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Abstract 

Non-alcoholic fatty liver disease (NAFLD), one of the most common liver diseases, is caused by the disruption of 

hepatic lipid homeostasis by various metabolic disorders. The progression of NAFLD into Non-alcoholic 

steatohepatitis (NASH) is mediated by inflammatory chemokines, cytokines, mitochondrial dysfunction, and 

oxidative stress resulting in hepatocyte inflammation, ballooning, apoptosis, and activation of hepatic stellate cells 

(HSC). NASH can further lead to cirrhosis, hepatic carcinoma, and also it is predicted to be a major cause of liver 

transplantation over the next 10 years. Chemokine receptors are majorly involved in recruiting the monocytes in the 

liver where they are converted into pro-inflammatory macrophages, which further activate the hepatic stellate cell 

(HSCs) to promote their survival while activating collagen production and fibrogenesis. Thus, chemokines and their 

receptor play a vital role in the pathogenesis of NASH and can be a potential target for the treatment of NASH. 

Herein, in this study, we have carried out a structure-based design of CCR2 and CCR5 dual antagonists. We 

performed pharmacophore mapping studies followed by virtual screening of commercial database to obtain novel 

molecules which can potentially act as CCR2 and CCR5 dual antagonists. We also performed molecular docking 

studies of newly obtained hits molecules to see their interactions with both CCR2 and CCR5 receptors. 
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Abbreviations: NASH: Non-alcoholic steatohepatitis; NAFLD: Non- alcoholic fatty liver disease; BMI: Body 

Mass Index; HRQoL: Health-Related Quality of Life; HSC: Hepatic Stellate Cells; CCR-2: Chemokine Receptor- 2; 

CCR-5: Chemokine Receptor- 5; CVC: Cenicriviroc; EF: Enrichment Factor; SP: Standard Precision; EP: Extra 

Precision; EMBOSS: European Molecular Biology Open Software Suite; RCSB: Research Collaboratory for 

Structural Bioinformatics; NCI: National Cancer Institute 

 

1. Introduction 

Non-alcoholic steatohepatitis (NASH) is a liver disease in the absence of alcohol. Accumulation of excess fat in the 

liver is known as fatty liver [1]. Non- alcoholic fatty liver disease (NAFLD) is a common liver diseases which 

mainly caused by the disruption of hepatic lipid homeostasis. NAFLD is associated with obesity, insulin resistance 

or type2 diabetes, and other metabolic abnormalities, such as dyslipidemia and hypertension [2]. Cirrhosis, 

hepatocellular carcinoma, and liver-related mortality are all consequences of NASH, a progressive subtype of 

NAFLD. Hepatic fibrosis is the only histologic feature of NASH that has been found to be independently linked to 

long-term overall mortality, liver transplantation, and liver-related deaths [3]. The occurrence of NAFLD and NASH 

is increasing in western countries due to high dietary fat intake and low physical exercise which leads to insulin 

resistance [4]. When there is only steatosis in the liver, it is known as a less severe form of Non-alcoholic fatty liver 

disease (NAFLD) [5]. The progression of NAFLD into Non-alcoholic steatohepatitis (NASH) is mediated by 

inflammatory cytokines, mitochondrial dysfunction secondary to nutrient excess, and oxidative stress resulting in 

hepatocyte inflammation, ballooning, apoptosis, and activation of hepatic stellate cells (HSC) [6]. The probability of 

developing hepatic fibrosis is significantly high in individuals with steatohepatitis (NASH) than in those with simple 

steatosis. The fibrosis stage is the strongest predictor for cause and disease specific mortality in NASH patients [7].  

