
ng/ml interleukin-15 (IL-15) (Novoprotein, China). These 
PBMCs were pre-activated using CD3/CD28 antibody-
coated magnetic beads for a period of 72 hours;

(4)	Following pre-activation, lentiviral vectors were 
introduced to the T cells through centrifugation at 
1000×g, for 1.5 hours at 32°C. The culture medium was 
then replaced with fresh medium the next day;

(5) After a 10-14 day expansion period, the NKp46-based 
CAR-T cells were harvested and their CAR expression 
levels were assessed using flow cytometry.

Flow Cytometry Analysis
The expression levels of NKp46 ligands (NKp46L), 

NKp46-based CARs and surface markers were detected 
utilizing BD FACSymphony A3 flow cytometer (BD 
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Biosciences, USA). The reagents used were as follows PE 
Streptavidin, Pacific Blue anti-human CD335 (NKp46) 
antibody, PE anti-human IgG Fc antibody (Biolegend, USA), 
CoraLite® Plus 647-conjugated calreticulin Polyclonal 
antibody, CoraLite® Plus 647-conjugated Rabbit IgG control 
Polyclonal antibody (Proteintech, USA), recombinant Human 
NKp30/NCR3 (C-Fc), recombinant human NKp46/NCR1 
(C-Fc), recombinant Human NKG2D (N-Fc) (Novoprotein, 
China), and biotinylated-recombinant human NKp44/NCR2 
Protein (His Tag) (SinoBiological, China). One million cells 
were harvested from culture flasks and then washed twice 
with cold FACS buffer (PBS containing 0.02% FBS). These 
cells were centrifuged at 400×g for 5 minutes. Subsequently, 
these cells were stained with indicated antibodies or 
recombinant proteins for 20 minutes at room temperature. 
Following, staining, the cells underwent a single wash with 
FACS buffer, were resuspended in 300 μL of same buffer, 
and then subjected to flow cytometric analysis. The collected 
data were subsequently analyzed using Flowjo version 10.0 
software.

Cytotoxicity Assay of NKp46-based CAR-T Cells
For the cytotoxicity assay, we utilized Cell Counting Kit-8 

reagent (CCK-8; MCE, USA) to evaluate the cytolytic activity 
against cancer cells. Specifically, tumor cells (1.5×104 cells) 
and NKp46-based CAR-T cells were plated in flat-bottomed 
96-well plates at the indicated effector-to-target (E: T) ratios. 
These plates were then incubated for 24 hours under standard 
conditions of 37°C and 5% CO2. At the end of incubation, the 
supernatant was discarded, and the cells were gently washed 
twice with 1×PBS. Subsequently, 100 μL of fresh medium 
was added to each well, followed by the addition of 10 μL of 
CCK-8 reagent. The optical density (OD) of each well was 
then measured at a wavelength of 450 nm using a Varioskan 
LUX multi-mode microplate reader (ThermoFisher 
Scientific, USA). The control groups comprised a tumor-only 
group and a medium-only group. To quantify the percentage 
of cytotoxicity, we assessed the proportion of live cells in 
each experimental condition. The percentage of specific 
lysis (cytotoxicity (%)) was calculated using the following 
formula: cytotoxicity (%) = (1 - (the experimental group (OD 
value) – the medium-only group (OD value)) / (the tumor-
only group (OD value) – the medium-only group (OD value)) 
× 100.

Statistical Analyses
Statistical analyses were conducted utilizing GraphPad 

Prism version 8 software. To evaluate he statistical 
significance of differences between two groups, the Student's 
t-test was utilized. For comparisons encompassing three or 
more groups, a one-way ANOVA was employed. Statistical 
significance was assigned to all values with a p-value less 
than 0.05, denoted as follows: *p < 0.05, **p < 0.01, ***p < 
0.001, and ****p < 0.0001.

Results 
Expression Levels of Ligands for NCRs and NKG2D 
in Cancer Cells

It has been demonstrated that the activated receptors of 
NK cells predominantly encompass NKp46, NKp44, NKp30, 
and NKG2D. Currently, CAR-T cell therapies leveraging 
NK cell activation receptors include NKG2D-based CAR-T, 
NKp30-based CAR-T, and NKp44-based CAR-T, whereas 
NKp46-based CAR-T remains unreported. To explore 
novel potential ligands for NK cell activation receptors on 
tumor cells, we attempted to detect potential ligands on 
tumor cells using recombinant human NKp30-Fc, NKp44-
Biotin, NKp46-Fc, and NKG2D-Fc. The findings revealed 
that NKp46 ligands were ubiquitously expressed across 
various tumor cells, notably lung cancer cells (A549, Calu-
3), hepatocellular carcinoma cells (HepG2, Hep3B), myeloid 
leukemia cells (K562), and lymphoma cells (Raji). Notably, 
the positive rate of NKp46 ligands (NKp46L) was more than 
90% in lymphoma cells. Furthermore, NKG2D ligands are 
also expressed to varying degrees in these cancer cells, with 
MICA/B and ULBP1/2/3 reported as endogenous ligands for 
NKG2D [15,18]. However, no ligands binding to NKp44 or 
NKp30 were detected in any of the aforementioned cancer 
cells (Figure 1).

