Cystoperitoneal Shunt Malfunction in Setting of Rifampin Allergy Presenting as Cerebrospinal Fluid Eosinophilia

Mandana Behbahani^{1*}, Nauman S. Chaudhry¹, Amanda M. Kwasnicki¹, Laura S. McGuire¹, Zayed A. Almadidy¹, Laura Burokas², Dimetrios Nikas¹

*Corresponding Author: Dr. Mandana Behbahani, Neuropsychiatric Institute (M/C 799), Department of Neurosurgery, University of Illinois at Chicago, 912 South Wood Street, Chicago, Illinois 60612-5970, USA, Tel: (312) 996-4842; Fax: (312) 996-9018; E-mail: moni@uic.edu

Received: 04 July 2019; Accepted: 18 July 2019; Published: 23 September 2019

Abstract

Background: Cerebral spinal fluid eosinophilia (CSFe) is correlated with increased risk of cranial shunt malfunctions. Although antibiotics coated shunt catheters have significantly reduced the incidence of infections and associated shunt malfunction, on rare occasion they may contribute to a shunt allergy and become the source of subsequent malfunction.

Objective: We present a very rare case of a patient with an arachnoid cyst treated with cysto-peritoneal shunt (CPS), complicated by rifampin allergy manifesting as sterile CSFe and subsequent shunt malfunction.

Case Report: A 17-months-old-male with symptomatic arachnoid cyst underwent uneventful craniotomy for cyst fenestration and CPS placement. At 2-month follow up he was neurologically stable; however, he developed an expanding pseudomeningocele that was palpable at the site of the prior craniotomy. Although shunt and pseudomeningocele taps were both negative for infectious etiology, the CSF analysis was notable for isolated CSFe. Given the persistence of symptoms, and well as subsequent emergency room visits for abdominal swelling, low-grade fevers, and intermittent presence of pseudomeningocele, patient was admitted for further workup. Radio-Allergosorbent testing (RAST) was performed and revealed newly diagnosed rifampin allergy. CPS was then removed and patient was treated with a course of steroids until resolution of CSFe, and underwent placemen of a new CPS with non-antibiotics coated catheter. One week after discharge, patient returned with Staphylococcus Aureus related shunt malfunction, for which the shunt was externalized. He underwent a course of antibiotics treatment and was subsequently trialed to be weaned off the CPS, in light of recent cyst fenestration. A

¹Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA

²Department of Neurosurgery, Advocate Children's hospital Oak Lawn, Illinois, USA

ventriculogram revealed complete occlusion of the prior cyst fenestration, thus patient underwent repeat craniotomy for more aggressive cyst fenestration. He was eventually weaned off the shunt and did not require further catheter placement.

Discussion: CSFe is associated with underlying infection, inflammatory changes, and hypersensitivity. This can be seen in up to 30% of shunt malfunctions. In the above case, the Rifampin allergy contributed to elevated levels of CSFe and secondary shunt failure. The inflammatory response may have contributed to the closure of initial fenestration, shunt failure, and granulomatous response.

Conclusion: Classic presentations of the allergy to the shunt catheter or its associated antibiotic coating are nonspecific and difficult to distinguish from primary infection. In complex cases, where an underlying cause is undetermined, particularly in the setting of isolated elevated CSFe and persistent non-specific shunt related symptoms, further workup is warranted. This case also highlights the need for improved biocompatibility of shunt hardware to avoid conditions leading to shunt malfunction.

Keywords: Rifampin allergy; Shunt malfunction; CSF eosinophilia; Arachnoid cyst; Hydrocephalus

1. Introduction

Shunt failure remains an ongoing problem in neurosurgery and is commonly associated with infection or mechanical obstruction. In certain cases of allergy or hypersensitivity reactions, the shunt system may become obstructed with inflammatory debris, ultimately leading to overt shunt malfunction [1-4]. Clinical symptoms of shunt allergy or hypersensitivity reactions include abdominal pain, fever, recurrent skin breakdown along the shunt tract, abdominal distention, peritonitis, and non-specific complaints along the shun tract [2, 3, 5-7]. After detecting a shunt malfunction, it is important to perform a thorough workup in assessing for both infectious and noninfectious causes [1, 4, 5, 8-13].

