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Abstract
Innovation in cytometry propelled it to an almost “omic” dimension 
technique during the last decade. The application fields concomitantly 
enlarged, resulting in generation of high-dimensional high-content data sets 
which have to be adequately designed, handled and analyzed. Experimental 
solutions and detailed data processing pipelines were developed to 
reduce both the staining conditions variability between samples and the 
number of tubes to handle. However, an unavoidable variability appears 
between samples, barcodes, series and instruments (in multicenter studies) 
contributing to "batch effects" that must be properly controlled. Computer 
aid to this aim is necessary, and several methods have been published 
so far, but configuring and carrying out batch normalization remains 
unintuitive for scientists with a purely biological university education. To 
address this challenge, we developed an R package called CytoBatchNorm 
that offers an intuitive and user-friendly graphical interface. Although the 
processing is based on the script by Schuyler et al., the graphical interface 
revolutionizes its use. CytoBatchNorm enables users to define a specific 
correction for each marker in a single run. It provides a visualization that 
guides you through quickly setting the correction for each marker. It allows 
corrections to be previewed and inter-marker effects to be checked as the 
settings are updated. CytoBatchNorm will help the cytometry community 
to adequately scale data between batches, reliably reducing batch effects 
and improving subsequent dimension reduction and clustering.
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Introduction
Innovation in cytometry propelled it to an almost “omic” 

dimension technique during the last decade, with the rising of 
both cytometry by time-of-flight (CyTOF, or mass cytometry) 
and spectral cytometry, allowing elaboration of panels up to 
30-50 parameters analyzed at the single cell level[1]. The 
application fields concomitantly enlarged, with data sets that 
include more and more (i) samples - specifically in human 
clinical studies, (ii) tissues from a single donor, and (iii) 
stimulated conditions for a single sample, all leading to an 
increase in the number of “tubes” composing an experiment. 
This results in generation of high-dimensional high-content 
data which have to be adequately designed, handled and 
analyzed[2].

Experimental solutions and detailed samples processing 
pipelines were developed to reduce both the staining 
conditions variability between tubes[3] and the number 
of tubes to handle/acquire, the later mainly consisting in 
barcoding of samples[4,5]. However, barcoding has its 
intrinsic limits in the number of samples that can be barcoded 
together, and acquisition of a single barcode (composed of 
tens of millions of cells) is very long and usually achieved 
in many runs, notably in mass cytometry in regard with its 
limited acquisition rate speed. Thus, large datasets are usually 
obtained during acquisitions spanning days or weeks. Despite 
the maximal attention paid by experimenters in standardizing 
their protocols, sequential manipulation and instrument 
instability over time[3] introduce variability between 

samples, barcodes and runs. The raise of multi-center studies 
also introduces an instrument-dependent effect that needs to 
be corrected to enhance data consistency[6]. All these sources 
of variations in results baseline participate to the commonly 
used “batch effects” denomination and have to be controlled 
properly[7–11].

Batch effects can be addressed at two levels of the 
experimental protocol. The instrument-related batch effect 
is mainly dependent on tuning and quality control (QC) 
accuracy, specific instrument sensitivity and sensitivity 
variations along acquisitions. Normalization methods based 
on calibration beads were developed for both flow[12,13] 
and mass cytometry[5] to counteract this variability level, 
and EQbeads (Standard BioTools Inc, San Francisco, CA, 
US)  were structurally included in mass cytometers design. 
However, these methods have their own limitations as 
illustrated below and by others[3,14]. Based on external 
controls (beads), they only aim to standardize the instrument. 
The experimental-related batch effects basically regroup all 
parameters of an experiment that can influence staining and 
detection efficiencies of samples, in addition to the instrument 
used for acquisition. 

To evaluate signal stability over batches/days, solutions 
have been developed, such as the inclusion of a “control” 
aliquot (i.e. a standard sample) in all batches. This design 
served as a substrate for the development of algorithms to 
correct batch effects[9]. Methods and software packages 
published so far[15–23] circumvent batch variations in 
channels intensity using either an “all-events” or a “pre-gated 
population-specific” adjustment. Whatever the package/
method considered, configuration as well as application of the 
normalization process across batches remains either obscure 
or unintuitive for scientists with “pure” academic background 
in biology (Table 1), which usually and historically lack 
training in computer science and mathematics.

