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Abstract
Lung cancer recurrence represents a critical determinant of patient 

prognosis, posing a significant threat to survival outcomes. The 
development of reliable recurrence prediction tools is therefore clinically 
imperative to guide therapeutic decision-making and improve both survival 
and quality of life. The model comprehensively analyzes tissue features 
from all designated regions of interest (ROIs) identified in pathological 
reports to predict lung cancer relapse probability.Validation through time-
dependent receiver operating characteristic (ROC) analysis demonstrated 
robust predictive performance. Survival analysis using semi-parametric 
Cox proportional hazards models confirmed the model's superiority over 
conventional TNM staging, with statistically significant improvements in 
AUC values (p<0.05). This prediction model exhibits substantial clinical 
translational potential, providing a valuable foundation for personalized 
treatment strategies and emerging as a novel decision-support tool for 
prognostic management.

Keywords: Deep Learning; Lung Cancer Recurrence; Survival Analysis; 
CT; HE.

Introduction
Lung cancer has always been a dilemma for scientists, doctors, patients and 

caregivers [1]. There were 238,340 new lung cancer cases in the US [2] and 
127,070 deaths from it estimated in 2023. One of the more alarming aspects 
of lung cancer is its abnormally high rates of recurrence [3]. Approximately 
39% [4] patients experience recurrence of lung cancer, and roughly 50–90% 
of postoperative recurrences of lung cancer can happen within 2 years [5-
7]. In addition, patients with recurrence benefit less from chemotherapy 
or targeted therapy [8-10]. Thus for higher survival rates patients tend to 
undergo local therapies [11] including radiation which leads to damage in 
lung tissues.  Importantly, recurrent disease is associated with significantly 
poorer outcomes [12], demonstrating a median survival of just 31 months 
compared to 63.1 months for non-recurrent cases [13]. These clinical realities 
underscore the critical need for early recurrence detection, which could 
substantially improve treatment efficacy and overall survival outcomes.

Recent technological advancements [14] have facilitated the development 
of various predictive models for lung cancer recurrence, offering potential 
benefits for both patient outcomes and healthcare resource utilization. Current 
approaches include molecular methods such as ctDNA analysis [15], whole 
genome sequencing (WGS) [16], and transcriptome panels [17]. While 
promising, these techniques face clinical implementation challenges due to 
their substantial costs and restricted dataset availability.
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(low-dose computed tomography) images, H&E-stained 
tissue sections, pathologist reports, and postoperative follow-
up information. The study cohort was selected based on the 
following criteria: (1) patients with a primary lung tumor 
surgery completion; (2) those with a documented pathologist 
adjudication of lung nodules in NLST; (3) IA-pathological 
stage non-squamous lung carcinoma (these individuals are 
staged through the newest AJCC system) [27]; (4) invasive 
tumor size up to 30mm; and (5) surgeries conducted within 
2 years of completing the final round of screening. Among 
all, 182 cases met the criteria previously outlined and were 
included for downstream analysis.

Image Processing
Through OpenCV [28], the raw CT images were 

preprocessed by resampling to a fixed voxel spacing, 
and a specified window width and level were applied for 
grayscale transformation. Cross-referenced [29] regions 
of interest (ROIs) of the tumor were utilized, following a 
methodology outlined in the prior study by Huang et al. [30]. 
For this method, The weighted center for each voxel was first 
determined within the segmented lesion. 

 and  is the sum of all tumor voxels 
with coordinates ( , , ). The standard deviation of 
the spatial distribution of tumor voxels was calculated by

However, tumor volume could have affected LocSd100, 
so LocSd100 was normalized to tumor volume using the 
formula LocSd100V = LocSd100/V. The weighted centers 
(C50 and C20) with 50% and 20% of the voxels  were 
computed with highest voxel intensity values, LocSd50V and 
LocSd20V, and the distances to the centers were calculated 
with the Euclidean distance metric. 

