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Abstract
Accurate measurement of water concentration in various common 

solvents presents significant challenges due to the limitations of 
traditional detection methods, including low throughput and high costs. 
This study introduces a novel thermal detection technique, the LiquiSensor 
probe, designed for low-cost, rapid, and accurate quantification of 
water concentration in ethanol. The measurement principle utilizes 
differential thermal responses across a range of water concentrations 
(0-30%) in ethanol, combined with a reverse interval partial least 
squares (iPLS) regression model. In blind benchtop trials, 
LiquiSensor demonstrated accuracy within <1% of the actual water 
concentrations, with a standard deviation of 0.107%, indicating 
excellent precision, and a measurement time of only 10 minutes for 
multiple readings (with potential for reduction). This rapid response 
time, coupled with high accuracy and precision, presents significant 
opportunities for in-situ process monitoring as well as benchtop quality 
control.
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Introduction
Accurate quantification of the concentration of water in solvents is critical 

across a wide range of industries, including fuel production, fine chemicals 
manufacturing, and pharmaceutical development. In these sectors, minor 
deviations in water content can significantly impact production. For example, 
water concentration can affect the reaction yield or production rate of active 
pharmaceutical ingredients (APIs) [1], lead to the formation of undesirable 
by-products, alter the selectivity of extraction processes, and equilibrium 
parameters [2]. Consequently, precise and reliable measurement of water 
in solvent mixtures is essential for maintaining product quality and process 
efficiency. Several techniques currently exist to measure water concentration 
in solvents, including Karl Fischer titration [3], [4], infrared (IR) spectroscopy 
[5], [6], [7], and nuclear magnetic resonance (NMR) spectroscopy [8], [9]. 
Karl Fischer titration is the most prolific methods due to its relatively high 
accuracy and specificity for water detection [10]. However, it is non-portable 
and a time-consuming - taking 10 minutes per reading via the standard 
method - labor-intensive process that requires regular calibration and reagent 
preparation, making it less suitable for real-time, on-line monitoring in 
industrial settings [11], [12]. IR spectroscopy offers a non-invasive, rapid 
technique to measure water content, utilizing the strong absorbance of 
water in the infrared region [13]. While faster than Karl Fischer titration, 
IR spectroscopy is prone to interference from other solvent components and 
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may suffer from reduced accuracy at lower concentrations; 
although [7] demonstrated a standard deviation of <0.2% for 
water-ethanol concentrations of 1-19%. NMR spectroscopy, 
although being highly precise, is often too expensive and 
complex for routine use in many industrial applications, as 
it requires specialized equipment and expertise. Despite the 
availability of these techniques, many present significant 
challenges for widespread industrial adoption. Some, like 
NMR, are prohibitively expensive, while others, such as Karl 
Fischer titration, are not practical for continuous monitoring 
in dynamic process environments. These limitations highlight 
the need for a cost-effective yet accurate sensor capable of 
real-time monitoring in industrial conditions. The focus of 
this research is to address the identified gap by developing a 
process sensor capable of discriminating liquid concentrations 
in a binary solvent system. Specifically, the research aims to 
detect and quantify water concentration in ethanol across a 
range of representative concentrations. The performance of 
the sensor has been evaluated in terms of accuracy, precision, 
bias, and linearity. The authors seek to contribute to the 
development of more affordable and effective monitoring 
tools for industrial applications.

Sensor Background & Theory
Sensor Design & Data Acquisition

At the core of the sensor’s design is a cylindrically 
symmetrical active portion, engineered to produce a radially 
uniform heat flux. Achieved by applying an electrical square 
wave pulse, which causes controlled heat dissipation 
into the surrounding sample material. The rate at which 
heat dissipates varies depending on the chemical 
composition of the sample, reflecting the thermal properties 
of the substance. Specifically, changes in heat dissipation 
correspond to variations in thermal properties such as 
thermal conductivity and specific heat capacity. These 
thermal interactions result in a distinct temperature profile, 
or trace, along the sensor’s sleeve. To capture thermal 
response, an embedded temperature sensor is strategically 
placed within the sensor assembly. The sensor 
continuously monitors the temperature changes during and 
after the pulse, providing a real-time temperature trace. 
Data is transmitted to a proprietary processing box - 
connected to and powered by a data acquisition laptop via 
USB-C - which interfaces with bespoke data acquisition 
and analysis software. The software processes the recorded 
temperature traces, which are entered into a statistical model 
which produces a concentration prediction. This process is 
captured in Figure 1.

