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Abstract 

Similar to other endocrine substances, cortisol secretion follows a pulsating rhythm. The cortisol awakening 

response (CAR) occurs upon awakening in the absence of any apparent stressful situation or imminent danger, 

which is a very intriguing feature. When confronting any stressful situation, two systems are activated. One system 

is regulated by the hypothalamic-pituitary-adrenal axis (HPA), and the other system is regulated by cerebral 

structures that control the activity of the autonomic sympathetic nervous system. Both systems receive inputs from 

emotional memory circuits, namely the amygdala, the hippocampus, the medial prefrontal cortex, and lateral septal 

nuclei, among others. This circuit integrates sensory information that comes from thalamic nuclei. The acquisition, 

retention, and evocation of recent and remote memories that are processed by the emotional memory circuit allow 

the selection of strategies for survival. The diurnal secretion of cortisol occurs near the time of awakening (i.e., after 

a period of rest or sleeping) and persists for several hours in the absence of any current stressful situation. The CAR 

seems to represent an ancient adaptive-allostatic feature that prepares an individual to face eventualities that are 

forthcoming during the day. The CAR is regulated by hypothalamic nuclei that modulate circadian rhythm, namely 

the suprachiasmatic nucleus and its connections with the paraventricular nucleus, and then activate the HPA axis. 

The CAR may represent a useful preparatory process that occurs before a stressful situation. The participation of 

emotional memory circuits may modify the CAR and contribute to resilient or vulnerable reactions when coping 

with threatening situations. 
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1. Introduction 

Throughout the day, plasma cortisol levels typically peak many times. A period of low plasma concentrations 

generally centers around midnight, with an abrupt rise that commonly occurs after awakening, independent of age, 

gender, and other aspects [1]. The cortisol awakening response (CAR) is an indicator of adrenocortical activity that 

consists of an increase in plasma cortisol within the first hour after waking. Within the first 30-40 min after 

awakening, free cortisol levels rise by 50-60%, remain elevated for at least 60 min [2], and decline to a nadir 

thereafter by about bedtime.  

 

An approach to understanding the processes that allow individuals to adapt to their environment is called allostasis 

[3, 4]. This concept refers to functional changes in hormones and mediators that occur in an organism that allow the 

individual to confront perturbations in the internal and external milieus. These changes permit the survival of the 

individual and consequently the species. Allostasis depends on the activity of two main systems: (i) hypothalamic-

pituitary-adrenal (HPA) axis and (ii) autonomic nervous system. During the day, cortisol levels may increase in 

response to emergencies, whereas the CAR may be an anticipatory response that is directed toward daily 

eventualities just after awakening. However, in cases in which high levels of cortisol persist for a long period of 

time, are inefficiently managed, or become exaggerated, allostatic load may occur [4-6], which can negatively 

impact health.  

 

The organism is able to respond to emergency situations through physiological adaptive changes that permit the 

individual to maintain homeostasis and survive. From a psychological perspective, this response is referred to as 

resilience, which reflects the ability of the living organism to face and overcome stressful situations [7]. In other 

cases, some maladaptive processes may be related to vulnerability [8-10]. However, HPA and autonomic activity is 

insufficient to explain resilience and vulnerability. Increases in cortisol when confronting an emergency situation 

and the CAR may prepare the individual for future emotional threatening events, thus suggesting the participation of 

brain circuits that are involved in emotional processing.  

 

The present review considers the participation of emotional memory circuits in the regulation of endocrine and 

autonomic responses both at rest and when confronting a threatening situation. Cortisol has been considered a 

marker of stress [11], in addition to other products of autonomic nervous system activity. Acute stressors activate the 

HPA axis, leading to the release of corticotropin-releasing factor into the portal circulation (Figure 1). 

Adrenocorticotropic hormone (ACTH) is then released into the plasma, and the cortical portion of the adrenal gland 

is activated to deliver cortisol into the circulation. Plasma cortisol levels reach a peak approximately 15-30 min after 

an environmental challenge [12].  
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Figure 1: A threatening situation elicits two simultaneous responses: sympathetic responses and cortisol secretion 

that is regulated by the HPA axis. These two systems interact with each other. The participation of cerebral nuclei 

that regulate emotional memory processing may explain susceptibility and resilience to stress. ACTH, 

adrenocorticotropic hormone; HPA, hypothalamic-pituitary-adrenal axis; PVN, paraventricular nucleus of the 

hypothalamus; mPFC, medial prefrontal cortex. 

 

The cortisol response when confronting stressful situations has been extensively reviewed elsewhere; therefore, we 

only briefly discuss it herein. We focus mainly on the CAR, beginning with a brief overview of the brain structures 

that regulate emotional memory and its relationships with brain structures that regulate cortisol secretion. We then 

discuss the specific features of the CAR, its neural control, and the cortisol response to cope with threatening 

situations in other vertebrates. The hypothesis of the present treatise is that the CAR may represent a very useful 

ancient adaptive response.  

