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Abstract
Lymph node status is an indispensable examination for breast cancer 

therapy. To detect small, inconspicuous metastatic carcinomas, pathologists 
usually require immunohistochemical (IHC) staining for cytokeratin (CK). 
Here, we proposed an IHC-supervised algorithm to create virtual CK 
masks in lymph node hematoxyline and eosin (H&E) images and evaluated 
its clinical utility. We enrolled 194 patients with breast cancer surgery-
related axillary lymph nodes containing variously sized metastases. The 
deep learning network, Unet++ with EfficientNet-B7 as the backbone, was 
trained with the ground truth extracted from consecutive or re-stained CK. 
At the pixel level, the model had high accuracy (0.98 on average) and 
decent recall (0.64 on average) and performed best in macrometastasis, 
followed by micrometastasis and isolated tumor cells (ITC). At the whole-
slide image (WSI) level, all 25 slides with macro-metastases and most 
micro-metastatic (15/16) were classified correctly. For ITC, 17/19 patients 
were identified; however, certain benign cells were misrecognized in 
18/19 negative patients. In clinical settings, artificial intelligence can help 
pathologists detect micrometastatic carcinoma and significantly decrease 
reading time. IHC-supervised deep learning is robust and efficient, 
providing substantial, high-quality ground truth. The virtual CK masks and 
augmented WSI system enhanced pathologists’ ability to search for tumors 
in the lymph nodes.

Keywords: Immunohistochemistry; Artificial intelligence; Breast cancer; 
Virtual cytokeratin; Lymph node.

Introduction
Breast cancer is the most common malignancy among women. 

According to the World Health Organization, there were 2.3 million women 
diagnosed with breast cancer and 670,000 deaths worldwide in 2022. To 
evaluate these patients, axillary sentinel lymph node sampling is critical for 
determining surgical choice, cancer staging, and treatment strategies [1]. 
If macrometastasis (> 2 mm) is not observed in the sentinel nodes during 
surgery, axillary dissection would be waived, and postoperative lymphedema 
could be prevented. For nodes with small metastatic foci (≦ 2 mm), such 
as micrometastases or isolated tumor cells (ITC), patients can be treated 
with radiotherapy or chemotherapy [2]. However, detecting small metastatic 
lesions in frozen or permanent sections is challenging for pathologists. 
Immunohistochemical staining (IHC) with a cytokeratin (CK) antibody is 
commonly used to reveal these areas, helping pathologists discover missed 
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carcinomatous cells in 12%–29% of negative patients [3]. 
With deep learning and computing power development 
in recent decades, studies on digital pathology and image 
analysis with artificial intelligence (AI) have flourished [4, 
5]. Detecting metastatic carcinoma in breast surgery-related 
lymph nodes is one of the major focuses of this field [6, 7]. 
In the CAMELYON 16 challenge, research teams used the 
most advanced neural network structures at the time (such as 
GoogLeNet, ResNet, and VGG-16) to create algorithms to 
detect metastatic carcinoma. The top five models competed 
with pathologists in the datasets provided, and some performed 
better than humans in patients with micrometastasis. 
However, a dataset based on human annotations must first 
be built to train and test these models. As only pathologists 
can identify lesions, experts must perform tedious labeling, 
requiring substantial amounts of time and money. Humans 
cannot precisely delineate the tumor area; because of this, the 
manual ground truth is not perfect, which makes it difficult 
for AI to learn from.

To solidify the ground truth, researchers have used 
IHC images to assist pathologists in labeling data [8, 9]. 
Phosphorylated histone H3 IHC can help pathologists 
accurately annotate mitosis and prevent the mislabeling of 
mimickers. Additionally, some studies have directly extracted 
IHC-positive areas using color deconvolution and used 
them as the ground truth to train algorithms [10, 11]. IHC-
based ground truth is more precise and accurate (depending 
on the correlation between the targets and antibodies) than 
handcrafted data, which mitigates the training data demand 
and alleviates the dependence on expertise, allowing valuable 
expert resources reserved for model evaluation and clinical 
validation. With modern hardware and programming 
platforms, building deep-learning neural networks is easier if 
datasets are available. However, an algorithm acts similarly 
to a car engine and is only a core part of the application 
software. To assess the clinical benefits, the digital pathology 
environment and implementation must be considered [4]. 
Researchers have recently deployed models in clinical 
workflows and seen benefits [12, 13]. In this study, we used 
CK IHC images as the ground truth to create a virtual CK 
staining model that can predict the epithelial area in breast 
cancer surgery-related axillary lymph node hematoxylin and 

eosin (H&E) images. In addition, we implemented AI in 
the user interface and analyzed how it improved diagnosis 
accuracy and efficiency.

