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Abstract
Collagen (Col) types I and III are integral components in wound healing 

and tissue regeneration, influencing tissue development, homeostasis, and 
related pathologies. Col I and Col III expression changes during different 
stages of wound healing and understanding the regulation of collagen 
phenotype determination is crucial for unraveling the complexities 
of these processes. Transcription factors and microRNAs, directly 
and indirectly, play a critical role in regulating collagen expression, 
however, a comprehensive understanding of the factors regulating Col 
I and III phenotypes remains elusive. This critically analyzed published 
reports with focuses on various factors regulating the expression of Col 
I and Col III at the transcriptional and translational levels. We performed 
bioinformatics analysis with an input of proinflammatory mediators, 
growth factors, elastases, and matrix metalloproteinases and predicted 
transcription factors and microRNAs involved in the regulation of collagen 
expression. Network analysis revealed an interaction between genes, 
transcription factors, and microRNAs and provided a holistic view of the 
regulatory landscape governing collagen expression and unveils intricate 
interconnections. This analysis lays a founda-tional framework for guiding 
future research and therapeutic interventions to promote extracellular 
matrix remodeling, wound healing, and tissue regeneration after an injury 
by modulating collagen expression. In essence, this scientific groundwork 
offers a comprehensive exploration of the regulatory dynamics in collagen 
synthesis, serving as a valuable resource for advancing both basic research 
and clinical interventions in tissue repair.
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Introduction
Collagen, the most abundant protein in the human body, constitutes 

approximately 25-35% of the total protein content. The term "collagen" 
stems from the Greek word "kolla" meaning glue, reflecting its adhesive 
nature in connective tissue [1]. It serves as a fibrous structural protein that 
imparts strength, support, and elasticity to a wide array of connective tissues. 
Renowned for its remarkable tensile strength, collagen is a primary building 
block in the construction of ligaments and tendons [2]. It serves as a crucial 
extracellular matrix component in various dental tissues, excluding enamel, 
and is prevalent in bones, cartilage, teeth, and the cornea in crystalline form 
[3,4]. 

Collagen is characterized by a distinctive structural motif wherein 
three parallel polypeptide strands, adopting a left-handed polyproline II-
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type (PPII) helical conformation, coil around each other in 
a right-handed triple helix configuration [5]. The precise 
arrangement involves a one-residue stagger. The densely 
packed PPII helices in the triple helix dictate a Gly residue 
at every third position, yielding a recurring XaaYaaGly 
sequence, where Xaa and Yaa represent any amino acid [6]. 
This repetitive pattern is a hallmark of all collagen types, 
although interruptions occur at specific locations within the 
triple-helical domain of nonfibrillar collagens.

Collagen assumes a critical role in tissue regeneration and 
wound healing [7]. After an injury, the human body initiates a 
complex cascade of events to repair and regenerate damaged 
tissues. Collagen synthesis forms an intrinsic part of this 
intricate process as it provides the necessary scaffolding for 
cell migration, proliferation, and differentiation. Moreover, 
collagen contributes significantly to the formation of new 
blood vessels, which emerge as indispensable conduits for 
supplying oxygen and essential nutrients to the regenerating 
tissues [8].

The understanding of collagen type determination during 
wound healing holds immense importance as it enables 
tissue healing and regeneration. The regulation of collagen 
phenotype expression greatly influences tissue functionality, 
mechanical properties, and response to injuries. A 
comprehensive understanding of collagen type determination 
can prove invaluable in establishing targeted therapeutic 
interventions to promote tissue healing and regeneration and 
effectively address collagen-related disorders.

Collagen I and III: tissue development, regeneration, 
and healing

Collagen type I and type III are fundamental components 
of the extracellular matrix (ECM) in various tissues, each 
playing distinct roles across different developmental stages 
[9]. Their dynamic interplay contributes significantly to 
tissue development, maintenance, and repair. In tissues such 
as skin, tendons, and bone, collagen type I is the predominant 
fibrillar collagen, providing tensile strength and structural 
integrity [10]. During the early stages of tissue development, 
the expression of collagen type I is essential for the formation 
of a robust ECM framework. Fibroblasts and osteoblasts 
synthesize collagen type I, creating a scaffold that sup-ports 
tissue architecture [11]. In the context of bone development, 
collagen type I fibers serve as the fundamental framework 
for the mineralization process, thereby endowing the skeletal 
structure with robust strength [12]. Concurrently, in the 
context of tendons, collagen type I fibers play a pivotal role 
in conferring mechanical durability and strength to these 
connective tissues [13]. Collagen III represents fibrillar 
collagen consistently co-localized with type I collagen 
[14]. Dis-tinguished by thinner fibrils compared to type I 
collagen, collagen III exhibits notable prevalence in tissues 
characterized by substantial elastic fiber content, including 