Measurement & Modelling Principles
The primary analytical parameter that characterises 

the difference between various sample compositions is the 
thermal product, also known as thermal effusivity. Effusivity 

is a material property that quantifies a material’s ability to 
exchange heat with its surroundings. It describes how readily 
a material absorbs or rejects heat and is mathematically 
defined as

pe C kρ=        (1)

where ρ is the material’s density, Cρ is the specific heat 
capacity, and k is the thermal conductivity. Together, these 
factors determine the rate at which a material responds 
to thermal changes, making thermal effusivity a key 
characteristic in understanding the thermal interaction 
between the sensor and its environment. A commonly used 
method for measuring thermal effusivity involves exciting a 
thin metallic strip on a semi-infinite substrate with an electrical 
square wave pulse. This method is based on fundamental 
work by [14] for instrumentation measuring transient heat 
flux in hypersonic short-duration facilities, which was 
adapted by multiple authors including [15], [16], [17] to 
measure thermal effusivity and other properties correlated 
with material characteristics. The temperature response of the 
material under these conditions is governed by the 1D heat 
conduction equation, which models the temperature change 
over time and space.
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where  is known as the thermal diffusivity. 
Applying a series of semi-infinite assumptions, Laplace 
transforming, solving for the transfer function, multiplying 
by the Heaviside step function, and transforming back into 
the time domain produces equation (3) relating the heat flux  
( ) to the thermal effusivity via the temperature change from 
initial to final ( ):
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Figure 1: Simplified representation of the LiquiSensor measurement 
process, highlighting the core measurement principle.
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LiquiSensor extends the traditional approach to thermal 
product measurement by interrogating both the heating and 
cooling phases of the process. Instead of focusing solely 
on the resistance change during the electrical pulse as in 
the conventional methods, LiquiSensor captures the full 
temperature trace across both phases, allowing for a more 
comprehensive analysis of the thermal behaviour of materials 
and their corresponding thermal properties. Unlike previous 
methods that rely primarily on analytical or regression-
based models for interpreting thermal data, LiquiSensor 
adopts a chemometric approach. Chemometrics refers to 
the application of mathematical and statistical techniques 
to extract useful information from complex chemical data. 
This approach enables a more nuanced interpretation of the 
temperature traces by accounting for the multidimensional 
nature of the data and identifying underlying patterns that are 
not evident with traditional analysis methods. Futhermore, 
the method enables the creation of predictive models that 
can be used to correlate thermal data with specific material 
properties, including composition, phase changes, and 
reaction kinetics. Such predictive capabilities are invaluable 
in industrial settings, where real-time monitoring and rapid 
decision-making are critical. By combining thermal effusivity 
with advanced data analysis techniques, LiquiSensor 
represents a significant advancement in the field of thermal 
product measurement. It not only builds on the established 
principles of heat dissipation and temperature monitoring 
but also integrates cutting-edge statistical methods to extract 
more meaningful insights from the data.

Material and Methods
Sample Preparation

Absolute ethanol (ReAgent Ethyl Alcohol) and purified 
water (Pure Klenz Purified Water EP) were used to create 
the model samples detailed in Table 1 by-weight, using a 
4-place analytical balance (Kern ADB100-4A). Each sample
was measured into a laboratory container (Duran GLS 80)

and fitted with a sealed lid containing an access port (Duran 
GL18 Insert). This port enabled quick insertion/removal of 
the LiquiSensor probe with minimal sample disturbance, 
preventing evaporation of ethanol altering the actual sample 
concentrations. No pre-conditioning drying step of the 
ethanol was performed before testing.

Testing Procedure
Samples were tested on the bench non-sequentially to 

eliminate any bias introduced via testing order. The testing 
procedure involved inserting the LiquiSensor probe through 
the access port and connecting the electronics box to the 
LiquiSensor probe via the 'connector hub'. A test was then 
initiated via PrOXisense’s data acquisition and analysis 
software, using a 1 second sample pulse length at a sample 
rate of 100 Hz. This pulse is repeated 10 times, with a gap 
between pulses of 60 seconds and a 25 seconds sample 
window. After test completion, the LiquiSensor probe was 
removed from the sample and thoroughly cleaned with 
isopropyl alcohol (Trade Chemicals), a lint-free wipe (kuou), 
and compressed air (Anker). This process was repeated for 
all model samples tested. To validate measurement system 
accuracy, a set of blind samples - prepared in the same manner 
as the initial model samples, but without the operator having 
prior knowledge of their concentrations - was performed. 
The predicted concentrations from the model were compared 
to the actual concentrations of these blind samples to assess 
the model’s predictive accuracy.