Eosinophils are rarely seen within the cerebrospinal fluid, and when found they are usually associated with parasitic, bacterial or mycotic infections of the central nervous system [1, 12-16]. However, CSF eosinophilia may also be detected in up to 30% cases of allergic or aseptic shunt malfunctions [15]. We present the first described case of an arachnoid cyst treated with a cystoperitoneal shunt (CPF), which was subsequently complicated by sterile shunt malfunction secondary to CSFe and hypersensitivity reaction to Rifampin-Minocycline coated catheter, due to a previously undiagnosed Rifampin allergy.

2. Case Report

A 17 months-old-male with symptomatic arachnoid cyst underwent craniotomy for cyst fenestration of a large, compressive, temporal lobe, arachnoid cyst into the basilar cisterns, with temporary intracystic catheter placement, skin to that of an external ventricular drain. Patient went on to require further drainage via the intracystic catheter, for which he underwent a CPS placement. Immediately postoperatively he did well and was discharged home. In the

weeks postop, he presented with intermittent low grade fevers of unknown origin and transient abdominal distention in the setting of negative work-up for shunt malfunction, peritonitis, or other infectious etiology. Patient remained neurologically stable, however, over the ensuing two months he developed an expanding pseudomeningocele at the cranial surgical site. The pseudomeningocele was intermittent in nature; on occasion it was minimally appreciated and at times it was noted to be bulging and tense. Shunt and pseudomeningocele taps were both negative for infectious etiology (including cell analysis, protein, glucose, gram stain, culture, and prolonged broth evaluation) on separate occasions. Both taps were revealing for elevated CSFe, which raised a concern of associated inflammatory reaction or concern of potentially indolent infection. Ultimately, he was admitted and further workup of CSF eosinophilia via Radio-allergosorbent testing (RAST), revealed new diagnosis of rifampin allergy. Cystoperitoneal shunt was removed and replaced with a temporary non-antibiotic coated external inracystic drain and a course of steroids until near complete resolution of eosinophilia, prior to placement of a permanent shunt.

Within one week of new shunt placement and subsequent discharge, patient developed persistent low-grade fever and shunt tap revealed presence of Staphylococcus Aureus organism; therefore the shunt was removed and replaced with external intracystic catheter. Patient completed a course of proper antibiotic treatment prior to re-internalization of the shunt. In the interim, a ventriculogram was performed to assess patency of prior fenestration; there was complete occlusion of prior fenestration. A repeat craniotomy, more aggressive cyst resection and fenestration was performed with subsequent ventriculogram study revealing complete opening of the cyst into the basal cisterns. Intraoperatively, the patient's arachnoid cyst walls had thickened relative to his initial surgery and he had developed multiple adhesions within the cyst that were not previously present. After re-fenestration, an external inracystic catheter was placed in the cyst cavity and it was eventually weaned off as the fenestration site remained patent.

3. Discussion

Underlying CSF eosinophilia has been reported as both an incidental and benign finding in neurosurgical patinets [8, 9, 13, 14, 16-18]. However, when CSF eosinophilia is present, it may be an indicator of an underlying pathology associated with, or possible cause of shunt malfunction. In patients presenting with concern of shunt malfunction in the setting of elevated CSF eosinophil count, clinicians should consider workup of infection, benign underlying inflammatory reaction, or both [1, 2, 4, 6, 7, 9, 10, 12-14, 18]. CSF eosinophilia has been reported in association with infection such as parasitic, bacterial, or mycotic infection of the central nervous system [1, 7, 9, 12, 13, 15, 16, 19]. Additionally, CSF eosinophilia has also been reported in association with inflammatory reaction to antibiotic coated shunt catheters, as reported in the case of rifampin and minocycline impregnated shunt catheters [1-6, 8, 11, 14, 20, 21]. Minocycline has been more commonly reported culprit in cases of shunt malfunction. However Rifampin has also been reported, as seen in this case report.