Method Based on Define 
batches

Includes a 
clustering

Requires 
a standard 

sample
Align

Parameter 
to be 

chosen

Visual 
interface

Normalization
preview

iMuBAC harmony   auto No No

gaussNorm, fdaNorm -  1 detected 
peaks auto No No

cyCombine Combat   auto No No

CytoNorm -   
101 

quantiles auto No No

cytofRUV RUV  depth No No

CytofBatchAdjust -   1 percentile percentile No No

CytoBatchNorm CytofBatchAdjust  
1 (or 2) 

percentiles percentile Yes Yes

Table 1: Main published packages for batch effect correction

1: as no batch is defined, all samples are aligned; when batch information is available, the transform defined within each batch is applied to every 
sample of the batch, which removes differences between batches but keeps differences within each batch.
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computational biases in the downstream data analysis, which 
would only be identified after the correction has been applied.

To provide a comprehensive, transparent and interactive 
pipeline to reliably overcome the different levels of batch 
variability, we developed the CytoBatchNorm R package, 
which is adapted from CytofBatchAdjust code and 
methodology[19]. We illustrate its use with an experiment 
of 700 FCS files from 35 batches including 3 human tissues 
and benchmark it on two different data sets versus the two 
most-commonly used packages: CytofBatchAdjust[19] and 
CytoNorm[18]. This package is intended to be “ready-to-use” 
for experimenters without any R coding skills. We improved 
the CytofBatchAdjust R script by providing (i) an intuitive 
user-friendly interface, (ii) a visualization for each marker to 
help selecting the best percentile relative to the distribution 
of intensity across the control samples in each batch before 
proceeding with normalization, (iii) a comprehensive table to 
specify the percentile channel-by-channel, (iv) the ability to 
perform a bi-percentile adjustment, (v) dot-plots and output 
graphs to control the batch adjustment accuracy, (vi) code for 
the Windows system.

Methods
Dataset 1cxv

Datasets structures are summarized in Table 2

The CytofBatchAdjust R script released by Schuyler et al. 
in 2019[19] smartly proposed an “all-events” adjustment of 
peaks intensities for each channel of the control tube included 
in each batch to the peaks intensities of the control tube of 
a referent batch. This adjustment is performed channel by 
channel, independently of each other. It can be achieved 
with different options, scaling on quantiles or on a specified 
percentile, considering or not zero values and with or without 
arcsinh transformation of data. As depicted by the authors, 
the “quantile” adjustment is not adequate for normalization 
of cytometry data, because it sometimes creates artefacts that 
can only be identified on a bi-parametric plot. Indeed, when 
the distribution of events in the control sample differs even 
slightly between the reference batch and the other batches 
(e.g. the proportion of events in the positive and negative 
peaks), the “quantile” adjustment shifts events from one peak 
to the other. By contrast, the “percentile” method allows the 
user to choose a single percentile value (from 1 to 99) which 
identifies an intensity in each batch and linearly scales each 
batch in order to align those intensities to the intensity of the 
reference batch. Determining the best percentile for a given 
channel has so far been tricky and empirical, mainly because 
users lack an indicative visualization. If the percentile is 
chosen in a region where the distribution of events varies 
between the control tubes of different batches, the channel 
scaling will be aberrant in some batches, introducing 

Datasets Panel Size Number of 
batches

Number of 
patients Barcoding Number of output files Nature of control sample

Dataset 1 46 35 38 yes 700 Frozen healthy patient PBMC

Dataset 2 44 5 14 no 19 Frozen healthy patient PBMC

Table 2: Datasets structure

Sample collection
Atrial Myocardial Tissue (AT) obtained from the right atrial 

appendage before aortic cross-clamping and cardioplegia, 
Epicardic Adipose Tissue (EAT) and PBMC from 38 patients 
undergoing a Surgical Aortic Valve Replacement (SAVR) 
(POMI-AFclinical study NCT#03376165; PI: D Montaigne) 
as well as PBMC from a single healthy donor were analyzed 
by mass cytometry. Written informed consent was obtained 
from all patients before inclusion. Non-parenchymal cells 
fraction from AT and EAT were prepared from tissues 
immediately cleaned, minced and digested at 37°C for 45 min 
in 0.1% collagenase I and PBMC were obtained as previously 
described[24]. 

Staining protocol
Detailed antibody panel and staining protocol were 

described previously[24]. Briefly, thawed PBMCs (3x106 
cells) and non-parenchymal cells from AT and EAT (40x103 
to 1.4.106 cells) were sequentially stained for viability, for 
extracellular targets sensitive to fixatives, barcoded, stained 

for extracellular markers not sensitive to fixatives, for 
intracellular targets and for DNA as summarized in Table 3. 
Six independent pools of 19 experimental samples (2 pools 
of PBMC, 2 pools of AT, 2 pools of EAT) added with one 
aliquot of the control PBMC sample from a single healthy 
donor were processed independently for barcoding (each 
pool for a total of 20 samples), as summarized in Graphical 
Abstract. 