Methods
This study was approved by the Research Ethics Review 

Committee of the Far Eastern Memorial Hospital, New Taipei 
City, Taiwan (No. 112230-E/DPAI-009). All slides and 
blocks in the study were used in a clinical diagnostic setting, 
retrieved from the repository, and did not contain personal 
information. All methods were performed in accordance with 
relevant guidelines and regulations. The requirement for 
informed patient consent was waived by the Research Ethics 
Review Committee.

Case collection
In this study, 194 patients with breast cancer surgery-

related axillary lymph nodes were enrolled, and blocks 
were retrieved from Far Eastern Memorial Hospital (New 
Taipei City, Taiwan) between January 2020 and December 
2023. Twenty-eight patients were benign, and 166 contained 
metastases of various sizes (Table 1).  The patients were 
separated into training sets, including a consecutive CK 
group (Set A), a re-stained CK group (Set B), and test sets. 
Test Set B, a subset of Test Set A, was designed for clinical 
performance evaluation.

Specimen staining and image acquisition
The retrieved formalin-fixed paraffin-embedded blocks 

were cut into 5-μm-thick sections and mounted on hydrophilic 
slides. For the consecutive CK group, the two nearby slides 
were stained with H&E and CK antibodies (AE1/AE3/
PCK26, Ventana Medical Systems, Oro Valley, AZ, USA) 
on a Benchmark Ultra (Ventana Medical Systems). The 
slides were scanned with a Hamamatsu S210 (Hamamatsu, 
Iwata City, Suizuoka, Japan) at 40× magnification (0.23 μm 
per pixel resolution) and saved in NDPI format. In the re-
stained CK group, one section was cut from each block and 
stained with H&E. The slides were then scanned, and the 
coverslips were removed. After bleaching with potassium 
permanganate, the slides were re-stained with CK for IHC 
and scanned.

  Cases
Diagnosis

Macro-metastasis Micro-metastasis Isolated tumor cells Negative
Training Set A (Consecutive) 108 78 12 11 7

Training Set B (Re-stained) 14 6 2 4 2
Test Set A

72 25 16 12 19
(Re-stained)
Test Set B

51 22 8 5 16
(Re-stained)

Table 1: Case enrollment and ground truth diagnosis.
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Model training and fine-tuning
The Unet + + neural network with EfficientNet-b7 as the 

backbone was pre-trained on ImageNet. The first model was 
trained using Set A, which consisted of 108 H&E-stained 
whole-slide images (WSIs) and their corresponding CK 
images (Figure 1).  The ground truth was extracted using color 
deconvolution after alignment. However, image deviations 
between consecutive slides still existed. To enhance the first 
model, another 14 H&E-stained WSIs and their re-stained CK 
images (Set B) were added for fine-tuning, resulting in the 
second model. Observing that the predictions of this second 
model on Set A were already better than the ground truths 
obtained from consecutive CK images, this second model 
was used to infer the H&E images of Set A and create pseudo-
labels. Finally, the refined Set A and Set B were combined to 
fine-tune the final model (semi-supervised learning).

Clinical performance evaluation of the lymph node 
model

To evaluate how this AI could aid pathologists, we chose 
51 lymph node slides (Set B) for two pathologists (Drs. A 
and B) to read in three different modalities: glass slides, WSI 
without AI, and WSI with AI. In the first run, the pathologists 
examined the glass slides using a light microscope. Once the 
pathologists diagnosed, the slides were scanned, bleached, 
and re-stained with CK to establish a definite diagnosis. After 
a washout period (more than 2 weeks) and case shuffling, 
they examined and diagnosed WSIs of the same cases 
again. The WSIs were then inferred using our AI within the 
Smart Pathology System (version 1.6.0; Quanta Computer, 
Taoyuan, Taiwan), where suspicious epithelial areas were 
highlighted with green masks; the software automatically 
measured mask sizes and classified the tumors into four 
categories: macrometastasis (> 2 mm), micrometastasis  

(≦ 2 mm), ITC (≦ 0.2 mm) and negative [3]. Finally, after 
another washout period, both doctors read the augmented 
WSIs using virtual epithelial masks. Diagnostic accuracy and 
time were recorded for performance evaluation.