 

Currently, the leading cause for liver transplantation includes NASH [8]. Although NASH is largely unrecognized 

and underdiagnosed, it is believed to affect at least three to five percent of the global population [9]. In its early 

stages, NASH is frequently thought to be asymptomatic and "silent", but symptoms such as persistent fatigue, 

malaise, apparent hepatomegaly, and upper-right quadrant abdominal fullness and discomfort have been recorded 

[10, 11]. Because NASH is usually asymptomatic, there is little published research on how patients feel it. However, 

emerging evidence suggests that individuals with NASH have a higher symptom burden and a lower health-related 

quality of life (HRQoL) [12]. Patients who are overweight, obese, have metabolic syndrome, insulin resistance, 

Type 2 diabetes, high levels of triglycerides or blood cholesterol, are more likely to be at risk for NASH [13, 14].  

 

The approximation says that the global prevalence of NAFLD is as high as one billion [15]. According to a meta-

analysis, the global prevalence of NAFLD is 25.24 percent, with the highest prevalence observed in the Middle East 

(31.78 percent) and South America (30.45 percent), and the lowest in Africa (13.48 percent) [16,17]. A smaller 

subset of these people may develop non-alcoholic steatohepatitis (NASH), which is one of the most common causes 

of hepatocellular carcinoma (HCC) in the United States and a reason for liver transplantation [18]. As obesity 

became more prevalent earlier in life, NAFLD/NASH prevalence began to rise in younger groups. NAFLD is 
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predicted to affect 3–10 percent of youngsters in Western countries [19]. In America, the rate among those aged 18–

35 years is at 24%, which has also been underestimated [20].  

 

In India, the prevalence of NAFLD in the general population varies between 9% and 53%. The majority of studies 

conducted in urban areas have found a higher frequency than those conducted in rural areas. Rural West Bengal was 

the site of one of the first population-based studies in India, which revealed an obesity prevalence rate of 8.7% in 

predominantly nonobese populations [21]. After adjusting for sex, body mass index (BMI), diabetes mellitus (DM), 

and metabolic syndrome, population-based research from coastal south India indicated an overall NAFLD 

prevalence rate of 49.8%; the urban residence was shown to be linked with a greater risk for NAFLD [22]. The 

prevalence of NAFLD was found to be greater in urban populations (53.7%) than rural groups in the ongoing 

community-based Prospective Urban Rural Epidemiology (PURE) cohort research in north India (30.2 percent) [23, 

24].  

 

NAFLD is defined as fat accumulation in the hepatocytes when fat import or synthesis surpasses fat export or 

degradation. In these lipotoxic hepatocytes, a series of events occur, including immune mediator activation and 

inflammation, matrix remodeling via fibrogenesis and fibrinolysis, angiogenesis, and mobilization of liver 

progenitor cells [25].  

 

The Pathophysiology of NAFLD is the accumulation of hepatic free fatty acids and triglycerides. The pathogenesis 

of progression of simple fatty liver to NASH is not fully understood, yet a "two-hit hypothesis" was initially 

proposed. 

 

"Two hit hypothesis" suggests a "First hit" involves the lipid accumulation in the liver cells, which increases the risk 

for a "Second hit", which leads to hepatic injury, inflammation, and fibrosis. However, this theory has been 

criticized for being too simplistic in describing the pathogenesis of NAFLD. As a result, it has been replaced by the 

'multiple-parallel hits' model, which appears to be a more exact portrayal of the process of NAFLD development and 

progression in subjects with genetic predisposition, in which various factors act in parallel and coherent ways [26, 

27]. This multiple-hit hypothesis is based on the idea that obesity, insulin resistance, and changes in the intestinal 

microbiome are caused by genetic and environmental factors linked to dietary habits [28]. Insulin resistance 

promotes hepatic de novo lipogenesis and adipose tissue lipolysis which resulting into an increased flux of fatty 

acids to the liver. Insulin resistance will also lead to adipose tissue dysfunction inducing secretion of inflammatory 

cytokines [29].  
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Figure1:  Detailed pathophysiology of Non-alcoholic Steatohepatitis. 