 

2. Emotional Memory Circuit  

Emotional memory allows an individual to recognize signs from the environment and compare them with past 

experiences to effectively judge and respond to the environment by choosing the best coping strategy [13, 14]. Such 

processes involve the hippocampus and other deep temporal lobe structures, such as the amygdala [15], the 

mesolimbic system [16], and interactions among these structures and the prefrontal cortex [17, 18], among other 

connections. Sensory inputs relies on thalamic nuclei that are connected to cortical and subcortical cerebral circuits 

[19] that regulate the emotional meaning of stimuli and endocrine and autonomic responses.  
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The neural circuits that regulate emotional memory comprise several interrelated structures that are located 

primarily in deep layers of the temporal and frontal lobes that project to the HPA axis and cerebral regulators of 

corticosterone secretion and adrenergic system activation (Figure 2).  

 

Figure 2: Anatomical representation of emotional memory circuit. Connections between the amygdala, 

hippocampus, lateral septal nucleus (LSN), and medial prefrontal cortex (mPFC) modulate the utilization of 

emotional memories. These nuclei are also connected to the locus coeruleus and hypothalamus, which are involved 

in autonomic responses and cortisol secretion. 

 

Among other temporal lobe structures, the amygdala complex is composed of many functionally heterogeneous 

nuclei [20]. The amygdala nuclei have been largely considered as fundamental in the process and integration of 

defensive and fear reactions [21-23]. Basolateral amygdala includes basal, lateral and accessory basal nuclei [24] 

and fear reactions [25], increased anxiety state [26], during the processes of emotional learning [27] and classic 

conditioning [28] relates to a higher neuronal firing rate in these regions than in absence of stimulation or resting 

situations. From a behavioral point of view, electrical stimulation of amygdala produces signs of fear and anxiety, 

accompanied by vegetative responses in both cats [29] and human beings [30]. Fear expression involves cortical 

association areas, and thalamic and amygdaline interconnections [31]; importantly, cortisol seems to regulate the 

connectivity between amygdala and at least the medial prefrontal cortex (mPFC) inclusively during rest conditions 

[32], while amygdala-hypothalamic connections regulate vegetative activity in response to threatening situations 

[33].  

 

Among another amygdaline connections, the reciprocal innervation with hippocampus modulate the unconditioned 

fear, defense reactions, goal-directed behavior and emotional memory [34, 35], with the important participation of 

the two different portions of hippocampus [36]. Therefore, amygdala-hippocampus relations are crucial in the 

control and regulation of episodic memory and emotional memory, and as above mentioned, through the 

connections of amygdala with hypothalamus in the control of cortisol secretion. In rats, the corresponding portions 

are the dorsal and ventral hippocampus, which are related to memory and emotional processing, respectively [37]. 

The responsivity of dorsal hippocampal neurons responders to amygdala stimulation increased 48 h after a single 

session of stress, suggesting the formation of an emotional memory [38]. Increases in endogenous cortisol and 
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norepinephrine levels in turn increase neuronal activation in the amygdala in response to threatening images [39]. In 

such cases, the higher levels of plasma cortisol when confronting a threatening situation may facilitate specific 

learning that is relevant to survival [40].  

 

Amygdala-mPFC connections are able to regulate aggressive behavior in rodents [41-43]. In rats, the mPFC 

involves the cingulate, prelimbic (PL) and infralimbic (IL) subregions, each subregion possess different connections 

and consequently different functions. In particular PL and IL differentially regulate the expression of fear [44], 

among other behaviors [17], possibly due to their interconnections with amygdala [45]. mPFC subregions 

differentially participate in the process of acquisition and extinction of conditioned fear [46, 47] through inhibitory 

connections coming from amygdala [28], thus mediating distinct strategies to cope with environment. Inactivation of 

the PL cortex impaired the expression of fear but not extinction memory. Inactivation of the IL cortex had no effect 

of the expression of fear but impaired both the acquisition and extinction of conditioned fear memories [46]. 

Activation of the PL and IL regions has yielded consistent results. The PL cortex is active during fear conditioning, 

and the IL cortex becomes active during fear extinction [47].  

 

Another structure that is connected to the amygdala, hippocampus, and mPFC is the lateral septal nucleus. Together 

with the aforementioned key regions, the lateral septal nucleus also participates in the control of motivational and 

autonomic responses [48], the antidepressant actions of drugs [49], anxiety [50], affective behavior, and autonomic 

activity [51].  

 

Brain structures that are related to emotional memory appear to influence and may be influenced by the actions of 

cortisol secretion and sympathetic activity. In such a case, the participation of emotional memory circuits due to its 

function of retention of experiences related with threatening situations may account for the formation of resilience 

and vulnerability, and consequently modifying the vegetative responses, favoring or negatively impacting on the 

efficacy of allostatic processes.  