Statistical analysis
Python (ver. 3.8.13; https://www.python.org/) was used to 

calculate model performance data, including the intersection 
of union (IoU), recall, precision, and area under the curve 
(AUC). Excel in Office 365 (Microsoft Corp., Redmond, 
WA, USA) was used for statistical analysis. The read time 
difference between modalities was analyzed using a paired 
t-test, and statistical significance was set at p < 0.05.

Results
Model performance at pixel-level

The model was evaluated for pixel-level classification 
using 72 cases in Set A (Figure 2 and Table 2). Macrometastasis 
showed the highest performance in terms of the predicted 
CK-stained area (average IoU: 0.66; recall: 0.81; AUC: 0.99), 
followed by micrometastasis (average IoU: 0.48; recall: 0.68; 
AUC: 0.99). ITC displayed lower scores (average IoU: 0.15; 
recall: 0.24; AUC: 0.96), owing to its small size.

Model performance at WSI-level
In the WSI-level classification (Figure 3), all 25 patients 

with macrometastasis were successfully categorized; 15 
of the 16 patients with micrometastasis were classified 
correctly, while one was incorrectly identified as ITC. In the 
patients with ITC, 17/19 were correctly identified. However, 
owing to the high sensitivity of our model, scattered benign 
cell aggregates (macrophages and endothelial cells) were 
misrecognized as small tumor nests in 18/19 negative 
patients.

 
Figure 1: Virtual cytokeratin (CK) neural network training workflow. The first model was trained with aligned consecutive CK images, then 
boosted with more accurate re-stained CK. The last step was semi-supervised learning with Set A pseudo-labels.
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  IoU (95% CI) Recall (95% CI) Precision (95% CI) Accuracy (95% CI) AUC (95% CI)

Macro-metastasis 0.6635 ± 0.051 0.8141 ± 0.047 0.7739 ± 0.035 0.9709 ± 0.007 0.9872 ± 0.003

Micro-metastasis 0.4848 ± 0.121 0.6817 ± 0.141 0.5888 ± 0.131 0.9993 ± 0.001 0.9942 ± 0.004

Isolated tumor cells 0.1475 ± 0.140 0.2445 ± 0.213 0.2546 ± 0.210 0.9998 ± 0.001 0.9558 ± 0.031

Table 2: Model performance in pixel-level.

 
Figure 2: Metastatic carcinoma predicted by the virtual CK. The algorithm inferred H&E images and detected carcinomatous cells. The 
prediction masks were consistent with CK-positive areas in patient with macro- and micro-metastasis. However, some isolated tumor cells (the 
fourth column) were missing.

 
Figure 3: Confusion matrix of model performance at whole slide 
image (WSI)-level. The model was over-sensitive to suspicious 
tumor cells; as a result, most negative cases were classified as 
isolated tumor cells (ITC). The red line separates macro-metastasis 
from other lesions. The model displayed perfect accuracy in macro-
metastasis.

Pathologist performance using different modalities
Using glass slides and microscopy, both pathologists could 

identify all patients with macrometastasis and negative cases, 
whereas only half of the micrometastases were correctly 
diagnosed, and all five patients with ITC were missed. When 
reading the WSIs, they diagnosed all macrometastases and 
negative lymph nodes; more micrometastases (six for Dr. A 
and five for Dr. B) were diagnosed, but all patients with ITC 

were still missed. With AI assistance (Figure 4), even more 
micrometastatic lesions were correctly recognized (seven for 
Dr. A and all eight patients for Dr. B), and one patient with 
ITC was noticed by Dr. B. Although a few benign mimickers, 
such as macrophages and endothelial cells, were mistaken by 
the AI in the negative cases, both pathologists excluded these 
false-positive objectives, which prevented overdiagnosis. 
Overall, pathologists had better accuracy with AI assistance, 
particularly in detecting small metastatic foci.