Patients, who present with signs of shunt malfunction with coexisting CSF eosinophilia, in the absence of shunt infection, should be considered for obstruction of the shunt system with inflammatory cell debris [2, 6, 7]. In the above case however, the arachnoid cyst contents, as well as a rifampin allergy could potentially contributed to high levels of CSF eosinophilia and secondary shunt failure [1, 22]. Spikes in eosinophilia were noted in the immediate

cyst fenestration, subsequent shunt placement, and repeat fenestration in this particular case report, as they have been previously discussed in the literature [16]. The inflammatory response likely contributed to the closure of initial fenestration, thickening of the cyst wall, and a granulomatous response, even prior to presenting with infection. Variations of eosinophilia in the CSF also correlated with congruent changes of CSF in the blood of these particular patients.

It is important to monitor patients with hypersensitivity reactions associated with sterile shunt malfunction as they are more likely to have multiple episodes of shunt failure [6, 9, 11, 17]. Treatment of aseptic shunt failure may include removal of the current shunt system and replacement with a hypoallergenic "extracted" shunt and in cases where CSF eosinophila has been determined, a course of steroids may ultimately reduce the inflammatory reaction and prolong shunt survival [14, 23]. This case demonstrates the importance of recognizing CSF eosinophilia and identifying other noninfectious causes of shunt failure in order to treat patients successfully and avoid future shunt complications.

4. Conclusion

In complex cases of shunted hyrocephalus, where a clear underlying cause is not determined, further workup to rule out infection, inflammatory changes, and hypersensitivity may be warranted. Recurrent presentations to the hospital after shunt hardware placement should prompt clinicians to conduct studies beyond routine CSF analysis and infectious process workup, as seen in this case. Elevated CSF eosinophil count, with or without elevated blood eosinophil count, could be a potential tool in the surgeon's armamentarium, when evaluating patients with such clinical concerns. Although, the specificity and sensitivity of CSFe is insufficient to use it as a screening tool, when interpreted in conjunction with clinical presentation, it can shine light on the underlying pathology of shunt failure [19]. This case also highlights the need for improved biocompatibility of shunt hardware to avoid conditions leading to shunt malfunction.

Conflict of Interest

No disclosures or conflicts of interest to be disclosed for all authors involved in this manuscript.

References

- 1. Bell RS, Vo AH, Cooper PB, et al. Eosinophilic meningitis after implantation of a rifampin and minocycline-impregnated ventriculostomy catheter in a child. case report. J Neurosurg 104 (2006): 50-54.
- 2. Bezerra S, Frigeri TM, Severo CM, et al. Cerebrospinal fluid eosinophilia associated with intraventricular shunts. Clin Neurol Neurosurg 113 (2011): 345-349.
- 3. Carver ED, Braude BM, Atkinson AR, et al. Anaphylaxis during insertion of a ventriculoperitoneal shunt. Anesthesiology 93 (2000): 578-579.
- Chou CW, Hsu SP, Chen MT, et al. Idiopathic hypereosinophilic syndrome with infiltration of cerebrospinal fluid by immature eosinophils: A case report and literature review. Surg Neurol 68 Suppl 1 (2007): S52-S55.