Acquisition
Cells were resuspended in Maxpar Water at 5x105 

cells/mL with 1:10 volume of Four-Element Calibration 
Beads (Standard BioTools Inc, San Francisco, CA, US) 
and analyzed on an Helios instrument (Standard BioTools 
Inc, San Francisco, CA, US). Runs were carried out for a 
maximum of 150 minutes at a maximum rate of 500 events/
sec, and a quick tuning was performed between each run.

Datasets 2
Datasets structures are summarized in Table 2
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Target Clone Antibody 
Isotype

Metal 
Tag

Barcoding 
fixative 

sensitivity
Intracellular

Hand 
coupling/ Staining 

Concentration Kit Supplier Kit 
reference

Antibody 
Supplier

Antibody 
reference Antibody lot

polymer

CD45 HI30 Mouse 
IgG1, κ 89Y       1 µg/100µL     Std BioTools 3089003B 1151903

CD282 W15145C Mouse 
IgG2a, κ 103Rh     Maxpar X8 2 µg/100µL Std BioTools 201140A Biolegend 392302 B250232

Pan-CEA TET2 Mouse g 
G2bka 113In     Maxpar X8 2 µg/100µL Std BioTools 201140A Cliniscience sc-59875 l2806

Connexin 43 578618 Mouse 
IgG2A 115In     Maxpar X8 2 µg/100µL Std BioTools 201140A R&D System MAB7737 CGTK0118061

CD8 SK1 Mouse 
IgG1, κ 116Cd     Maxpar 

MCP9 2 µg/100µL Std BioTools 201116A Biolegend 344727 B265197

Perforin dG9 Mouse 
IgG2b, κ 139La   X LightningKit 2 µg/100µL Expedeon M139-

0100 Biolegend 308102 B267038

CCR2 K036C2 Mouse 
IgG2a, κ 140Ce     Maxpar X8 2 µg/100µL Std BioTools 201140A Biolegend 357202 B240747

CD196/CCR6 G034E3 Mouse 
IgG2b, κ 141Pr Yes     1 µg/100µL     Std BioTools 3141003A 3471805

CD19 HIB19 Mouse 
IgG1, κ 142Nd       1 µg/100µL     Std BioTools 3142001B 381907

CD127 A019D5 Mouse 
IgG1, κ 143Nd Yes     1 µg/100µL     Std BioTools 3143012B 2501815

CD38 HIT2 Mouse 
IgG1, κ 144Nd Yes     1 µg/100µL     Std BioTools 3144014B 2991817

CD163 GHI/61 Mouse 
IgG1, κ 145Nd       1 µg/100µL     Std BioTools 3145010B 2351602

IgD IA6-2
Mouse 
BALB/c 
IgG2a, κ

146Nd       1 µg/100µL     Std BioTools 3146005B 671816

CD20 2H7 Mouse 
IgG2b, κ 147Sm       1 µg/100µL     Std BioTools 3147001B 2601808

CD34 581 Mouse 
IgG1, κ 148Nd Yes     1 µg/100µL     Std BioTools 3148001B 1841814

CD194 L291H4 Mouse 
IgG1, κ 149Sm Yes     1 µg/100µL     Std BioTools 3149029A 2991816

CD64 10.1 Mouse 
IgG1, κ 150Nd     Maxpar X8 2 µg/100µL Std BioTools 201150A Biolegend 305029 B245146

CD123 6H6 Mouse  
IgG1 151Eu       1 µg/100µL     Std BioTools 3151001B 2431808

TCRgd 11F2
Mouse 
BALB/c 

IgG1
152Sm Yes     1 µg/100µL     Std BioTools 3152008B 441915

CD185 RF8B2 LOU/M 
IgG2b, κ 153Eu       1 µg/100µL     Std BioTools 3153020B 1621806

CD3 UCHT1 Mouse 
IgG1, κ 154Sm       1 µg/100µL     Std BioTools 3154003B 71917

CD27 L128
Mouse 
BALB/c 

IgG1
155Gd Yes     1 µg/100µL     Std BioTools 3155001B 1731805

CD183 G025H7 Mouse 
IgG1, κ 156Gd Yes     1 µg/100µL     Std BioTools 3156004B 2991818

Fox P3 259D/C7
Mouse 
BALB/c 

IgG1
157Gd   X Maxpar X8 2 µg/100µL Std BioTools 201157A BD 560044 817636

CD33 WM53 Mouse 
IgG1, κ 158Gd       1 µg/100µL     Std BioTools 3158001B 1031707