 

2. Methodology 

2.1 Sequence analysis of CCR2 and CCR5 receptors 

To find out the identity and similarity between the CCR2 and CCR5 receptor the Pairwise Sequence Alignment 

using EMBOSS Needle [30] (Online Sever) was done. The primary sequences for CCR2 and CCR5 receptors were 

retrieved from the UniprotKB database [31]. The accession numbers for CCR2 and CCR5 sequences were P41597 

and P51681respectively.  

 

2.2 Molecular docking 

Docking studies were carried out using the Glide Module [32] of Maestro11.2. Prior to undergoing Protein-Ligand 

docking, protein structures for CCR2 (PDB ID: 5T1A) having resolution2.81 Å and CCR5 (PDB ID: 4MBS) having 

resolution 2.71 Å, obtained from the RCSB Protein Data Bank (www.rcsb.org) [33] was prepared using the Protein 

Preparation Wizard (Schrödinger Suite 2016 Protein Preparation Wizard) accessed via Maestro. Ligands including 

dual antagonist (CVC) and hits from virtual screening were subjected to the LigPrep module of Maestro. For 

geometry optimization, the OPLS3 force field was used. The grid box was generated at the ligand-binding site by 

selecting the co-crystallized ligand molecule and extended up to 15 Å as the inner box and 20 Å as the outer box for 

covering the binding site cavity entirely. 

 

2.2.1 Validation of Docking Protocol: The validation of the docking protocol for both the receptors was done. To 

perform molecular docking validation protocol, the ligand in native co-crystallized structure BMS-681(in CCR2 

receptor) [34] and Maraviroc (in CCR5 receptor) [35], were extracted and re-docked with the active cavity of CCR2 

and CCR5 respectively. 
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Figure 2: Superimposition of native and re-docked conformer (CCR2) having RMSD 1.64Å and (CCR5) having 

RMSD 2.1 Å. 

 

2.3 Pharmacophore mapping 

2.3.1 E- Pharmacophore generation (Structure-based pharmacophore): Phase [36] module of Schrodinger was 

used to generate the pharmacophore hypotheses from the docked poses of dual antagonist Cenicriviroc using the 

default set of six chemical features in Phase: hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), negative 

ionizable group, positive ionizable group, aromatic ring, and hydrophobic group. The e- Pharmacophores [37] 

method utilizes the Glide XP scoring function to accurately characterize protein-ligand interactions and to generate 

the potential pharmacophoric feature, resulting in improved database screening enrichments. 

 

2.3.2 Validation of hypothesis: Pharmacophore validation was done to determine whether the generated hypothesis 

is able to identify the actives from the database of ligands. The docked ligand (CVC) was considered as active which 

was then combined to decoys set having 1000 drug-like compounds (Drug-Like Ligand Decoys Set) [38] retrieved 

from Schrodinger to form an internal library of 1001 compounds. For validating the screening protocol, the ability of 

the e- pharmacophore to differentiate the actives from the internal library was evaluated. Enrichment factor (EF) is 

employed for recovering a fraction of the known actives after a fraction of the database has been screened and it was 

calculated using the following equation, EF=(a/n)/(A/N), where a is the number of actives retrieved in a sample size 

of n, A is the total number of actives, and N is the number of ligands in decoy dataset. 

 

3. Results and Discussion 

3.1 Sequence analysis of CCR2 and CCR5 receptors 

The result of pairwise alignment shows that both receptors (CCR2 and CCR5) have the identity of 61.6% and 

similarity of 70.1%.  
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Figure 3:  Sequence alignment of CCR5 (UniProtKB: P51681) with CCR2 (UniProtKB: P41597). 

 

3.2 Binding site alignment 

The binding site alignment showed that the most of amino acid residues of CCR2 at orthosteric site are identical 

with the binding site of the CCR5 receptor which has Maraviroc as a crystallized ligand. The residues which are not 

identical include the Ser101/Tyr89, His121/Phe109, Arg206/Ile198, PHE116/LEU104, THR287/MET279, and 

GLY191/SER179 in CCR2/CCR5 respectively. 