Both pathologists took less time to diagnose 
macrometastases with glass slides, followed by 
micrometastases and ITC (Table 3). The negative cases 
required the longest time because they had to check every 
corner of the sections. With WSIs, reading time maintained 
a similar pattern, but one of the pathologists (Dr. A) needed 
more time to check for micrometastases (22 s more on 
average), ITC (12 s), and negative cases (17 s), compared 
to using a microscope. However, when pathologists used 
pre-inferenced virtual CK masks (Figure 4) and automatic 
measurement, the time required to confirm micrometastasis 
dropped significantly (39 and 60 s less for Drs. A and B, 
respectively). The reading times for the ITC and negative 
cases decreased for Dr. B.
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Discussion
In histopathological examinations, it is essential to identify 

the epithelial component by grading dysplasia in cervical 
specimens [14], defining cancer areas in gastrointestinal 
biopsy [15], and screening for metastatic carcinoma in lymph 
nodes [3]. Year-long training is required for pathologists to 
recognize various epithelial components; however, even for 
experienced experts, it is still impossible to identify all types 

of epithelium on slides. Because of this, CK IHC is usually 
required to reveal these cells; it is an accurate and reliable tool 
for detecting specific proteins in epithelium-derived cells; 
however, it costs 10–20 US dollars per CK stain. Because 
of this, performing CK-IHC on each slide is impractical and 
uneconomical, increasing the financial and labor burden on 
the laboratory and delaying the turnaround time of reports. 
We wish to see if a virtual CK-stained AI could meet these 
demands. In this study, instead of manual annotation, we 

 
Figure 4: Virtual CK masks for pathologists. The software highlighted the predicted area in light green, which users easily noticed. The 
patient with ITC in column 2 was missed in the glass slide and WSI reading, but Dr. B recognized the lesion with the AI-aided system. A few 
macrophages and endothelial cells might deceive the AI, but pathologists could exclude them correctly.

Type

Glass slide WSI WSI with AI AI 
standaloneDr. A Dr. B Dr. A Dr. B Dr. A Dr. B

Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy

Macro-
metastasis 100% 8.2 100% 11.5 100% 8.2 100% 14.6 100% 5.3 100% 7.7 100%

Micro-
metastasis 50% 26.9 50% 73.6 75% 48.6* 62% 72.3 87% 9.3** 100% 12.7** 100%

ITC 0 34.6 0 136.2 0 46.4* 0 139.6 0 52.6 20% 62.0** 100%***

Negative 100% 37.9 100% 158.3 100% 54.8* 100% 137.3 100% 52.5 100% 57.3** 6%****

* WSI compared to glass slides, p < 0.05
** WSI with AI compared to WSI only, p <0.05
*** All 5 cases were classified as ITC by AI, but tumor cells were correctly located in only 3 cases.
**** In 16 negative cases, 14 and 1 were classified as ITC and micro-metastasis respectively.

Table 3: Diagnosis accuracy and average read time (sec) in different modalities.
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used consecutive and re-stained CK IHC to build a virtual 
CK algorithm that can predict metastatic carcinoma in lymph 
node H&E images. The IHC-supervised deep learning 
model achieved high accuracy in detecting variable-sized 
lesions; more importantly, it improved diagnosis accuracy 
and efficiency. Virtual CK algorithms, or AI models that can 
segment epithelial areas, have been studied for years. Initially, 
researchers used image textures such as local binary patterns 
to segment different areas in H&E [16]. Subsequently, 
deep learning was introduced and evolved from a simple 
convoluted neural network to a sophisticated transformer [14, 
17, 18]. However, human annotations are inevitably required 
as ground truth to train and evaluate these models regardless 
of how advanced neural networks are applied. Recently, 
studies have begun using IHC images as the ground truth 
to train models [10, 11]. IHC-supervised machine learning 
offers several advantages. IHC highlights target cells by their 
nature (proteins) rather than morphology, which pathologists 
rely heavily on, making the ground truth extracted from 
IHC more accurate. Additionally, IHC images can provide 
extremely precise and exquisite annotations at the pixel level, 
far beyond what humans are capable of. Lastly, research 
teams can harvest ground truth from IHC images regardless 
of their pathology expertise, which saves time and money. 
As a result, IHC images can offer economical, substantial, 
and high-quality datasets with a limited number of patients 
(122 training cases in our study, less than half of 270 cases in 
CAMELYON16), allowing AI to learn efficiently. 