Comparison of NKp46 and NKG2D Ligands in 
Hematological and Solid Tumors

After initial screening, NKp46 and NKG2D ligands 
displayed significant expression across multiple cancer cell 
lines, prompting an expanded investigation into various 
tumor types. Initially, we conducted a NKp46 and NKG2D 
ligand assay on prevalent hematological cancer cells. The 
results indicated robust expression of NKp46L in lymphoma 
cells, notably in diffuse large B-cell lymphoma (DLBCL: SU-
DHL-2) and Burkitt's lymphoma (Raji, Daudi). Conversely, 
NKp46L was scarcely detected in acute B-lymphoblastic 
leukemia cells (SUP-B15, NALM6). NKp46L was found 
expressed in some certain leukemia cells (Kasumi-1, K562) 
and osteosarcoma cells (U266, KMS-2). Meanwhile, NKG2D 
ligands (NKG2DL) were selectively expressed in specific 
acute B-lymphoblastic leukemia cells (NALM6), myeloid 
leukemia cells (Kasumi-1, K562), and osteosarcoma cells 
(H929, U266, KMS-2) (Figure 2A). Next, we extended our 
analysis in common solid tumor cells. Our results revealed 
that NKp46L was expressed in lung cancer cells (A549, Calu-
3), hepatocellular carcinoma cells (Huh-7, HepG2, Hep3B), 
glioblastoma cells (SF268), esophageal carcinoma cells 
(KYSE150), and breast cancer cells (ZR-75-1). However, 
it was absent in colorectal cancer cells (HCT116, RKO), 
head and neck carcinoma cells (SCC47), oral squamous 
cell carcinoma (SCC090), and cervical cancer cells (SiHa). 
NKG2DL was expressed in some lung cancer cells (A549), 
hepatocellular carcinoma cells (Huh-7), glioblastoma cells 
(SF268), esophageal carcinoma cells (KYSE150), breast 
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cancer cells (ZR-75-1), head and neck cancer cells (SCC47), 
oral squamous cell carcinoma (SCC090), and cervical cancer 
cells (SiHa). Additionally, a relatively low level of NKG2DL 
expression was detected in colorectal cancer cells (HCT116, 
RKO) (Figure 2B).

Tumor-associated NKp46 Ligands beyond ecto-CRT
Prior experimental findings have established that NKp46 

and NKG2D ligands exhibit differential expression patterns 
across various hematological and solid tumors. Notably, 
B-cell lymphoma stands out with elevated levels of NKp46L 

 Figure 1: Expression levels of ligands for natural cytotoxicity receptors (NCRs) and NKG2D in various cell lines. (A) Expression levels 
of ligands for NKp30, NKp44, NKp46 and NKG2D in lung cancer cells (A549, Calu-3), hepatocellular carcinoma cells (HepG2, Hep3B), 
myeloid leukemia cells (K562), and lymphoma cells (Raji). (B) Statistical plots of the expression levels of NKp46 and NKG2D ligands in 
cancer cell lines.

 
Figure 2: Expression levels of NKp46 and NKG2D ligands in hematological and solid Tumors. (A) Expression levels of NKp46 and NKG2D 
ligands in hematological cancers. (B) Expression levels of NKp46 and NKG2D ligands in solid tumors.
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expression. To delve deeper into the specificity of NKp46L 
expression in lymphoma versus its absence in normal 
tissues, we conducted an analysis involving peripheral blood 
mononuclear cells (PBMCs) sourced from both lymphoma 
patient and healthy donor. Through assays targeting NKp46 
and NKG2D ligands assay, we observed strong staining 
signals in PBMCs from lymphoma patient, indicative of high 
NKp46L expression in primary lymphoma cells. Conversely, 
PBMCs from healthy individual showed no expression 
of NKp46L, highlighting its tumor-associated specificity 
(Figure 3A). Despite the robust NKp46L expression in 
B-cell lymphomas, its classification as a novel ligand for 
NKp46 remained unconfirmed. Recent study has illuminated 
externalized calreticulin (ecto-CRT) as an endogenous ligand 
for NKp46, functioning as a danger-associated molecular 
pattern that aids NK cells in recognizing and eliminating 
infected, malignant, stressed or senescent cells [9]. To 
ascertain whether the identified NKp46 ligands in lymphoma 
cells (Raji and Daudi) were indeed ecto-CRT, we utilized an 