 

2.1 Cortisol awakening response and sleep  

The diurnal increase in cortisol secretion is associated with the sleep/wake and light/dark cycles. The CAR is a very 

constant feature that is modulated by circadian influences. In very young children, the level of morning cortisol is 

positively associated with the amount of stage-2 sleep the night before and negatively associated with total sleep 

time and other slow-wave-sleep stages [52].  

 

Total sleep deprivation in healthy adults decreases the CAR in parallel with changes in the perception of energy 

level, concentration, and speed of thought and a reduction of cognitive functioning despite an increase in regional 

dopaminergic activity [53]. Chronic circadian misalignment significantly reduced cortisol levels and increased the 

release of inflammatory factors, including tumor necrosis factor, interleukin, and C-reactive protein [54]. The 

interaction between sleep and the HPA axis is complex and bidirectional. Hypothalamic-pituitary-adrenal axis 

hyperactivity and decreases in the duration and quality of sleep occur in insomnia, depression, Cushing’s syndrome, 

and sleep-disordered breathing, among other ailments [55]. Changes in sleep duration contribute to daily variations 

in cortisol and autonomic nervous system activity [56].  
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2.2 Neural regulation of the cortisol awakening response  

The suprachiasmatic nucleus regulates the circadian rise in plasma ACTH [57,58]. Suprachiasmatic nucleus 

regulates activity on paraventricular hypothalamic nucleus and exerts a decisive action on the day/night pattern of 

hormonal and autonomic activity regulation [59]. This anatomical feature regulates CAR and the influence of ACTH 

on suprarenal cortex [60].  

 

Sensorial stimulation produces emotional reactions and elaborated behaviors (Figure 3). The hypothalamic 

regulation CAR [61] is modulated by a multiple system of neurotransmission, mainly glutamatergic, aspartate, and 

GABAergic fibers from telencephalic and forebrain regions, which are considered limbic structures [62-64], but not 

from the lower brainstem. These hypothalamic nuclei control the neuroendocrine response to stress, whereas the 

extended amygdala controls the autonomic responses to stress [12]. Therefore, the paraventricular nucleus may be 

considered an integrator of neuroendocrine and autonomic nervous system responses and may also participate in the 

integrated emotional response. The CAR may also be involved in the activation of a negative feedback loop that 

results in the termination of ACTH secretion [65]. Anxiety may be a useful adaptive feature [14] that, combined 

with the storage of emotional memories of prior experiences, facilitates the choice of the best strategies for survival.  

 

 

Figure 3: The circadian rhythm of cortisol release occurs in the absence of a threatening situation. Therefore, it may 

be considered a useful allostatic adaptive feature that prepares an individual for eventual emergency situations, with 

the fundamental participation of emotional memory circuits. PVN, paraventricular nucleus of the hypothalamus; 

SCH n: suprachiasmatic nucleus; CAR: cortisol awakening response. 
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2.3 Cortisol in other animal species  

The cortisol response to threatening situations is not exclusive to humans or other mammals. Individuals that present 

similar HPA axis function express similar responses to threatening situations, independent of species. A rise in 

cortisol may indicate the development of behavioral strategies that facilitate escape from predators and functional 

metabolic changes that allow survival through allostasis.  

 

In the presence of predators or threatening situations, cortisol (or corticosterone) is released by fish [66-69], 

amphibians [70], small mammals [71-74], goats [75], and seals [76]. This rise in cortisol (or corticosterone) allows 

suppressive behavioral actions (e.g., freezing) in some cases and preparative defensive actions (e.g., attack) in others 

[77, 78]. For example, increases in cortisol may mobilize glucose for sustained vigilance and running during periods 

of reduced foraging possibilities [78]. It is currently unknown whether such increases in circulating cortisol in other 

vertebrates follow a circadian rhythm or occur after periods of sleep or rest. The delivery of cortisol by the adrenal 

glands and other metabolic processes may be related to a functional preparatory reaction of the organism to a 

threating situation that allows individuals to adapt to their environment.  

 

3. Conclusion  

The processes that are involved in the sequence of events that allows us to cope with stress appear to represent an 

adaptive process that slowly developed in our ancestral past [79]. The increase in glucocorticoid levels upon 

awakening prepares the body for activity, thus enabling foraging behavior by increasing the amount of energy that is 

available [60, 80]. Homo sapiens have not appreciably changed for a long time. As a species, we are exactly alike. 

One function of the CAR may be to energize people in the morning [81].  

 

Early in the morning, a relatively high amount of cortisol is released, and cortisol levels dramatically increase after a 

few minutes, leading to exploratory behavior, food seeking, and the facilitation of typical behavioral patterns of each 

species to survive [82]. Upon awakening, our body is ready to hunt and fight, being previously prepared to support 

thirst and hunger by liquids retention and increased metabolic rate, ultimately some of the main cortisol functions. 

The CAR may be considered an ancient adaptive feature. Understanding the relationships between brain circuits that 

modulate emotional memory and cerebral structures that modulate endocrine and autonomic responses to stress may 

shed light on the processes that regulate resilience and vulnerability when coping with threatening situations.  
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