Aerts et al.’s [31] formulas were used to extract the 3D 
radiomics features. The energy, root mean square (RMS), 
entropy, and uniformity metrics were computed with 
a consistent bin width of 100 Hounsfield units. For the 
second-order gray-level co-occurrence matrices (GLCMs), 
calculations were performed at angles of 0, 45, 90, 135 
degrees in the sagittal, transverse, and coronal orientations, 
resulting in 13 total directional GLCMs:

22 texture attributes derived from each GLCM, which 
was then averaged across all 13 orientations to produce the 
3D texture features. To extract second-order grayscale run 
length matrix (GLRLM) features, voxel distances were set 
at values of d = 2, 3, 4, 5, and 13. From each GLRLM, 11 

In contrast, imaging-based approaches - particularly 
radiomic feature extraction from computed tomography (CT) 
scans [18-19] and hematoxylin & eosin (H&E) stained images 
[20] - have demonstrated both wider clinical applicability and
superior predictive performance. Deep learning applications
in medical imaging have shown particular promise in
this domain. For instance, Lee et al. [21] developed a CT-
based radiomic model for 2-year non-small cell lung cancer
(NSCLC) recurrence prediction, achieving 71.42% accuracy,
80.95% sensitivity, 61.90% specificity, and an AUC of
0.74. Similarly, Aopong et al. [22] employed ResNet50 and
DenseNet121 architectures for CT-based NSCLC recurrence
prediction [23], obtaining AUC scores of 0.6714 and 0.6712
respectively, while potentially reducing reliance on invasive
biopsies.

H&E image analysis has also shown potential, with Wang, 
X [24] reporting 81% training accuracy (82% and 75% in 
two validation cohorts, separately) through nuclear feature 
extraction. However, this approach was limited by its focus 
on small tumor portions and early-stage images, potentially 
compromising its ability to capture tumor heterogeneity. 
Importantly, most existing studies share common limitations 
including single-institution datasets, unoptimized feature 
selection, and inadequate region of interest (ROI) analysis.

Based on this, our study leverages the complementary 
strengths of H&E histopathology and CT imaging to achieve 
multidimensional tumor characterization through Integrated 
Deep Learning Engine (IDLE) [25], which synergistically 
combines: (1) pathologist-annotated regions of interest 
(ROIs) serving as the foundational input material, (2) CT-
derived anatomical features to emphasize lung lesions 
and tumor size and (3) H&E-extracted morphological and 
biological characteristics including tumor aggressiveness 
markers and radiographically occult biomarker expression 
patterns. The fusion of radiomic and histopathologic data 
significantly enhances model performance by concurrently 
capturing macroscopic anatomical changes and microscopic 
tumor behavior. Cox proportional hazards analysis 
demonstrates IDLE's dual advantage as both an independent 
prognostic factor (p<0.01) and a superior predictor compared 
to conventional TNM staging (HR 1.50 for stage II, 2.85 
for stage III, and 8.88 for stage IV, P < .001) [26]. Our 
integrated CT-H&E framework provides crucial clinical 
benefits: enhanced recurrence prediction through optimized 
performance metrics, allowing for earlier intervention 
windows and enabling precision medicine approaches.

Material and Methods
Data Screening and Downloading

Through material transfer agreements with XLab, the 
NLST (National Lung Screening Trial) (https://www.cancer.
gov/types/lung/research/nlst) provided us with access to a 
comprehensive set of data, including preoperative LDCT 
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texture attributes were calculated, thus all 52 orientation-
distance combinations were averaged to form the final 3D 
texture metric. 

Additionally, a mean intensity ratio was obtained by 
dividing the average voxel intensity within the tumor by that 
of the peritumoral region, providing a comparative measure 
of tumor versus peritumoral intensity. When calculating the 
quantile ratio R(q) (qth quantile of voxel intensity within the 
tumor divided by the qth quantile of voxel intensity in the 
surrounding peritumoral area) at q = 50 and 90, the quotient 
of tumor intensity divided by peritumoral intensity for those 
quantiles yielded a set of 173 features per LDCT image [32].