CD11c Bu15 Mouse 
IgG1, κ 159Tb       1 µg/100µL     Std BioTools 3159001B 2991809

CD28 CD28.2 Mouse 
IgG1, κ 160Gd       1 µg/100µL     Std BioTools 3160003B 3181807

Table 3: Antibody panel from Dataset 1
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Sample collection
In vitro-expanded tumor-infiltrating lymphocytes (TILs) 

were generated from tumor samples of 14 cancer patients, 
using an improved TIL culture method [25]. PBMCs from a 
single healthy donor were used as control sample. Samples 
were collected and biobanked from patients enrolled under 
protocols approved by the Lausanne university hospital 
(CHUV), Switzerland. Patients and healthy donors’ 
recruitment, study procedures, and blood withdrawal were 
approved by regulatory authorities and all patients signed 
written informed consents. 

Staining protocol
Frozen TILs (1x106 to 5.106 cells) and PBMCs (3x106 

cells) were thawed, rested overnight, and labelled with 
44 metal-coupled antibodies (Standard BioTools Inc, San 
Francisco, CA, US & in house). Cells were first stained 
for viability then stained for extracellular targets (Standard 
BioTools 400276 Protocol). 

Cells were then fixed using Cytofix fixation buffer (BD 
Biosciences) and permeabilized using Phosflow Perm Buffer 
III solution (BD Biosciences). Next, intracellular staining was 
performed (antibody incubation: 30 min at RT). For DNA 
staining, cells were next incubated overnight at 4°C with cell 
intercalation solution following the manufacturer’s protocol 
(Standard BioTools 400276 Protocol). 

Acquisition
Cells were finally washed and resuspended in a Maxpar 

Cell Acquisition Solution containing EQ Four Element 
Calibration Beads (Standard BioTools Inc, San Francisco, 
CA, US) at a cell concentration of 106 cells/mL, immediately 
prior to CyTOF data acquisition. Five runs at different days 
were realized using an Helios Mass Cytometer (Standard 
BioTools Inc, San Francisco, CA, US) at a maximum rate of 
500 events/sec.

Data pre-processing
Raw mass cytometry data (Datasets 1 and 2) were first 

normalized with the calibration EQ-bead passport pre-loaded 
in the CyTOF Software version 7 (Standard BioTools 400276 
Protocol) and then debarcoded following the manufacturer’s 
instructions (Dataset 1). Data pre-processing was performed 
using Cytobank (Beckman Coulter, Indianapolis, IN, USA) 
for Dataset 1 or FlowJo 10 (Becton Dickinson, Franklin 
Lakes, NJ, US) for Dataset 2.

Batch effect normalization
Dataset 1

The 6 barcoded pools of samples all included an aliquot 
of a control PBMC sample from a single healthy donor 
(C20). Those 6 barcoded pools were acquired on an Helios 
instrument through a total of 35 different runs dispatched as 

follows: PBMC pool 1 – 10 runs; PBMC pool 2 – 10 runs; 
AT pool 1 – 6 runs; AT pool 2 – 2 runs; EAT pool 1 – 4 
runs; EAT pool 2 – 3 runs (Graphical Abstract). Those 35 
runs were thereafter considered as 35 independent batches in 
order to compensate for possible signal drift over duration of 
acquisition of a single barcoded pool. 

The C20 included in each barcoded run was gated on 
nucleated - single - biological - non beads - CD45+ live 
events (Supplemental Figure 1) and used as an anchor 
for application of the modified CytofBatchAdjust R code 
published by Schuyler et al.[19] as exposed in the RESULTS 
section. Batch-adjusted FCS files from each single sample 
were concatenated to reconstitute original samples.

Dataset 2
Five batches of samples, all including an aliquot of a control 

PBMC sample from a single healthy donor, were acquired on 
an Helios instrument over a total of 5 different runs (1 run per 
batch). The PBMC from the healthy donor included in each 
batch was gated on nucleated - single - biological - non beads 
- CD45+ live events (Supplemental Figure 1) and used as an 
anchor for application of the modified CytofBatchAdjust R 
code published by Schuyler et al.[19]. Dataset 2 served for 
benchmarking against CytoNorm[18], which was performed 
as a plugin supplied by FlowJo software (Becton Dickinson, 
Franklin Lakes, NJ, US) following the provider’s instructions.