 

3.3 Docking studies 

Docking of dual antagonist Cenicriviroc [39] was done into the active pockets of both the receptors to find the 

important residues required for antagonism. The precision mode used was XP (Extra precision).                     

 

3.3.1 Molecular docking of dual antagonist cenicriviroc (CVC):  

 

 

(5E)-8-[4-(2-butoxyethoxy)phenyl]-1-(2-methylpropyl)-N-[4-[(S)-(3-propylimidazol-4-yl)methylsulfinyl]phenyl]-

3,4-dihydro-2H-1-benzazocine-5-carboxamide 
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Compound Receptor Docking score XP Score Glide Emodel 

Cenicriviroc 
CCR2 -9.931 -10.736 -116.605 

CCR5 -7.259 -8.064 -102.550 

 

Table 1: Docking results of dual antagonist (Cenicriviroc). 

 

From the Docking of CCR2 known antagonist and CCR5 known antagonist, we got the important residues which are 

vital for binding of antagonist. The results showed that various residues involved in salt bridge interaction, π-π 

stacking interaction, π-cation interactions, and hydrogen bonding interactions. In the docking of dual antagonist 

(CVC), it was found that CVC was forming salt bridge interaction and hydrogen bond interactions with acidic 

residues Glu283 (in CCR5) and Glu291 (in CCR2) respectively. Tyr89 (in CCR5) and Trp98 (in CCR2) are 

involved in π-π stacking interaction. In the CCR5 receptor, it was found that CVC formed the π-cation interaction 

with Trp86.  Apart from these interactions, hydrophobic interactions were also found. In the CCR2 receptor, CVC 

forms hydrophobic interaction with Trp98, Pro192, Val189, Leu 45, Tyr120, Ile263, Val289, and Phe194. Similarly, 

in CCR5 receptor Ile198, Phe112, Tyr108, Phe109, Trp248, Phe113, Leu255, and Tyr 251 were involved in 

hydrophobic interactions with CVC. From these docking studies, the important residues for antagonist binding have 

been identified.  

 

 

 

Figure 4: Interactions of CVC with CCR5 receptor and CCR2 receptor. 

 

3.4 Pharmacophore mapping   

3.4.1 E- Pharmacophore generation (Structure-based pharmacophore): The E-pharmacophore was generated 

for both receptors using receptor-ligand complex (CCR2 with CVC and CCR5 with CVC). The seven maximum 

features were selected to generate with 2Å as the minimum distance between two features. To account for the shape 

of the active site, a van der Waals scaling of 0.5 was used for receptor-based excluded volumes in each hypothesis.  
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Figure 5: Pharmacophore map of CCR2 and CVC complex (HRRRR) and CCR5 and CVC complex (AHHRRRR). 

 

Firstly, the docked complex of CVC with CCR2 receptor was subjected to the E– Pharmacophore and generated five 

features pharmacophore map (HRRRR) with four aromatic ring features and one hydrophobic feature. Similarly, the 

docked complex of CVC with CCR5 receptor was subjected to the E- pharmacophore and generated seven features 

pharmacophore map (AHHRRRR) with four aromatic ring features, one hydrophobic feature, and one hydrogen 

bond acceptor feature. 

  

3.4.2 Merging of E- Pharmacophores: Two e- pharmacophores were prepared one for CCR2 (HRRRR) and one 

for CCR5 (AHHRRRR). These two pharmacophores were first aligned and then merged to obtain the dual 

antagonist. The merged hypothesis was prepared by selecting three aromatic ring features, one hydrophobic and one 

acceptor feature (AHRRR) using the Merged Hypothesis tool of the maestro.  