Clinical and Molecular Variable Processing
In addition to imaging data, other clinical information was 

also included to calculate the final IDLE score. Combining 
patient demographics at the time of surgery, surgical 
procedure type, residual disease status, whether lymph 
node dissection was performed, and tissue characteristics 
extracted from pathology slides and surgical records, each of 
these variables was coded numerically, as categorical fields 
are turned into 0/1, and how time intervals or continuous 
measures are handled as direct numeric columns (provided as 
supplementary table or figure). This combination of binary, 
factor, and numeric variables forms the unified input for 
survival modeling and for computing the IDLE score. The 
genomics data, comprising expression levels of 5269 selected 
genes downloaded from NLST, was retrieved using a custom 
DataLoader tailored for 5-fold cross-validation. Preprocessing 
steps included normalization to standardize gene expression 
values across samples, filtering to retain the most informative 
genes based on variance and biological relevance, and 
imputation of missing values to maintain data integrity. These 
preprocessed genomic features were subsequently integrated 
with PyRadiomics and DenseNet-derived features through 
concatenation, enabling the construction of multimodal 
models to predict patient outcomes. This comprehensive 
preprocessing ensured compatibility across data modalities 
and enhanced the predictive performance of the models. All 
of these data points - both clinical (demographic and surgical) 
and imaging (tumor or peritumoral features)- are merged into 
a unified feature set.

Model Construction
Similar to prior publication [33-34], MLP architecture 

[35] featuring two hidden layers and a final output layer were
constructed upon Pytorch [36]. The first hidden layer contains
an activation function LeakyReLu based on input data that
contains preoperative LDCT lung image characteristics
across different anatomical regions as input. Based on the
output of the first layer determines the activation function
of the subsequent hidden layer LeakyReLU, adjusted by
their corresponding weights. Both layers underwent feature
selection and weight refinement, utilizing a cross entropy

loss function with an L2 regularization term to penalize 
complexity. The second hidden layer, that is, the input 
variables and weights were finally passed to a random 
survival forest, which was the final hidden layer. Finally, 
random survival forest predicted the value of the network in 
the range of [0, 1]. The IDLE score was calculated using the 
leave-one-patient-out cross-validation technique [34].

Model Evaluation
Demographic and clinical traits of patients who 

experienced progression and those who did not were then 
analyzed using summary statistics. Patients were divided 
into high-risk and low-risk subgroups through the median 
values of IDLE scores. By calculating the 5-year and 10-
year time-dependent area under the ROC curve (AUC), along 
with time-dependent positive predictive value (PPV), time-
dependent negative predictive value (NPV), and the hazard 
ratio (HR), the accuracy is evaluated to compare progression-
free survival between the high-risk and low-risk groups. To 
assess the precision of the AUC, 500 bootstrap simulations 
were performed, calculating the standard deviation of the 
AUC using inverse probability of censoring weighted 
estimators. This approach allows for robust estimation of 
model performance, accounting for censoring and providing 
a more accurate reflection of the model's predictive power.

Survival Analysis 
To evaluate the added benefit of incorporating IDLE scores 

alongside TNM staging and tumor grade, a multivariate Cox 
proportional hazards model was used, in which contained six 
modalities: Genomics (G), Pyradiomics (P), DenseNet (D), 
early fusion (EF), intermediate fusion (IF), and late fusion 
(LF). The Cox proportional hazards model [36] built upon 
survival stands as a prominent semi-parametric approach 
in survival analysis, and it was used to evaluate the hazard 
ratio(HR) for each parameter. A log-rank test was conducted 
to compare Kaplan–Meier survival curves in subgroups 
with high or low survival rates, utilizing survival (v3.2-3) 
[37] for the underlying survival analysis framework. The
implementation of the algorithm was used from the scikit-
survival [38] package.

Statistical Methods
Continuous variables were presented as median and 

interquartile range (IQR). We used the Kolmogorov–Smirnov 
test to assess whether data followed a normal distribution. 
Depending on the distribution and sample variance, a two-
sample t-test, Welch’s two-sample t-test, or Mann–Whitney 
U test was employed to compare differences in continuous 
data. Categorical variables were expressed as n%, and a chi-
square test or Fisher’s exact test (as appropriate) was used 
to compare group differences. A p-value less than 0.05 was 
considered statistically significant. All statistical analyses and 
figure generation were performed in R (version 3.6.1) [39].
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residual disease post-surgery. Additionally, 90% (164/182) 
had negative lymphadenectomy results.