Spillover compensation
Dataset 1

For compensation matrix calculation, Comp Beads 
(Becton Dickinson, Franklin Lakes, NJ, US) were single 
stained in CSB with 1µg of each antibody for 30 minutes 
at RT. Exception was made for the anti-CADM1 antibody 
labelled with 196Pt which is a chicken IgY, that is not 
captured by Comp Beads, which was replaced by an anti-
CD8 (clone SK1, Mouse IgG1, κ) conjugated with the 
same batch of 196Pt. After two washes with CSB and two 
wash with Marxpar Water, beads were mixed and acquired 
as a single tube at a maximum rate of 500 events/sec. The 
FCS file from mixed single stained beads was imputed in 
CATALYST R[26] using the NNLS method. The output 
compensation matrix (Figure 6 C) was applied to all the files 
and compensated FCS files were edited and processed to data 
analysis.

Data analysis
Debarcoded - batch normalized – concatenated - 

compensated FCS files were gated on nucleated - single - 
biological - non beads - CD45+ live events (Supplemental 
figure 1) and processed for phenotype analysis using R 
4.0.0 and a modified version of the Cytofkit package[27]  
(http://github.com/i-cyto/cytofkitlab), including UMAP 
computation using the uwot package. Dimension reduction 
was performed using t-SNE or UMAP algorithms. Multi-
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dimensional scaling was performed using the CytoMDS R 
package[28]. Illustrations were edited using the Cytofkit 
ShinyAPP browser[27] and Cytobank (Beckman Coulter, 
Indianapolis, IN, USA).

Software
The cytoBatchNorm package as well as recommendations 

and commands are described on the github repository: https://
github.com/i-cyto/cytoBatchNorm. The package is simply 
installed and launched using the commands below in R or 
RStudio.

Download and installation:
devtools::install_github("i-cyto/cytoBatchNorm")
Launching:
library(cytoBatchNorm)
cytoBatchNormGUI()

Results and Discussion
Computer-assisted treatment of data, whatever the kind of 

treatment, has to be finely tuned and controlled carefully to 
avoid computational artefacts as well as data distortions that 
could deteriorate data consistency and induce uncontrolled 
bias in the downstream analysis pipeline. Considering batch 
effects correction, this burden should be taken in consideration 

cautiously especially considering the complexity of the 
dataset (number of batches, samples, markers), as both 
the risk of such data distortion and the possibility that the 
experimenter misses it during visual control of corrected data 
increase with the dimensionality of the dataset.

As a rational and accessible solution, we developed an 
intuitive, user-friendly tool based on R Shiny package that 
does not require any practice in R language or programming 
skills. This tool can easily be installed and launched using 
simple commands referenced in the “software” section. The 
Web interface allows intuitive, point-and-click navigation 
through the different steps of the normalization pipeline: 
selection of the dataset, identification of the different batches/
control tubes and of the referent control tube, selection of the 
channels and tuning of the batch correction process as well as 
launching the correction. 

A detailed workflow (DWF) is provided as supplemental 
data and describes the procedure step by step.

“Create Bunch” menu
The “Create Bunch” menu (Figure 1A, DWF steps 1-5) 

asks for the name of the current experiment to be created, 
storage directory, cytometry technology as well as the 
directory containing the FCS files to adjust. To finish, click 
on the “Create” button.

 
Figure 1: Sequential operation of the batch effect normalization interface. A: Bunch creation menu. B: Batch setup menu (detailed in figure 2). 
C: Tuning parameters menu (detailed in figure 3 and 4).
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“Setup Batch” menu
The “Setup Batch” menu (Figure 1B, DWF steps 6-10) 

allows to define keywords for automatic identification of 
batches and control tubes (termed “anchor”, “C20” in our 
example) for each batch inside the FCS files directory. The 
“finalize” button launches the identification process and 
creates two tables (.xlsx) “pheno” and “panel” which can be 
accessed using the “open project dir” button (Figures 1B and 
2A-2, DWF step 8). To indicate the markers to be normalized 
and the control files, these tables must be modified and 
saved using appropriate spreadsheet software. Once all 
the information has been entered, the interface is updated 
by clicking on the “reload” button (Figure 2A-2 and 2B-2, 

DWF step 10). The “pheno” table (Figure 2A-3) lists the files 
identified as control tubes (column “sample_ID_is_ref” = 
“Y”) and the reference batch control tube (column “sample_
ID_is_ref” = “Y” and column “batch_is_ref” = “Y”). The 
choice of the reference batch is decided by the user, setting 
only one “Y” in the “batch_is_ref” column onto the proper 
row/file in the .xlsx “pheno” table, saving it, and then clicking 
on the “reload” button. The “panel” table (Figure 2B-3) 
summarizes the attributes of the FCS files loaded as well 
as the percentile value that will be used for each channel’s 
adjustment (by default 0.95), and can be edited the same 
way as the “pheno” table, if necessary, saved and reloaded 
similarly.