anti-human CRT antibody. However, our findings revealed 
no significant expression of ecto-CRT in either Raji or Daudi 
cells, contrasting sharply with the results obtained using the 
recombinant NKp46 protein (Figure 3B). This discrepancy 
underscores the existence of novel NKp46 ligands beyond 
ecto-CRT and necessitates a comprehensive screen of tumor 
cells to identify these new ligands. In summary, NKp46L 
emerges as a promising new tumor target antigen, exhibiting a 
distinct expression profile that does not overlap with NKG2D 
ligands. It is predominantly expressed in B-cell lymphomas 
and is absent in normal lymphocytes, while also showing 
upregulation in solid tumors, including lung, liver, and breast 
cancers.

The Successful Expression of NKp46-based CARs 
on Primary T Cells

Based on prior experimental findings, we hypothesized 
that NKp46 ligands could represent novel potential targets 
for cancer therapy, and CAR-T cells targeting these ligands 

 
Figure 3: Existence of potential NKp46 ligands beyond ecto-CRT. (A) Expression of NKp46 and NKG2D ligands in lymphoma patient (left) 
and healthy donor (right). (B) Expression of ecto-CRT in lymphoma cell lines.

might exhibit antitumor effects. Using the extracellular domain 
(ECD) of NKp46 as the recognition module for CARs, we 
designed four different second-generation CAR constructs, 
each incorporating the NKp46 ECD along with 4-1BB 
costimulatory domain and CD3ζ signaling domain (Figure 
4A). These constructs were then introduced into primary T 
cells via lentiviral vectors to generate CAR-T cells. Flow 
cytometric analysis revealed that CAR variant featuring the 
transmembrane region of NKp46 (NKp46-TM-BBz) failed to 
stably express on T cells, while NKp46-based CARs with the 
CD8 transmembrane region could be successfully expressed 
on T-cell membrane (Figure 4B, C).

In Vitro Cytotoxicity of NKp46-based CAR-T Cells 
Against Tumor Cells

To further assess the antitumor capabilities of NKp46-

based CAR-T cells, we conducted a preliminary test to 
evaluate their tumor-killing effects. Expanded NKp46-
based CAR-T cells were co-incubated with lung cancer cells 
(A549) at effector-to-target ratio of 1:2, 1:1, and 2:1 for a 
duration of 24 hours to measure their cytotoxic activities. 
The results from the cytotoxicity assays indicated that the 
various NKp46-based CAR-T cells exhibited different levels 
of efficacy in killing cancer cells. Notably, two of the NKp46-
based CARs demonstrated comparable cytotoxicity against 
cancer cells. However, modifications such as replacing the 
NKp46 transmembrane region or deleting the NKp46 hinger 
region significantly impaired cytotoxic activity. These 
findings suggest that NKp46-based CAR-T cells possess  
in vitro antitumor effects, warranting further investigation 
into their in vivo antitumor efficacy.
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Figure 4: The construction and preparation of NKp46-based CAR-T cells. (A) Four different NKp46-based CAR constructs were designed 
using the NKp46 extracellular domain (ECD) as the CAR recognition module. (B) Flow cytometric analysis of NKp46-based CAR expression 
in T cells. (C) Statistical plots of CAR positive rate (upper panel) and mean fluorescence intensity (MFI) (lower panel) of NKp46-based CAR-T 
cells. Statistical significance was assigned to all values with a p-value less than 0.05, denoted as follows: *p < 0.05.

Figure 5: The Killing effect of NKp46-based CAR-T cells on lung cancer cells. Statistical plots of cytotoxicity of NKp46-based CAR-T cells 
against cancer cells. Statistical significance was assigned to all values with a p-value less than 0.05, denoted as follows: *p < 0.05, **p < 0.01.