Fold-wise variability and modality-fusion effects
To systematically assess the relative contribution of 

distinct feature sources to prognostic performance, we built 
six modality-specific systems on the same cohort ( n = 182) 
and compared them under 5-fold cross-validation (Figure 1b). 
The modalities included genomics (G), radiomics extracted 
from CT (P), DenseNet-derived histopathology features (D), 
and three fusion strategies—early fusion (EF), intermediate 
fusion (IF) and late fusion (LF). The validation results (Figure 
2) reveal pronounced performance heterogeneity across folds. 
In folds 1-3, all single-modality models achieved only modest 
discrimination (C-index 0.65-0.72), and the fusion models did 
not rescue this deficit—likely because substantial distribution
shifts between training and test splits were exacerbated by
the limited sample size. By contrast, fold 4 exhibited marked
improvements, with genomics (C-index = 0.81) and DenseNet 
features (0.83) outperforming other modalities, while fold 5
showed uniformly strong accuracy (C-index > 0.85) across
all models. Importantly, the benefit of multimodal integration
was fold-dependent: in fold 4, early fusion of G and D boosted 
the C-index by 10 % (0.83 → 0.91), whereas the same strategy
yielded only a 2 % gain (0.88 → 0.90) in fold 5. This suggests
that early fusion can exploit complementary signals when
modalities convey consistent prognostic information, but

Results
linical characteristics of included patients from 
NLST

First, datasets of patients with CT and HE images are 
downloaded from NLST, selected by the following criteria. 
182 patients were ultimately included and used for the model. 
(Figure 1a)

Table 1 outlines the demographic and clinical profiles of 
the 182 selected patients. Over a 12-year follow-up period, 
54 individuals experienced cancer progression. There were 
no significant differences in age at surgery, smoking history, 
tumor location, surgical procedure, size of the excised lesion, 
or largest invasive tumor size between patients with and 
without cancer progression (all p > 0.10, Table 1). However, 
the incidence of recurrence was significantly delayed in 
patients who experienced progression (39%, 21/54) compared 
to those without progression (21%, 27/128, p = 0.0167, Table 
1) in a way that malignancies were detected more than six
months after the final low-dose CT (LDCT) screening.

The interval between the last preoperative LDCT and 
surgery was longer in patients with cancer progression  
(p = 0.0468). All patients initially received surgical 
treatment, except for three who underwent chemotherapy or 
radiotherapy two to three months prior to surgery. Among 
the patients, 84% underwent lobectomy, and 97% had no 

Figure 1:  Schematic representation of whole study design. (a) Flowchart of patient selection, model construction and functional analysis for 
the study. (b) Flowchart of model processing (image). (c) Details of model structure.
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No Progression
N = 128

No Progression
N = 54 p1

Cancers diagnosed 6 months after the last 
LDCT screening date 27 21 0.0167

Lung cancer-related death 0 45

Age at surgery 64.74.9 65.94.8 0.1067

Female,N(%) 58(45%) 24(44%) 1

Smoke pack-years 6629 7241 0.2889
Days from the last LDCT screening to the 
date of lung surgery 177210 267299 0.0468

surgery type Sublobar resection Lobe ctomy
21 8

1
107  46

Lymphadenectomy           N(%) 115(90%) 49(91%) 1

Residual disease after surgery
          R0 124 53

1
           R1 4 1

Surgically removed lesion size(mm) 1.28691 1.2584 0.6713

Largest invasive tumor size(mm) 11.46.08 0.56671 0.1604

Pathological cancer stage(TNM, 8th edition)

IA1(T1a) 50 19

IA1(T1b) 63 30 1

IA1(T1c) 15 5

Highest tumor grade from all the ROIS

1=well-differentiated 34 4

2=moderately differentiated

3=poorly differentiated 53 30

4=undifferentiated

Undetermined(GX) 35 14 0.0163

5 4

1 2

Table1: A summary of the participant group. The advancement of cancer is characterized by any of the following occurrences within a 12-year 
observation window post-surgical removal of the primary tumor: the return of lung cancer, the spread of lung cancer to other parts of the body, 
or death resulting from lung cancer.

 Figure 2: A comparative analysis of the C-index for linear and nonlinear models for six distinct modalities—genomics (G), pyradiomics 
(P), DenseNet (D), early fusion (EF), intermediate fusion (IF), and late fusion (LF)—is presented. Using CoxNet, features of varying 
dimensionality—50-dimensional for genomics (G), 107-dimensional for pyradiomics (P), and 1024-dimensional for DenseNet (D)—are 
directly input to establish baseline performance for each modality. 
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may default to cautious, intermediate predictions when late-
time survival signals conflict (e.g., ≈1000 days post-surgery 
in fold 5). No single feature type dominated across all folds 
(maximum inter-fold C-index variation ± 0.15), underscoring 
that robust risk stratification requires synergistic integration 
of complementary data modalities rather than reliance on any 
single source.