 
Figure 2: Batch setup menu. A: Tab for setup of the phenotype of the data. B: Tab for setup of the panel of the data. First step (A1, B1) is 
the identification of the batches and the referent control tubes of each batch using keywords. We strongly recommend to clearly standardize 
keywords in files nomenclature, i.e. « Batch » and « C20 » respectively in the example displayed. Identification is launched by clicking on the 
« finalize » button. Users can then check if this identification of batches and referent control tubes is accurate in the pheno tab (A3) and if the 
indexing of the panel is adequate (B3). Those tables can be modified with spreadsheet software using the .xlsx files available in the project 
directory, and then reloaded using the « reload » button (A2, B2). 
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Tune Params” menu
The CytoBatchNorm interface makes two major additions 

to the normalization settings. Firstly, the percentile is defined 
independently for each marker. Secondly, a display allows 
you to determine which percentile will be the most appropriate 
and most accurate for normalizing the whole experiment. The 
“Tune parameters” step (Figure 1C and Figure 3, DWF steps 
11-18) offers a first tab which presents the histograms of all 
control tubes from all batches for the selected channel in a 
ridgeline plot and superimposes a line through histograms 
for each percentile of the default percentile set as illustrated 
in Figure 3A (0.20, 0.40, 0.60, 0.70, 0.80, 0.90, 0.95, 0.97, 
0.99). Beforehand, a sampling of files has to be achieved 
using the “sample” button. Then, users can preview the effect 
of normalization with different percentiles and different 
transformations in the adjusted and raw intensity graphs. To 
refine and validate the previewed batch effect correction, we 
also developed a set of control plots presenting and comparing 
multiple batches at once. The “Review scaling” tab (Figure 
3B) displays the scaling factors that would be applied with 
the selected parameters. The “Review functions” tab (Figure 
3C) shows the raw vs pre-normalized events for the active 
channel which allows a direct control of the linearity of the 
normalization. The “Review bi-parameters plot” tab (Figure 
3D) allows to build a dot-plots of the active channel vs another 
channel and to check whether an artefact would be induced 
by the normalization. These four tabs allow an enlightened 
determination of which percentile value is the most suitable 
to scale a given channel, considering the distribution of events 
along the range, some possible variations in this distribution 
across batches and notably questioning the relevance of 
choosing a percentile value in the positive or negative peak 
or in the positive “queue” if so.

In mass cytometry, zero-values can represent a large part 
of events depending on the couple marker/metal-tag, which 
raises questions. Excluding them may greatly change the 
distribution of percentiles along some channels. Beyond the 
“zero values” lays the consideration of the negative peak for a 
given channel, including in the case of unimodal distribution 
of the events. Indeed, correcting batch effect on the positive 
peak of a given channel (which is intuitive, as for CD8 in our 
illustration, Figure 3A) will rescale the entire channel in order 
to align the positive peak of the batch control tubes to the 
referent control, shifting values up or down along the whole 
scale. Depending on the amplitude of the scaling required, 
it is possible for almost negative events to be moved away 
from the commonly considered “negative zone” of a channel. 
To enable users to control this potential adverse effect of a 
single-percentile adjustment, we implemented a bi-percentile 
adjustment function, with the idea of defining one percentile 
for the alignment of the positive peak and another percentile 
for the alignment of the negative peak (DWF steps 14 and 
15). As illustrated in Figure 4, this is performed by choosing 
the “percentile_lohi” option in the “method” menu and 

entering two percentile values separated with a comma in the 
“percentile” window (Figure 4A-3). As for the “percentile_
hi” option, pre-diagnostic graphs are automatically displayed 
(Figure 4B). When compared to a single 0.95 percentile 
adjustment on the positive peak for the CD8 channel of 
our dataset (Figure 4C), bi-percentile adjustment on 0.95 
(positive peak) and 0.70 (light green line in the queue of 
the negative events) clearly harmonizes the distribution of 
events between batches, but with a risk of distortion. Indeed, 
although linear, the bi-percentile method can cause “weak” 
events to shift to zero/negative values differently from batch 
to batch. To avoid this effect and maintain the positive or zero 
intensities inherent in mass cytometry, we recommend using 
the “percentile_lohi_pos” method.

The individual percentiles chosen for each channel in 
the “Tune Params” menu are retained in the interface and 
will be applied when clicking on the “preview” button from 
the “Process menu” (see below). This represents a major 
improvement, as compared to the original package in which 
users had to realize multiple successive runs, one for each 
given percentile value, with specification of which channels 
had to be adjusted for each specific run. Those channel-
specific percentiles can also be specified manually in the 
“Panel” table stored in the project directory. Doing so, the 
“Panel” table has to be saved, closed and reloaded manually 
using the “reload” button (DWF steps 9 and 10) before going 
to the “Process” menu (Figure 5).