skin and blood vessels [15]. During the early stages of tissue 
development, collagen type III plays a role in the formation 
of the provisional matrix [16]. 

During tissue repair and regeneration, collagen types I 
and III play integral roles in the wound healing process. In the 
early inflammatory phase, collagen III is synthesized to form 
a provisional matrix that aids in cell migration and immune 
cell infiltration. As the wound progresses to the proliferative 
phase, collagen type I becomes more prominent, providing a 
more stable and durable matrix. The remodeling phase entails 
the continued synthesis and organization of collagen type I, 
contributing to the restoration of tissue strength [17].

Collagen Biosynthesis
Fibroblasts predominantly undertake collagen synthesis, 

while keratinocytes, smooth muscle cells, and vascular 
endothelial cells also contribute to collagen production, 
each displaying tissue specificity. The regulation of collagen 
transcriptional activities is primarily dictated by cell type, yet 
it can be modulated by various growth factors and cytokines 
[18,19]. In normal physiological conditions, collagen gene 
expression remains low and constant. However, during 
wound healing, collagen transcription rates escalate to 
instigate tissue repair [20]. Timely and appropriate return to 
basal rates is crucial; failure to do so may lead to excessive 
collagen production, resulting in aberrant scar formation 
and fibrosis. Collagen synthesis involves the transcription 
of genes within the nucleus, ultimately leading to the 
generation of heterotrimeric structures and collagen fibrils 
(Figure 1). The transcriptional and translational processes 
and post translational modification during collagen synthesis 
are regulated by various factors, however, the factors 
differentially regulating col I and col III synthesis during 
various phases are not clearly understood.

Regulation of collagen expression
A complex web of factors and mechanisms is involved 

in the tight regulation at the transcriptional and translational 
level. The initiation and rate of collagen gene transcription 
are influenced by the interaction between specific regulatory 
elements within the gene promoter region and transcription 
factors [21,22]. This dynamic regulation enables precise 
control of collagen synthesis in response to physiological 
demands and external stimuli. Several transcription factors 
regulate the expression of collagen type 1 (COL1A1), either 
directly or indirectly, by either upregulating or downregulating 
it. These include Sp transcription factors (Sp1/Sp3) [23], 
Yin Yang 1 (YY1) [24], Nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) [25], Sma and Mad-
related protein 2/3 complex (Smad2/3 complex) [26], 
Nuclear Receptor4A1 (NR4A1) [27], Activating enhancer 
binding Protein 2 (AP2) [28], CCAAT-binding transcription 
factor (CBF) [29] Friend leukemia integration 1 transcription 
factor (FLI1) /ERGB [30] and Krüppel-like factor 6 (KLF6) 
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5p [48], mir-29b [49], mir-29a [50],  mir-1908 [51], mir-155 
[52], mir-625-5p [53], mir-92a-1-5p [54], mir-129-5p [55], 
mir-133b [56], mir-98 [57], mir-21-3p [58] and mir-149 [59]. 

MiRNAs can also control collagen expression by 
regulating various enzymes involved in different stages 
of collagen synthesis. The miRNAs that regulates prolyl-4 
hydroxylase enzymes are miR-124-3p [60], miR-155 [61], 
mir-17/20 [62], mir-429 [63] and miR-210 [64]. Lysyl 
hydroxylases and PLOD1-3 are regulated by miR-34c [65], 
miR-124 [66], miR-26 [67], and miR-663a [68]. The enzyme 
lysyl oxidase, responsible for the crosslinking oxidative 
deamination of epsilon-amino groups in telopeptide domains 
to aldehydes on lysyl and hydroxylysine residues, is regulated 
by miR-27 [69], miR29b [70], miR29a [71], miR-30a [72] 
and miR-30b [73].