Data Processing & Analysis
Inspection, initial analysis, and data cleaning/formatting 

such as delta normalisation from the starting environmental 
temperature were performed at this point using MATLAB 
R2022a (Mathworks) to minimise absolute baseline variation. 
The data was loaded into Solo 9.1 (Eigenvector Research 
Inc.) where the bulk of the model processing occurred. The 
data was labelled and pre-processed via mean-centring and 
a 1st derivative point treatment to highlight subtle gradient 

Sample # Ethanol Concentration (%, w/w) Water Concentration (%, w/w)

1 100 0

2 98 2

3 96 4

4 94 6

5 92 8

6 90 10

7 85 15

8 80 20

9 75 25

10 70 30

Table 1: Ethanol-water concentrations for each sample number tested.
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differences. The first pulse in each sequence of 10 was 
omitted, as it was considered a ’warm-up’ pulse to establish 
an appropriate temperature gradient within the active portion 
and (during pre-trials) decreased measurement accuracy. A 
reverse iPLS (interval partial least squares) regression was 
performed, with a specified interval size of 100 samples, 
automatic step size, and automatic interval number. Cross-
validation was performed using a Venetian blinds scheme 
(n = 9). Metrics such as RMSECV and R-Squared were 
automatically calculated by Solo 9.1 for the model produced. 
The blind samples were subsequently processed as described 
above. Metrics comparing the actual blind concentrations 
and their respective predicted concentrations were 
calculated. Performance metrics such as standard deviation 
as an indicator of precision were performed using MATLAB 
R2022a (Mathworks).

Results & Discussion
Raw Temperature Traces

Figure 2 shows the mean average temperature trace of 
each sample over time.

The thermocouple temperature rises from a starting point 
of ∆T = 0°C at t = 0s to approximately ∆T = 15°C at t = 1s as 
a result of resistive heating from the electrical square wave 
pulse. The sensor input power and duration were chosen in 
previous testing to elicit a consistent ∆T = 15°C temperature 
rise in water, therefore these trace characteristics confirm the 
chosen sensor was repeatable and functioned as intended. 
Relying on visual inspection alone, the heating portion of 
the trace appears identical for all tested samples. As the 
thermocouple temperature decays in the cooling portion, 
the trace for each sample diverges from t = 1s − 6s; during 
which a clear pattern of higher concentration ethanol samples 
decaying slower than lower concentration ethanol samples is 
clearly noticeable. This trend aligns with the solvents relative 
thermal effusivity as seen in Table 2, with the trace separation 
at t = 4s − 7s being approximately linear with sample ethanol 
concentration levels. From this correlation it is clear that this 
technique may hold predictive power; however in order to 
refine and quantify this, additional statistical processing was 
required.

Baseline Statistical Model
The reverse iPLS analysis approach allowed for a 

more focused analysis of the most relevant temperature 

Figure 2: Above: Raw thermocouple temperature against time for 
different EtOH-Water sample concentrations; Below: Zoom-in on t = 
4s - 7s where the traces begin to noticeably diverge.

trace regions, reducing model complexity, improving 
interpretability, and predictive power. The advantages can be 
clearly seen in Figures 3 - 4, which detail the temperature 
trace regions giving rise to the greatest sample variation and 
the weightings of each latent variables (LVs) time-point in 
the temperature trace, respectively.

Figure 3 indicates that selecting a window of t = 1s − 3s 
(inflection region) and t = 6s − 7s (separation region) gave 
the superior prediction (i.e. the lowest RMSECV for a 100 
sample interval) after an exhaustive search. The regions 
identified have either clear temperature trace characteristics 
or can be linked to the environments thermal characteristics:

Inflection Region - Inclusion of this region is likely linked 
to the physical mechanism of capturing transient varia tion 
in thermal inertia. The short duration after abruptly ending 
the electrical heating pulse could amplify thermal effusivity 
differences of the sensor’s environment. 

Separation Region - The sample temperature traces show 
the greatest variation and linearity later in the pulse; 
therefore, this is a logical inclusion in the model. This is the 
region of the temperature trace where the difference in the 
temperature ’driving-force’ over time between each sample

Material Mass Density (kg/m3) Isobaric Specific  
Heat Capacity (J/kg°C)

Thermal Conductivity 
(W/m°C)

Thermal Effusivity 
(J/m2s0.5°C)

Water 1000 4.18 0.6 50.1

Ethanol 791 2.49 0.16 17.8

Table 2: Typical thermal properties of the test solvents at approximate standard conditions (20◦C; 1.01325 kPa)
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reached its maximum. Later periods in the pulse result in 
reduced variation as samples are cooling back to a common 
baseline environmental temperature.