- Dadlani R, Dadlani R, Ghosal N, et al. Occam's razor in the management of ventriculoperitoneal shunt dysfunction: Diagnosis and management of an unusual pediatric case. Asian J Neurosurg 10 (2015): 177-180.
- Ellis MJ, Kazina CJ, Del Bigio MR, et al. Treatment of recurrent ventriculoperitoneal shunt failure associated with persistent cerebrospinal fluid eosinophilia and latex allergy by use of an "extracted" shunt. J Neurosurg Pediatr 1 (2008): 237-239.
- 7. Fulkerson DH, Boaz JC. Cerebrospinal fluid eosinophilia in children with ventricular shunts. J Neurosurg Pediatr 1(2008): 288-295.
- Gower DJ, Lewis JC, Kelly DL. Sterile shunt malfunction. A scanning electron microscopic perspective. J Neurosurg 61 (1984): 1079-1084.
- 9. Hussain NS, Wang PP, James C, et al. Distal ventriculoperitoneal shunt failure caused by silicone allergy. case report. J Neurosurg 102 (2005): 536-539.
- 10. Jimenez DF, Keating R, Goodrich JT. Silicone allergy in ventriculoperitoneal shunts. Childs Nerv Syst 10 (1994): 59-63.
- 11. Kambara M, Miyazaki T, Yoshikane T, et al. A case of repeated shunt malfunctions with eosinophilic meningitis caused by silicone allergy. No Shinkei Geka 42 (2014): 1125-1130.
- 12. Kurin M, Lee K, Gardner P, et al. Clinical peritonitis from allergy to silicone ventriculoperitoneal shunt. Clin J Gastroenterol 10 (2017): 229-231.
- 13. Pittman T, Williams D, Rathore M, et al. The role of ethylene oxide allergy in sterile shunt malfunctions. Br J Neurosurg 8 (1994): 41-45.
- 14. Polis B, Polis L, Zeman K, et al. Unexpected eosinophilia in children affected by hydrocephalus accompanied with shunt infection. Childs Nerv Syst 34 (2018): 2399-2405.
- 15. Snow RB, Kossovsky N. Hypersensitivity reaction associated with sterile ventriculoperitoneal shunt malfunction. Surg Neurol 31 (1989): 209-214.
- 16. Tanaka T, Ikeuchi S, Yoshino K, et al. A case of cerebrospinal fluid eosinophilia associated with shunt malfunction. Pediatr Neurosurg 30 (1999): 6-10.
- 17. Tangsinmankong N, Nelson RP, Good RA. Glucocorticosteroid treatment for cerebrospinal fluid eosinophilia in a patient with ventriculoperitonial shunt. Ann Allergy Asthma Immunol 83 (1999): 341-342.
- 18. Traynelis VC, Powell RG, Koss W, et al. Cerebrospinal fluid eosinophilia and sterile shunt malfunction. Neurosurgery 23 (1988): 645-649.
- 19. Tung H, Raffel C, McComb JG. Ventricular cerebrospinal fluid eosinophilia in children with ventriculoperitoneal shunts. J Neurosurg 75 (1991): 541-544.
- 20. Tzvetanova EM, Tzekov CT. Eosinophilia in the cerebrospinal fluid of children with shunts implanted for the treatment of internal hydrocephalus. Acta Cytol 30 (1986): 277-280.
- 21. Wiersbitzky SK, Ahrens N, Becker T, et al. The diagnostic importance of eosinophil granulocytes in the CSF of children with ventricular-peritoneal shunt systems. Acta Neurol Scand 97 (1998): 201-203.

- 22. Yanaka K, Enomoto T, Nose T, et al. Post-inflammatory arachnoid cyst of the quadrigeminal cistern. observation of development of the cyst. Childs Nerv Syst 4 (1988): 302-305.
- 23. Zervos T, Walters BC. Diagnosis of ventricular shunt infection in children: A systematic review. World Neurosurg (2019).

Citation: Mandana Behbahani, Nauman S. Chaudhry, Amanda M. Kwasnicki, Laura S. McGuire, Zayed A. Almadidy, Laura Burokas, Dimetrios Nikas. Cystoperitoneal Shunt Malfunction in Setting of Rifampin Allergy Presenting as Cerebrospinal Fluid Eosinophilia. Archives of Clinical and Medical Case Reports 3 (2019): 323-328.

This article is an open access article distributed under the terms and conditions of the <u>Creative Commons Attribution (CC-BY) license 4.0</u>