Collagen degradation encompasses various proteases, 
with matrix metalloproteinases (MMPs) being the 
predominant enzymes involved [74]. These MMPs are also 
regulated by various miRNAs. The major MMPs involved 
in the degradation of Col I and Col III are MMP-1, MMP-2, 
MMP-8, and MMP-9. miR-192-5p can alleviate fibrosis by 
inhibiting Col III, MMP-1, and MMP-8 [75]. By activating 

[31], c-Myb [32], Neurogenic locus notch homolog protein 2 
(NOTCH2) [33], Hypoxia Inducible Factor 1 Subunit Alpha 
(HIF1α) [34], Tumor necrosis factor alpha (TNF-α) [35], 
Yes-associated proteins (YAP)/Tafazzin (TAZ) proteins [36], 
Human c-Krox (hc-Krox) [37] signal transducer and activator 
of transcription (STAT3) [38] and Zinc finger E-box-binding 
homeobox 1 (ZEB1) [39].

Collagen III synthesis is also regulated by transcription 
factor and Smad3 plays a critical role [40]. Smad3 interacts 
with specific regions of the collagen 3 promoter, promoting 
its transcription. Collaborating with other factors, such as 
Smad2, AP-1, and Sp1, Smad3 helps in the regulation of 
collagen 3 production by forming complexes and influencing 
its activity. Scx regulates COL3A1 expression along with 
COL1A1 [41]. Post-transcriptional regulation can take place 
through mRNA stabilization, potentially enhancing protein 
synthesis, or by inducing mRNA degradation, such as through 
miRNAs or long non-coding RNAs (lncRNAs), likely 
diminishing protein synthesis. Various miRNA types play a 
role in regulating COL1A1 and COL3A1 expression. These 
include mir-21 [42], mir-200b [43], mir-196a [44], mir-10a 
and mir-181-c [45],  mir-124 [46], mir-23b [47], mir-513b-

Figure 1: Collagen synthesis: Collagen synthesis starts with the synthesis of pro-α chains followed by triple helix formation (steps 1 and 
2). This is followed by the transportation of the triple helix complex to the Endoplasmic reticulum and Golgi body for post-translational 
modification (steps 3 and 4). Procollagen is secreted outside the cell where the pro-peptide chains are cleaved and tropocollagen is formed. 
These tropocollagen molecules gather to form collagen fibrils, via covalent cross-linking and multiple collagen fibrils form collagen fibers 
(steps 5, 6, and 7).
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MMP2 and MMP9, miR-513b-5p targeted the repression of 
COL1A1/2 expression [48]. Reduced MMP-9 expression, 
induced by miR-129 and miR-335, facilitated wound 
healing by promoting increased collagen deposition [76]. 
The microRNA miR-526b regulates the MMP1 gene, which 
plays a role in collagen degradation during both normal 
physiological and pathological processes [77]. 

Transcription factors and miRNA associated with 
the regulation of collagen I/III expression

The literature review reveals an obvious involvement 
of transcription factors and microRNAs in the regulatory 
mechanisms governing collagen I and III. The investigations 
presented in these studies elucidate the involvement of 
transcription factors and microRNA in the regulation 
of collagen expression, particularly emphasizing Col I. 
Nevertheless, the available literature lacks discussion on the 
regulatory mechanisms governing the phenotypic transition 
of collagen III to collagen I during the wound healing process. 

The major proinflammatory mediators, enzymes, 
matrix metalloproteases (MMPs), and tissue inhibitors of 
metalloproteinases (TIMPs) involved in the synthesis of 
Col I and III are Tumor Necrosis Factor-alpha (TNF-α), 
Transforming growth factor-β (TGF-β), Interleukin 6 (IL-
6), Interleukin-1 (IL-1), Vascular endothelial growth factor 
(VEGF), Platelet-derived growth factor (PDGF), Prolyl 
hydroxylase (P4HA1-3), Lysyl hydroxylase (PLOD1-3), 
Lysyl oxidase (LOX), MMP1, MMP2, MMP3, MMP8, 
MMP9 and MMP13, TIMP1, TIMP2, Bone Morphogenic 
Protein 1 (BMP1), and Heat shock protein 47 (HSP47).