Having identified possible physical mechanisms for 
the interval window selections and as a result of the short-
duration of transient thermal inertia, the model maybe 
improved by examining the effect of varying the interval 
size window. This would enable Solo 9.1 to capture shorter-
duration sample differentiating events without including 
extra time-points that do not contribute to sample variation. 
The ideal window size would be the duration of the shortest 
sample differentiating thermal event without the selected 
variable window significantly fragmenting (which would be 
indicative of fitting measurement noise). Examining Figure 
4, LV 1 accounted for the majority of the variability (as 
expected) capturing 86.84% of the observed variance. The 
weightings clearly resemble the temperature profile, which 
(in combination with the pre-processing steps) re-enforce 
that the gradient of the heating phase peak and the gradient 
at maximum divergence are critical. LV 2, LV 3, and LV 
4 accounted for 1.60%, 1.95%, and 0.35% of the variance 
respectively; which is somewhat lower than expected and is 
more challenging to interpret physically. They do however, 
contribute to a significant increase in model performance 
decreasing RMSECV from 0.1692 to 0.1502; therefore 
they have been included. Adding additional LVs does not 
significantly increase the RMSECV and can be considered 
random statistical noise.

A plot of the actual nominal EtOH concentration against 

the predicted EtOH concentration produced from the 4 LV 
regression model can be seen in Figure 5.

The model exhibited strong predictive capabilities with 
an RMSEC = 0.073, and an RMSECV = 0.150. These low 
error values demonstrate the model’s ability to generalise 
across different sample sets, indicating robust predictive 
performance. Furthermore, the model response was highly 
linear, with an R2 = 1.00 (2 d.p) for both the calibration and 
cross-validation data.

Blind Test Prediction

In the blind testing phase, the model demonstrated 
impressive prediction accuracy, with the predicted ethanol 
concentrations being within 1% of the actual nominal 
concentrations. Table 3 shows the actual and measured 
concentrations for each sample. Moreover, the standard 
deviation within individual sample repeats was 0.107%, 
highlighting the reproducibility and precision of the sensor.

One notable outcome from the analysis was the observation 
of a systematic overprediction bias. This can be corrected in 
future models by applying a bias correction factor, through 
pre-processing optimization, or the examination of the data 
via alternative modelling techniques such as support vector 
machines. However, as we are comparing the predicted 
EtOH concentration to the nominal concentration when 
calculating our measurement error, what appears to manifest 
as overprediction bias in LiquiSensor may be present in 
the samples as a result of systematic error in the analytical 

Figure 3: Windows of variables selected via the reverse interval process as giving rise to the 
greatest variation in the tested samples.
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balance and/or operator error. In future validation testing, it 
is therefore advised to test against a standard method such as 
Karl Fischer titration or IR spectroscopy with characterised 
performance to identify the magnitude of inaccuracy 
introduced.

Conclusion
The results demonstrate the effectiveness of the 

LiquiSensor sensor combined with iPLS regression in 
quantifying blind tested ethanol-water concentrations with 
high accuracy (within 1%) and precision (average 0.107%). 
The robustness and generality of the model - as indicated 
by the RMSECV of 0.150 - coupled with its strong linearity 

Figure 4: Variable weightings for LV 1 (top left), LV 2 (top right), LV 3 (bottom left), and LV 4 (bottom right). The percentage of overall 
sample variance accounted for by each LV is provided in the y-axis.

Figure 5: Nominal EtOH concentrations plotted against the EtOH predictions from the reverse iPLS model.

Sample #
Actual Ethanol  
Concentration 

(%, w/w)

Predicted Ethanol 
Concentration  

(%, w/w)

Error From 
Nominal 
(%, w/w)

1 100 100.65 0.65

2 98 98.64 0.64

3 93 93.67 0.67

4 88 88.79 0.79

5 79 79.91 0.91

Table 3: Results table detailing the error between the nominal 
concentration of EtOH and the concentration predicted by 
LiquiSensor.



Joe Kirkup, et al., Fortune J Health Sci 2025 
DOI:10.26502/fjhs.257

Citation:	Joe Kirkup, Prab Birdi, Phil Radford, Kam Chana. Development of a Novel Thermal Technique for Detection of Water in Solvents. 
Fortune Journal of Health Sciences. 8 (2025): 92-98.

Volume 8 • Issue 1 98 

(R-Squared (CV) = 1.000) suggests that, with further 
development, this approach could be highly valuable for 
real-time monitoring in-line for industrial applications as 
well as for laboratory benchtop analysis. Refinement of the 
model to correct the overprediction bias will further enhance 
performance; and examination of LiquiSensor’s predictive 
capabilities over a wider ethanol-water concentration range 
and environmental conditions are required to fully capture 
the required performance envelope. Benchmarking against a 
fully characterized technique is also recommended.
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