“Process” menu
In the “Process” function (Figure 5, DWF steps 19-

23), clicking on the “preview” button generates PDF files 
summarizing both raw and a preview of the adjustments to 
be realized on all control tubes. A “prefix” and a “suffix” 
can be conveniently added to the output file names (DWF 
steps 20 and 21). After having reviewed the normalization 
of the control samples, the normalization of all the FCS files 
is launched by clicking the “process” button (DWF step 22). 
After calculation, the “review” button (DWF step 23) creates 
a PDF report showing the channel histograms before and after 
normalization (as a mirror of the “Tune parameters” menu) 
for each acquired FCS file (control and experimental samples) 
of each batch, allowing a rapid visual control of the adjusted 
FCS files. Although this visual check may be sufficient for 
some markers (such as those with a bimodal distribution), 
the best way to assess the relevance of the adjustment is to 
check the adjusted FCS files (all or a representative sample) 
with adequate and biologically relevant bi-parametric plots to 
understand the changes in intensity distribution and identify 
any aberrations. This control will be carried out using standard 
software, which can also be used for rapid manual gating, 
which we recommend, particularly for cytokine channels that 
do not have easily identifiable positive peaks. A summary of 
the final adjustments is exposed in Figure 6 (A and B), as well 
as downstream compensations (C) for Dataset 1.
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Figure 3: Detailed “Tune parameters” tabs. A: “Tune parameters” main tab. B: “Review scaling” tab. C: “Review functions” tab. D: 
“Review bi-parameters plot” tab. Tools for parameters tuning include a sampling function (A1), a channels selection function (A2, B2, C2, 
D2), batch adjustment functions (A3), transform functions (A4), graphical options (A5, B5, C5, D5) and a batch selection function (C6, D6).

Figure 4: Bi-percentile adjustment. The Batch adjust section in the Tune parameters menu (A-3) allows to choose a “percentile_lohi” option to 
define two values of percentiles, separated by a comma, which will serve for adjustment of the selected channel (A-2). With the bi-percentile 
scaling, the distribution of positive and negative peaks is clearly homogenized (B) when compared with the single “percentile_hi” method 
(C). Tools for parameters tuning include sampling functions (1), a channels selection function (2), batch adjustment functions (3), transform 
functions (4), graphical options (5). 
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Figure 5: Detailed “process” tab. The Process menu allows to preview (A-1) the adjustment on all channels and all batches for reference files 
on PDF (B) consequently to parameters tuned previously. When satisfying, processing of FCS files for batch effects adjustments is launched 
by clicking on the “apply” button (A-2). The ‘Review’ button (A-3) can be used to view the result of the adjustment of all the channels on all 
the files and all the batches in a PDF file(C, samples of the output PDF file for CD8 channel).

 

Figure 6: Mass cytometry data pre-processing. A: Illustration of batch adjustment on CD8 marker plots. B: Summary of percentiles used for 
batch adjustment of each channel of the panel. C: Compensation matrix calculated using CATALYST.
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Batch effects correction
Three levels of batch effects were identified and corrected 

in Dataset 1 as illustrated in Figure 7, termed as “single”, 
“barcode” and “time” batch effects. “Single” effects reflect 
specific normalization to a single batch for a given channel 
without any link to the batch or tissue-series it belongs 
to, as illustrated in Figure 7A (pink arrows). “Barcode” 
effects refer to batch homogenous specificity in correction 
levels for a given channel (Figure 7A, red brackets). The 
“time” effect was seen specifically in one experiment on 
PBMC (20 samples in one barcode), which displayed high 
variation of certain channels intensity during the 10 batch/
runs of this barcode acquisition, as illustrated for CD45-89Y 
(Figure 7B). This probably reflects tolerable instability of 
the plasma torch, argon pressure, or TOF detector that were 
not corrected by normalization beads. These variations that 
were not corrected by the normalization on Four-Elements 

EQbeads (Standard BioTools Inc, San Francisco, CA, 
US) illustrates a very powerful implementation of batch 
correction for minimizing an instrument-related batch effect 
over time. Lastly, comparison of raw and batch-corrected 
control files on dimension reduction maps recapitulates the 
improvement of data homogeneity after processing to batch 
correction. Figure 7C illustrates accurate correction of batch 
effects-related CD8+ cells aggregation and expression level 
seen on a t-SNE map in the control sample from batch 23 
(AT tissue, “Raw” vs “Normalized”) when compared to the 
reference batch 1. Multi-Dimensional Scaling (Figure 7D) 
using the CytoMDS R package[28] also illustrates reduced 
dispersion of AT samples (red circle) after correction (pink 
dots) compared to raw data (blue dots).