During tissue injury and repair, cytokines and growth 
factors, released by inflammatory cells like macrophages, 
neutrophils, and fibroblasts, regulate collagen synthesis. 
TGF-β, released by platelets and macrophages at the injury 
site, crucially stimulates collagen production by fibroblasts, 
promoting their proliferation and differentiation into 
myofibroblasts, highly active in collagen synthesis [78]. 
During the inflammatory phase, IL-1β and TNF-α dampen 
collagen synthesis while concurrently triggering the activation 
of MMPs mediating collagen degradation [79]. Additionally, 
studies indicate that IL-6 stimulates keratinocyte proliferation 
and collagen synthesis in dermal fibroblasts, facilitating 
their differentiation into myofibroblasts, and potentially 
contributing to skin fibrosis in systemic sclerosis patients 
[80].  

The PLOD genes, namely PLOD1, PLOD2, and 
PLOD3, are responsible for encoding an enzyme known as 
procollagen lysyl hydroxylase, which plays a pivotal role in 
regulating collagen synthesis, cross-linking, and deposition 
[81]. Literature suggests that targeting PLOD3 could prevent 
pulmonary fibrosis as it is important in collagen post-
translational modifications and is regulated by Wnt/β-catenin 
and TGFβ1/Smad3 pathways [82]. P4Hs are enzymes located 

in the endoplasmic reticulum that catalyze the formation 
of 4-hydroxyproline in collagens and other proteins. The 
regulation of collagen hydroxylation can significantly 
affect the extracellular matrix's properties and cell behavior 
[83]. Following triple-helical folding, Hsp47 attaches to 
procollagen, providing stability, and preventing premature 
procollagen aggregation and ER-to-Golgi export. However, 
Hsp47 dissociates after the procollagen shifts to the Golgi 
apparatus modification [84]. Following secretion from RER 
to Golgi, specific procollagen proteinases, such as bone 
morphogenetic protein 1 (BMP1), members of the ADAMTS 
protease family, and meprins, cleave the N- and C-terminal 
propeptides [85]. LOX and lysyl oxidase-like proteins 
catalyze the cross-linking of collagen and elastin, making 
ECM proteins insoluble. Literature shows that LOX is linked 
to renal fibrosis and cancer. Increasing LOX expression 
causes collagen over cross-linking through the β-arrestin/
ERK/STAT3 pathway [86]. MMPs degrade extracellular 
matrix components and their dysregulation can lead to cancer 
and tissue fibrosis. There are 24 human MMPs, classified into 
different types [87]. TIMPs function as endogenous, selective 
inhibitors of MMPs, thereby modulating the equilibrium 
between collagen synthesis and degradation, crucial for the 
maintenance of tissue structural integrity [88]. Studying these 
inflammatory mediators, enzymes, and proteins that regulate 
collagen synthesis will give an idea of how Col I and Col III 
are regulated.

To predict various transcription factors and micro RNAs 
involved in collagen regulation an in-silico analysis was 
performed using STRING (Search Tool for the Retrieval 
of Interacting Genes/Proteins) enrichment network analysis 
(https://string-db.org/) and Network analyst (https://www.
networkanalyst.ca/) with gene input names including TNF-α, 
IL-1, TGF-β, IL-6, VEGF, PDGF, P4HA1, P4HA3, PLOD1, 
PLOD2, PLOD3, LOX, MMP1, MMP2, MMP3, MMP8, 
MMP9, MMP13, TIMP1, TIMP2, BMP1 and HSP47 along 
with COL1A1, COL1A2 and COL3A1. The list of these genes 
was based on our RNA seq analysisx (https://www.ncbi.nlm.
nih.gov/sra; # SUB11379495), and we included the genes 
involved in ECM remodeling, collagen synthesis, wound 
healing, and tissue regeneration.

The STRING analysis (Figure 2) with a minimum 
required interaction score of 0.4 revealed interactions among 
all the input genes with COL1A1, COL1A2, and COL3A1 
except VEGF. Notably, the analysis predicted an interaction 
between MMP8 and COL1A1 but not with COL3A1 and 
COL1A2 which had an interaction with MMP1, MMP2, 
and MMP9. STRING analysis also revealed an interaction 
between inflammatory cytokines IL-6 and TNF-α, growth 
factor TGF-β, and other regulators of collagen remodeling 
including TIMP2, BMP1, PLOD1, PLOD2, and PLOD3 
among others (Figure 2).