 

 

 

Figure 6: Cenicriviroc merged pharmacophore (AHRRR). 
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3.5 Pharmacophore based virtual screening 

The NCI database was screened using the generated pharmacophore model (AHRRR) in order to search for potent 

dual antagonists. Phase Ligand screening module was used to screen the databases requiring a minimum of four 

feature matches with the hypothesis. The pharmacophore model (AHRRR) was able to screen 59 hits from the NCI 

database. The screened molecules showing the negative fitness score were rejected and the remaining 50 screened 

molecules were docked into active pockets of both receptors (CCR2 and CCR5) using glide standard precision (SP) 

scoring function. Then 20 ligands were selected from them according to their docking scores comparable in both 

receptors and docked again using glide extra precision (XP) scoring function. Then from XP docking, 5 hits have 

binding scores comparable to that of reference ligand cenicriviroc in both receptors (glide score -8.064 (in CCR5) 

and -10.736 (in CCR2) using glide XP scoring function) were selected for detailed evaluation. 

 

 

 

Figure 7: Top five screened molecules by XP docking. 

 

 

 

Figure 8: Binding poses of top five screened molecules in pockets of CCR5 and CCR2 receptor. 
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The interactions of five top-scored hits were analyzed from the ligand interactions diagram. The pink-colored lines 

represent hydrogen bonds, green-colored lines represent π-π stacking interactions, and orange-colored lines 

represent halogen bond interactions. The protein-ligand interaction of the top five molecules is shown as:  

 

 

 

Figure 9: Interactions of S1 molecule with CCR5 and CCR2 receptor respectively. 

 

 

 

Figure 10:  Interactions of S2 molecule with CCR5 and CCR2 receptor respectively 
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Figure 11: Interactions of S3 molecule with CCR5 and CCR2 receptor respectively. 

 

 

 

 

Figure 12: Interactions of S4 molecule with CCR5 and CCR2 receptor respectively. 

 

 

 

Figure 13: Interactions of S5 molecule with CCR5 and CCR2 receptor respectively. 
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By evaluating the chemical structures of the top five molecules, it was observed that all five molecules possess C2 

symmetry. The docking results of the top five molecules showed that Thr284, Trp86, Tyr89, and Glu283 (in CCR5) 

and Asp283, Val37, Asn286, His202, and Gln288 (in CCR2) residues were involved in hydrogen bond interactions. 

The molecules also showed π-π stacking interaction with key residues Phe112, Tyr108, Phe109, Trp86, and Tyr89 

(in CCR5) and HIE121, Trp98, Tyr120 (in CCR2). Additionally, in some molecule’s halogen bond was also 

observed. The residues which formed the halogen bond include Phe182, Thr195 (in CCR5), and Lys38 (in CCR2). 

The screened molecules showed the interactions with some key residues i.e., Phe112, Tyr108, Phe109 (in CCR5) 

and Trp98, Tyr120 (in CCR2) as same that of CVC interactions with CCR5 and CCR2 receptor.  

 

Compound Receptor Docking score XP Score Glide Emodel 

S1 
CCR5 -9.59 -9.629 -107.074 

CCR2 -7.826 -9.629 -95.048 

S2 
CCR5 -9.507 -9.515 -101.872 

CCR2 -7.233 -9.515 -91.588 

S3 
CCR5 -7.551 -7.551 -101.281 

CCR2 -9.022 -7.551 -102.392 

S4 
CCR5 -5.723 -6.744 -93.791 

CCR2 -6.859 -6.744 -92.53 

S5 
CCR5 -5.894 -6.714 -94.786 

CCR2 -5.929 -6.714 -91.691 

 

Table 2: Docking results for selected five hits molecules. 

 

4. Conclusion 

The objective of this study was to discover and design new dual antagonists which can bind to both CCR2 and 

CCR5 receptors. With a systematic integration of pharmacophore generation and virtual screening tools with 

multiple filters, an attempt was made to find molecules that can effectively bind to both receptors. For this study, we 

took cenicriviroc (CVC) as a reference molecule, which is clinically approved as a dual antagonist for CCR2 and 

CCR5 receptors. In this quest, we obtained five hits having comparable binding affinity as that of cenicriviroc 

(CVC) in both CCR2 and CCR5 receptors. These hits had diverse scaffolds related to structural features of 

cenicriviroc (CVC) and may act as dual antagonists. 
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