Finally, cytoBatchNorm can be used on all operating 
systems, including Windows.

 
Figure 7: Different levels of corrected batch effects. A: scaling factors for CD127 and FoxP3 channels. Pink arrows point to “tube” specific 
batch effects; red brackets point to “barcode” specific batch effects. B: dot plots of PBMC batches 11 to 20 showing basal CD45 levels as a 
function of time; after bead normalization, variations were not corrected (top plot), illustrating ‘time’ specific batch effects; CytoBatchNorm 
corrects them (bottom plot). C: CD8 expression on t-SNE dimension reduction map of lineage markers from Batch1 (PMBC) and Batch 
23 (AT tissue) control samples illustrates the improvement in data consistency following batch effect correction with CytoBatchNorm. D: 
Multi-Dimensional Scaling using the CytoMDS R package shows reduction of AT samples dispersion after batch effect correction (pink dots) 
compared to raw data (blue dots).
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Benchmarking
Benchmarking of CytoBatchNorm was performed 

on Datasets 1 and 2 by two different scientists. Dataset 
1 served for comparison between CytoBatchNorm and 
CytofBatchAdjust[19], while Dataset 2 served for comparison 
between CytoBatchNorm and CytoNorm[18].

As shown in Figure 8A, on first use, the set-up time 
with CytoBatchNorm is approximately one hour for both 
datasets, reflecting the time spent examining all channels and 
configuring all percentiles in the dataset. On the second use 
(to re-adjust the parameters), the handling time falls sharply 
from an hour to 10-20 minutes, as experimenters get used to 
both the interface and their dataset. In comparison, on dataset 
2, this time remains twice as long as that of CytoNorm, 
whose methodology does not allow for adjustment of channel 
corrections. For Dataset 1, correction by CytofBatchAdjust 
required numerous successive runs to determine the best 
percentile for each channel (as well as a systemic visual 
examination of the 700 FCS files making up Dataset 1), 
which took 16 hours. In the end, using CytoBatchNorm was 
faster or equivalent, in particular because it allows a pre-
visualization of the normalization. In addition, when the same 
panel is used in a new experiment, it is possible to re-use the 
previous settings, which reduces the time spent looking for 
the right parameters. 

Key populations variance comparison between Dataset 
2 control files batch-corrected with either CytoBatchNorm 
or CytoNorm demonstrates CytoBatchNorm is at least as 
accurate as (CD8, PD1) or more accurate (CD4, HLA-DR) 
than CytoNorm (Figure 8B). On the opposite, CytoBatchNorm 
was slightly less accurate in reducing median variance of key 
markers (Figure 8B), except for PD1.

Strikingly, CytoNorm introduced artifactual deformation 
of some populations in some experimental samples, as 
illustrated in Figure 8C for CD8 and HLA-DR in sample D 
(red boxes) from the third batch of Dataset 2, but not in the 
batch specific control sample (Control 3). This illustrates 
1) the absolute need for cautious control of potential bias 
introduced by specific algorithms miscomputation during data 
processing, 2) the inaccuracy of quantile-based normalization 
for cytometry data.

Conclusion
Computer assistance in the treatment and analysis of 

omics data is ineluctable and has to be performed properly 
and wisely. Refining algorithms and free-access R packages 
to this aim will greatly enhance the still recent implementation 
of computational cytometry as well as the downstream results 
accuracy. One first, basic but essential step in cytometry 
data analysis is their standardization, including batch effects 
correction. We present the CytoBatchNorm R package which 

 
Figure 8: Benchmarking of CytoBatchNorm versus CytoNorm and CytofBatchAdjust. A: comparison of handling and processing time. B: 
Variance of key populations frequency and key markers median. C: Illustration of artifacts introduced in experimental samples by CytoNorm 
(red boxes).
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is the most user-friendly package available for batch effects 
correction, with a live assessment of correction accuracy, 
and which out-performs existing packages in terms of both 
tuning possibilities and efficiency. CytoBatchNorm will 
help the cytometry community to adequately scale their data 
amongst batches, allowing reliable reduction of variability 
and improvement of subsequent dimension reduction and 
clustering in user’s analysis pipeline.
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SUPPLEMENTARY FILES

Figure S1: Pretreatment of reference FCS files. Manual gating of CD45+ live cells after exclusion of doublets, non-biological events and beads 
residues.
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