The outcomes derived from the network analysis using 
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the JASPAR dataset unveiled several transcription factors in 
association with the regulation of COL1A1, COL1A2 and COL 
3A1 (Figure 3). Inferences drawn from the network analysis 
indicate that transcription factors, including, YY1, HINFP, 
and TP53 with a betweenness (a measure of how often a 
node lies on the shortest path between all pairs of nodes in 
a network) of 258.7, 60.15, and 45.18 respectively exercise 
precise regulatory control over COL3A1 by influencing the 
activity of enzymes such as LOX, PLOD2, P4HA1, TIMP1, 
MMP3, MMP8, MMP9, and MMP13. Another transcription 
factor that was found to be associated with COL3A1 was 
POU2F2 with a betweenness of 195.15. However, network 
analysis predicts that this transcription factor regulates 
COL3A1 expression by regulating P4HA1 and P4HA3. 
P4HA3 did not show any interaction with COL1A1 and 
COL1A2. Existing literature supports the versatile nature of 
the Yin Yang 1 (YY1) transcription factor, demonstrating 
its ability to function both as a repressor and an activator 
[89]. As depicted in Figure 3, YY1 exhibits the capacity 
to upregulate COL3A1 through the modulation of P4HA1, 
LOX, and TIMP1, while simultaneously downregulating it 
through MMP9.

According to the NCBI gene summary, Histone H4 

Transcription Factor (HINFP) encodes a transcription factor 
that interacts with methyl-CpG-binding protein-2 (MBD2), 
which forms part of the MeCP1 histone deacetylase (HDAC) 
complex. HINFP contributes to DNA methylation and 
transcriptional repression processes [90]. However, another 
study showed the transcriptional activator property of HNIFP 
when associated with its cofactors NPAT/TRRAP in HEPG2 
cells [91]. Network analysis predicts the interaction of 
P4HA1, PLOD2, and LOX with HINF2. TP53, also known 
as tumor protein p53 or p53, is a tumor suppressor gene that 
encodes a protein that regulates cell division and prevents 
cancer. Literature showed that the p53 in dermal fibroblast 
significantly repressed the expression of MMPs [92].

The transcription factors FOXC1, NFIC, PPARG, 
TFAP2A, and SREB1, which interact with COL I, may 
regulate the expression of PLOD3, P4HA1, P4HA2, BMP1, 
LOX, MMP9, TIMP1, and TIMP2 (as shown in Figure 3), 
with respective betweenness centrality values of 547.35, 34.9, 
20.79, 36.89, and 14.67. These interactions may contribute to 
the regulation of collagen I synthesis. FOXC1, or forkhead 
box C1, is a protein encoded by the FOXC1 gene. Research 
indicates that FOXC1 enhances the expression of MMPs, 
leading to reduced collagen expression and potentially 

Figure 2: Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) network analysis showing the interaction between 
proinflammatory mediators, enzymes, and bone morphogenetic protein (BMP) 1 with collagen I and III.
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improving myocardial repair [93]. Nuclear factor I-C 
(NFIC) is a member of the NFI transcription factor family, 
which binds to DNA via CAATT-boxes and plays roles in 
cellular differentiation and stem cell maintenance. In co-
transfection experiments with the Colα1(I) promoter in NIH 
3T3 fibroblasts, the overexpression of NF-I led to an increase 
in α1(I) expression [94]. PPARγ is a member of the nuclear 
receptor superfamily of ligand-activated transcription factors, 
regulating essential aspects of biology from development to 
metabolism. The literature revealed that the PPAR-γ agonist 
troglitazone modulates extracellular matrix production in 
human dermal fibroblasts, particularly hypertrophic scar 
fibroblasts (HSFBs), by acting through the PPAR-γ and 
Smad3, leading to the inhibition of collagen synthesis [95]. 
TFAP2A, also known as transcription factor AP-2 alpha, 
plays crucial roles in various biological processes such as 
development, cell proliferation, differentiation, and apoptosis. 
A study conducted on TFAP2A knockout fibroblasts 
exhibited decreased expression of α-SMA and collagen 
genes, indicating a critical role for TFAP2A in regulating 
collagen synthesis and myofibroblast differentiation [96]. 
Consequently, comprehensive in vitro studies investigating 

the regulatory dynamics of these transcription factors during 
the injury process hold promise in providing valuable insights 
into the intricate mechanisms governing collagen regulation.