IHC-supervised learning is efficient and can be applied 
to other immunostaining and study topics [19]. For example, 
if we replaced CK with CD45 to highlight lymphocytes, we 
could build a neural network to predict tumor-infiltrating 
lymphocyte areas and reveal the spatial information of 
intratumoral immune responses. Another possibility is to use 
desmin and S-100 antibodies to visualize muscle and neural 
tissues in gastrointestinal specimens, allowing the algorithms 
to segment the muscle layers and ganglions to facilitate the 
evaluation of tumor invasion depth and perineural permeation. 
Using generative AI [15, 19, 20], such as generative 
adversarial networks, computers can generate vivid images 
reminiscent of genuine IHC that corresponded perfectly to 
the original H&E stain without additional alignment. These 
alternative images are cheaper than real IHCs, reducing costs 
to the health insurance system. Instead of performing routine 
IHC, precious tissues (especially small biopsy specimens) 
can be preserved for molecular or genetic examination. IHC-
supervised AI or virtual IHC could be alternative assessment 
methods; however, they are not technically perfect. In this 
study, our model achieved a high accuracy (0.98 on average) 
and decent recall (0.64 on average) at the pixel level. In 
terms of the WSI level, the AI was oversensitive, and most 
negative cases were misclassified as ITCs as it mistook some 
macrophages and endothelial cells as tumor nests. Regardless 
of the size of these lesions, the AI classifies cases into ITC 

categories. The model had difficulty detecting discohesive 
tumor cells in a few patients with ITC (false negatives). 
For patients containing a small number of cancer cells (less 
than 100), the model did not find the actual lesion but only 
classified them as ITC by benign mimickers. We attempted 
an overfitting test for these difficult cases. Even if engineers 
simplified the dataset to force the model to be overfitted 
for difficult ITCs by adding target data to the training set, 
they still failed to detect discrete tumor cells, though this 
was impossible for pathologists. With the neural network 
structures used here, we assumed that more data might not 
improve performance, indicating that IHC-supervised AI or 
virtual IHC cannot replace the actual IHC staining.

Although AI cannot function as a real CK IHC, this 
study demonstrated that digital pathology combined with AI 
enhances pathologists’ diagnostic sensitivity and efficiency. 
Both pathologists had similar accuracy when reading the 
glass slides and WSI. They made better classifications for 
micrometastatic lesions because the measurement was more 
precise for WSI viewers; however, some may require extra 
time (less than 1 min) to navigate the WSI and measure 
the lesion. Both pathologists, aided by AI, observed more 
micrometastatic cancers in the lymph nodes. Because the 
software pointed out the suspicious foci in the WSIs, they 
could check these suspicious areas directly. In addition, 
the software quantified the tumor area and classified it into 
four categories, saving time as the pathologists did not 
have to manually measure it. However, the benefits of ITC 
are limited. Although the model correctly predicted parts 
of the tumor nests, pathologists could not confirm these by 
morphology. In terms of negative cases, the model falsely 
labeled scattered non-tumor cells, but the pathologists used 
less time because they did not need to examine whole lymph 
node sections. In summary, neither humans nor standalone AI 
performed perfectly; however, humans performed better with 
AI assistance. Rather than obsessing over the accuracy of AI, 
it is more realistic to focus on how it can support pathologists 
in clinical work [13]. This study had a few limitations. Most 
lymph node tissues were formalin-fixed after intraoperative 
examination (frozen sections), meaning that their morphology 
differed from that of frozen sections, which are commonly 
used for sentinel lymph node diagnosis. Frozen section 
images are unstandardized and contain various artifacts, such 
as nuclear retraction and chatter marks, which hinder model 
inference [7]. Obtaining restrained CK images for IHC-
supervised training is difficult. Additionally, the dataset was 
obtained from a single medical center. Because the quality 
of H&E staining differs among laboratories, the model will 
require fine-tuning and customization before being applied 
to other institutions. Finally, we analyzed the WSIs on a 
standalone computer, and the average inference time for one 
WSI file was approximately 5 min (using an NVIDIA A6000 
GPU). To minimize the waiting time (from doctor’s order to 
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complete inference), it will be necessary to integrate AI into 
a digital pathology information system; as a result, candidate 
cases can be pre-inferred before pathologists read the H&E 
stain.

In conclusion, we developed a CK IHC-supervised 
algorithm to detect metastatic carcinoma in lymph node 
H&E-stained images. The training pipeline was efficient 
and economical owing to its high-quality ground truth. The 
virtual CK AI was highly accurate for both macro- and micro-
metastases but was oversensitive. Despite this, it exhibited 
clinical benefits in supporting pathologists in achieving a 
better and quicker diagnosis. In the future, it will be necessary 
to incorporate diverse AI models into the digital workflow of 
pathologists.
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