IDLE Score Contributions to TNM Staging and 
Tumor Grade

Because models that exploit complementary information 

outperform those built on a single feature type, we integrated 
the CT-derived radiomic features with the H&E-based 
histopathologic features to generate the final IDLE score 
(Figure 1b, c). The integration of IDLE scores significantly 
enhanced predictive accuracy, as illustrated in Figure 3 a–i. 
Specifically, the 5-year time-dependent ROC curve (Figure 
3a) shows an AUC for IDLE of 0.817 ± 0.037, markedly 
higher than the AUCs for tumor grade (0.561 ± 0.042) and 
TNM staging (0.574 ± 0.044). Similarly, the 10-year time-
dependent ROC curve (Figure 3d) indicates an AUC for 
IDLE of 0.792 ± 0.039, outperforming tumor grade (0.507 ± 

Figure 3: An evaluation of the predictive precision among IDLE, TNM classification, and tumor grade. Since higher sensitivities were 
unattainable, the negative predictive values for TNM classification could only be analyzed within a limited range of sensitivity levels with 
moderate values. The Kaplan–Meier curves in plot I did not include patients with an undetermined (GX) tumor grade.
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0.041) and TNM staging (0.569 ± 0.045). Due to constraints 
in achieving higher sensitivities, the 5-year and 10-year 
time-dependent negative predictive values (NPVs) for TNM 
staging (Figures 3c, f) were evaluated only at sensitivities 
below 0.74 and 0.64, respectively. Across a sensitivity 
range of 60–95%, the 5-year and 10-year time-dependent 
positive predictive values (PPVs) for IDLE (Figures 3b, 
e) were consistently superior, while its NPVs (Figures
3c, f) were inferior compared to TNM staging and tumor
grade. Additionally, survival analyses (Figure 3g–i) further
highlight IDLE's prognostic value, with Figure 3g showing
a hazard ratio (HR) of 5.643 (p<0.0001) for IDLE. Figure
3h demonstrating significant differences in progression-free
survival across TNM stages (e.g., T1b vs. T1a: HR=1.319,
p=0.3454), and Figure 3i indicating a higher risk for grade
3–4 tumors (HR=1.200, p=0.5519).

The single-dataset positive predictive values (PPVs, 
Figure 3b, e), though superior to TNM staging and tumor 
grade, exhibit greater variability across sensitivity ranges 
(60–95%) compared to the more stable PPVs from multiple 
datasets, which benefit from broader data representation. 
Additionally, the hazard ratio for IDLE in the single-
dataset survival analysis (Figure 3g: HR=5.643, p<0.0001). 
However, no single input variable stood out and none of the 
individual features was sufficient to serve as a standalone 
marker. Even when combining multiple LDCT image 
features or various histopathological morphological features, 
the predictive accuracy of these methods was significantly 
lower than that of merging both LDCT and histopathology 
image features. 

The findings further indicate that the IDLE score adds 
significant value beyond TNM staging and tumor grade, 
showing a strong association with cancer progression (Table 
2), even when adjusted for these traditional factors. These 
results underscore the ability of IDLE to capture risk factors 
for cancer progression that are not reflected by TNM staging 
and tumor grade alone.

IDLE Multivariate Analysis

Discussion
In this study, we demonstrated that integrating 

comprehensive tumor characteristics from preoperative low-
dose CT scans with histological details from H&E-stained 
tissue images, processed through deep learning model, 
provides a more accurate prediction of the aggressiveness of 
stageT1A non-small cell lung cancers compared to traditional 
reliance on TNM staging and tumor grade alone. The IDLE 
method outperformed these conventional approaches, as 
evidenced by consistently higher AUC values, positive 
predictive values, and negative predictive values. These 
results suggest that the IDLE score holds promise as a tool 
for identifying high-risk patients who may experience cancer 
progression shortly after primary surgery and for selecting 
candidates who may benefit from early intervention. 