The network analysis conducted using Networkanalyst.
ca unveiled connections between the input genes related to 
collagen regulation and miRNAs regulating the expression 
of these genes (Figure 4). This analysis utilized the well-
annotated miRNA-gene interaction database, miRTarBase 
v8.0). Based on the results obtained from the network analysis, 
it has been predicted that certain miRNAs (hsa-mir-4533, hsa-
mir-5196, hsa-mir-4747-5p) have the potential to regulate the 
expression of alpha subunits of collagen. Additionally, the 
analysis also suggests that these miRNAs can influence the 
expression of types I and III collagens through the regulation 
of hsa-29b-15p, hsa-mir-29c-3p, and hsa-mir-143-3p. Other 
miRNAs which showed interactions between COL1A1, 
COL1A2 and COL3A1 with the other input genes are hsa-
mir-29c-3p, hsa-mir-29b-3p, hsa-mir-143-3p, hsa-mir-335-
5p, has mir-124-3p, hsa-mir-26b-5p, hsa-mir-519d-3p, hsa-
mir-29a-3p, hsa-mir-363-5p, hsa-mir-6745, hsa-mir-145-5p, 
hsa-mir-96-5p, hsa-mir-221-3p, hsa-mir-9-5p. Many of these 

Figure 3: Network analysis for the association of input genes with transcription factors using the JASPAR dataset. Red circles (input genes) 
and green squares (output transcription factors).
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miRNAs, as reported in the literature, have been shown to 
inhibit collagen synthesis either by directly targeting the 
enzymes involved or by activating MMPs [97–102]. These 
findings could have significant implications for understanding 
the role of miRNAs in regulating the expression of collagens 
and could pave the way for new therapeutic interventions in 
the treatment of various collagen-related disorders.

Our analysis using networkanalyst.ca revealed a 
correlation between the selected transcription factors and 
miRNAs regulating expression of Col I and Col III (Figures 5 
and 6). As both transcription factors and miRNAs regulate the 
expression of genes encoding proteins, we further analyzed 
the data to determine their association/co-expression. 

The selected transcription factors YY1, TP53, FOXL1, 
and POU2F2 have a betweenness of 90547.45, 45841.9, 
42337.65, and 2372.42 respectively after applying the 
betweenness filter as 1. According to the results of the network 
analysis, it was predicted that YY1 and POU2F2 may interact 
with various miRNA such as hsa-let-7a, hsa-mir-376b, hsa-
mir-29a, etc., to directly regulate COL3A1 expression. 
Additionally, they may also interact with miRNA such as 
has-mir-515- 5p, hsa-mir-124, hsa-mir-663, hsa-mir-17, etc. 
to regulate the enzymes involved in collagen synthesis.

Recent literature showed that miRNA let-7a played 
important roles in hypoxia-related atrial fibrosis by inhibiting 
collagen expression and post-transcriptional repression by 
the JNK pathway [103]. Another study showed that miR-
663a can control collagen 4 secretion in normal and ER 
stress conditions. Inhibiting PLOD3 expression by miR-663a 
reduces extracellular type IV collagen accumulation [68]. 
A study revealed that LINC00673 promoted breast cancer 
progression by acting as a ceRNA to upregulate MARK4 
via miR-515-5p sponging, facilitated by YY1-mediated 
transcriptional activation [104]. 

The selected transcription factors for COL1A1 and 
COL1A2 (PPARG, TFAP2A, SREBF1, NFIC, and FOXC1) 
have a betweenness (interaction score between 2 genes) of 
87428.3, 54703.5, 48790.9, 16903.8 and 11321 respectively. 
According to the network analysis, it is predicted that the 
selected transcription factors can interact with multiple 
miRNAs and regulate the expression of alpha subunits of 
collagen type 1. For instance, PPARG is predicted to interact 
with hsa-mir-563 to regulate COL1A2, and with hsa-mir-218 
to regulate COL1A1. Literature also suggests that these 
miRNAs can regulate the subunits of collagen [105,106]. 
Some of the other predicted miRNAs that may regulate the 
expression of COL1A1 and COL1A2 with these transcription 

Figure 4: Network analysis for the association of input genes with microRNAs. Red circles (input genes) and green squares (output miRs).
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factors through regulating the enzymes include hsa-mir-
5002-3p, hsa-mir-135-a, hsa-mir-101, hsa-mir-637, hsa-mir-
339-5p, hsa-mir-21, hsa-mir-124, and has-mir-34 among 
others. Literature suggests that mir-637 can regulate cell 
proliferation and migration by suppressing MMP2 expression 
via the Smad3 pathway [107]. 