Discussion
In this study, we initially employed recombinant proteins 

of NKp30, NKp44, NKp46, and NKG2D, binding to potential 
ligands present on diverse tumor cells. Subsequently, we 
narrowed our focus to conduct an expanded expression 
analysis specifically for NKp46 ligands across various 
tumor cell lines. Our findings revealed that NKp46 ligands 

are expressed on both hematological and solid tumors, 
with notably higher expression levels observed in B-cell 
lymphomas. By comparing these ligands with those already 
known, we excluded the possibility that the tumor-expressed 
ligand was externalized calreticulin (ecto-CRT). This suggests 
the presence of novel, yet undiscovered NKp46 ligands on 
tumor cells, potentially heralding new therapeutic targets for 
cancers. Subsequently, we constructed four distinct NKp46-
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based CARs, utilizing the extracellular domain of NKp46 as 
the antigen recognition module. We then generated CAR-T 
cells through lentiviral transduction of T cells and examined 
the expression profiles and in vitro antitumor efficacy of 
NKp46-based CAR-T cells. From this screen, we identified 
the most promising constructs. However, further exploration 
is warranted to delineate the specific NKp46 ligands expressed 
on tumor cells and refine the design of NKp46-based CAR-T 
cells for optimal therapeutic outcomes.

Four main lysis receptors have been identified in NK cells, 
including human CD16 and the natural cytotoxicity receptors 
NKp46, NKp44, and NKp30, which play a pivotal role in 
modulating tumor progression through their interaction 
with molecules featuring immunoreceptor tyrosine-based 
activation motifs (ITAMs) [19]. NKp46 stands as the 
first natural cytotoxicity receptor discovered in NK cells. 
It is constitutively expressed on the surface of NK cells, 
irrespective of their activation status, and its expression level 
is intricately linked with viral infections and tumor invasions 
[12, 20]. NKp46, alternatively known as natural cytotoxicity 
receptor 1 (NCR1), is encoded by the NCR1 gene. It is a ~46 
kDa Type 1 transmembrane protein and a member of the 
immunoglobulin superfamily. Across mammals, NKp46 is 
highly conserved and comprises two extracellular C2-type 
Ig-like domains, followed by a stalk region, and it associates 
with CD3ζ or FcRγ at the cell membrane [21, 22]. To date, 
most of the known ligands for NKp46 are derived from 
pathogen products, such as influenza virus haemagglutinin 
[23], herpes simplex virus ICP0 [24], fungal adhesins [25], 
an undefined surface ligand on pancreatic β cells [26], and 
soluble complement factor P [27]. Furthermore, NKp46 
recognizes monocytes infected with mycobacterium 
tuberculosis by waveform proteins, and a 57-kDa molecule, 
vimentin, has been identified as a ligand for NKp46 via mass 
spectrometry [28]. Recent study has validated ecto-CRT 
as an endogenous ligand for NKp46, which is involved in 
NK cell recognition and control of Zika virus infection, the 
removal of endoplasmic reticulum stress, and senescent cells. 
However, this study did not delve into the expression of ecto-
CRT in human tumors or its role in human tumor control 
[13]. Therefore, further validation is imperative to ascertain 
whether the identified ligand is a potential tumor-associated 
ligand for NKp46 and to explore the existence of other, yet-
to-be-identified, tumor-associated ligands.

In summary, despite the existence of several studies on 
NKp46 ligands, which have identified specific candidates, 
these findings have yet to be confirmed at the tumor cell level. 
Our research revealed that NKp46 ligands are ubiquitously 
expressed in both hematologic malignancies and solid 
tumors, while their expression in normal tissue cells is 
scare. We utilized the potential interaction between NKp46 
and ligands naturally expressed by tumor cells to identify 
tumor-associated ligands for NKp46. These ligands may 

differ from the currently discovered ecto-CRT, necessitating 
further investigation to pinpoint specific ligands. In addition, 
CAR-T cells engineered to target NKp46 ligands exhibit anti-
tumor activity in vitro. However, the variations in anti-tumor 
efficacy among theses NKp46-baed CAR-T cells require 
more in-depth exploration, particularly in vivo studies to 
assess their therapeutic potential.

Conclusion
Through this study, we have discovered the existence of 

novel ligands for NKp46 on tumor cells, distinct from ecto-
CRT. Our findings reveal that NKp46-based CAR-T cells 
exhibit significant anti-tumor effects on certain solid tumors. 
This suggests that these newly identified NKp46 ligands may 
represent a promising new target for cancer therapy, with the 
potential to advance the development of targeted CAR-T cell 
therapies. By providing candidate therapeutic targets for both 
antibody-based and cellular therapies targeting tumors, we 
anticipate facilitating the creation of new drugs that address 
these targets, ultimately benefiting patients with various 
types of cancer. As our next step, we plan to use recombinant 
NKp46 protein to specifically bind the NKp46 ligands 
present on tumor cells. Following this, we will employ 
immunoprecipitation coupled with mass spectrometry to 
determine which ligands interact with NKp46. Additionally, 
we will further validate the identity of these potential ligands 
of NKp46 through the use of NKp46- blocking antibodies or 
CRISPR-Cas9 knockdown assays.
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