By analyzing the global image characteristics from LDCT,  
the reasons behind the synergy between these global features 
and local tissue attributes within the deep learning model 
were uncovered. However, by integrating these hidden layer 
variables, the model could differentiate between patients with 
cancer progression and those without. Among the variables 
utilized by the deep learning network, no single input variable 
stood out; in other words, none of the individual features was 
sufficiently robust to serve as a standalone marker. Even 
when combining multiple LDCT image features or various 
histopathological morphological features, the predictive 
accuracy of these methods was significantly lower than that 
of IDLE, which merged both LDCT and histopathology 
image features. 

Integrating LDCT and histology characteristics increase 
predictive accuracy, as standardized tissue histopathological 
characteristics allow insights of the local properties of 
tumors [40-42]. However, the histological analysis of the 
tumor tissue alone is insufficient to fully comprehend the 
tumor's interaction with the overall lung environment [34]. 
Due to the fact that LDCT image features quantify global 
tumor morphology [51], and H&E quantifies local tumor 
morphology [43], characteristics of the tumor from these 
two feature platforms usually do not overlap. This finding 
indicates that integrating characteristics from distinct, non-
overlapping platforms yields a significantly more accurate 
predictor compared to merging multiple features from a single 
platform with potentially redundant data [44]. Additionally, 
the prediction accuracy may be further enhanced with 
integration of molecular biomarkers with IDLE. 

Notably, there was an inverse relationship between 
progression-free survival and the duration from the final low-
dose CT (LDCT) scan to the surgical procedure. This interval 
was identified as a critical factor by the deep learning model. 
A longer gap between LDCT screening and surgery indicated 
a delayed cancer diagnosis, which was observed in 21 out  

HR 95%CI

IDLE high 5.6708 (3.1650,10.1605)  <0.0001

0.8665 (0.4667,1.6087) 0.6499

0.7708 (0.2620,2.2680) 0.6364

High grade 0.9818 (0.5440,1.7720) 0.9513

Age at surgery 1.0318 (0.9738,1.0934) 0.2888

Chemotherapy 0.67 (0.2806,1.5996) 0.3671

Radiotherapy 1.3959 (0.4064,4.7945) 0.5963

Table 2: Multivariate analysis to study the added value of IDLE

The reference is the T1a 
subgroup
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of the 54 patients who experienced disease progression (Table 
1). Those cancers were not only still in stage IA, but were 
also of a higher grade. This can be explained by potential 
higher grades of the tumors (biologically more aggressive) 
and the early surgical intervention might have prevented or 
delayed progression. Timely diagnosis of aggressive lesions 
is certainly a requirement for improving the screening 
effectiveness of lung cancer.

In addition, multiple early and late fusion techniques [45-
47], when applied with the Cox proportional hazards model, 
hold promise for predicting recurrence. Various modalities 
are shown to be better at different times, which furthermore 
suggests that predicting behavior is improved by combining 
multiple modalities. No single one was found to be better 
than the rest over all folds [47], as neural network methods 
are more difficult to generalize when trained on a limited 
quantity of data. 

Multimodal fusion networks are a potentially fascinating 
area for future study; however, transfer learning from 
single modality datasets could enhance the training of these 
networks [49]. Multistage fusion simulating biological 
interactions between imaging and genomics is also of interest 
to investigations [50,51]. 

This research is constrained by its relatively limited 
sample size, with findings corroborated solely through cross-
validation. Further validation from a more extensive cohort is 
necessary [45]. Although limitations exist, this investigation 
supports the initial hypothesis that integrating diverse 
tumor morphological characteristics from various imaging 
modalities [46] enhances the prediction of lung cancer 
progression risk, surpassing the capabilities of TNM staging 
and tumor grade alone.

Conclusion	
To predict lung cancer recurrence, the study developed a 

deep learning model. Patient demographics, type of surgery, 
residual disease after surgery, lymph node dissection received, 
surgical tissue associated features, preoperative LDCT lung 
image features and interval between preoperative LDCT 
were analyzed to calculate the IDLE score. The second part 
of the study highlighted the potential of multimodal fusion, 
using both early and late fusion techniques with the Cox 
proportional hazards model, to predict recurrence. Different 
modalities work better in different contexts, indicating 
space to improve prediction by fusing information across 
multiple modalities. However, there is no single method 
which outperforms the other methods in all the folds, thus 
training neural networks on a small dataset remains difficult 
to generalize. This approach might facilitate the training of 
multimodal fusion networks through transfer learning from 
unimodal datasets.
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