A recent study has found that overexpressing miR-
101 decreased COL1, COL3, and α-SMA expression in 
Hypertrophic Scar Fibroblasts. MiR-101 mimics effectively 

suppressed collagen deposition in the bleomycin-induced 
fibrosis mouse model [108]. Another study found that 
inhibitors of miR-34a and miR-34c may have played a role 
in reducing liver fibrosis by upregulating the expression 
of PPARγ and downregulating the expression of α-smooth 
muscle actin in activated human HSCs [109]. In a recent in 
silico investigation that targeted the molecular mechanisms 
involved in both normal odontogenesis and oral/dental 
disorders, an interaction was found between TFAP2a and 
hsa-mir-135-a [110].

Figure 5: Network analysis of transcription factors co-expressed with microRNAs regulating COL3A1 and associated enzymes. The red circle 
represents input genes, and the green squares represent output microRNAs.

Figure 6: Network analysis of transcription factors co-expressed with microRNAs regulating COL1A1, COL1A2, and associated enzymes. 
The red circle represents input genes and the green squares represent output miRs. 
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The outcomes derived from in-silico network analysis 
present a compelling proposition that transcription factors 
(TFs) and microRNAs (miRs) could potentially govern the 
expression of Col I and III. It is crucial to acknowledge that 
these findings are exclusively grounded in computational 
bioinformatics analyses. To establish the robustness and 
physiological relevance of these predictions, it is imperative 
to conduct thorough in-vitro and in-vivo validation. It is 
pertinent to note that in-silico analyses inherently bear 
limitations, and their extrapolation to biological systems 
necessitates empirical verification.

Conclusion
The dynamic expression of collagen types I and III 

throughout the distinct stages of wound healing holds pivotal 
significance for facilitating optimal tissue recovery without 
the undue formation of scar tissue, thereby contributing 
to the effective restoration of injured tissue function. The 
identification of key regulators governing the expression 
of Col I and III emerges as a critical pursuit in this context. 
Leveraging in-silico analyses, the present study offers 
predictions regarding several transcription factors (TFs) 
and microRNAs (miRNAs) with potential specificity in 
modulating Col I and III.

The conducted network analysis, encompassing diverse 
genes expressed across various stages of collagen synthesis, 
assumes paramount importance. This analytical approach not 
only elucidates the intricate interplay among these genes but 
also serves as a foundational framework for guiding future 
research endeavors and therapeutic interventions. The gleaned 
insights from the network analysis provide a roadmap for the 
design of targeted studies aimed at deciphering the regulatory 
mechanisms governing collagen phenotype dynamics 
during the different phases of wound healing. Ultimately, 
this scientific groundwork has the potential to inform the 
development of therapeutic strategies tailored to modulate 
collagen expression, thus influencing the outcome of wound 
healing and tissue regeneration.

Key Points
•	 The dynamic expression of collagen types I and III 

throughout the distinct stages of wound healing holds 
pivotal significance for facilitating optimal tissue 
recovery without scar tissue formation and thus effective 
restoration of injured tissue function.

•	 Better understanding of the regulation of collagen 
phenotypes is critical in unraveling the complexities 
of disease process utilizing the transcriptional and 
translational approaches.

•	 Leveraging in-silico analyses, the present study offers 
predictions regarding several transcription factors and 
microRNAs with potential specificity in modulating Col 
I and Col III.

•	 Network analysis revealed an interaction between genes. 

•	 The findings lay a foundational framework for guiding 
future research and therapeutic in-terventions to promote 
extracellular matrix remodeling, wound healing, and 
tissue re-generation after an injury by modulating collagen 
expression. 
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