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Abstract 

Glanzmann Thrombasthenia is a rare platelet function disorder which is characterized by decreased expression 

and/or dysfunction of the platelet receptor αIIbβ3 (GPIIb/IIIa). The disease is due to alterations in ITGA2B or 

ITGB3 the genes encoding for the receptor subunits αIIb (GPIIb) and β3 (GPIIIa) and mostly inherited autosomal 

recessively. We report about a one-year old girl presenting with petechiae and hematomas shortly after birth. Platelet 

light transmission aggregometry was impaired after stimulation with ADP, arachidonic acid and collagen. 

Stimulation with ristocetin reached normal values, but showed an undulating course. Flow cytometry revealed 

severely decreased expression of CD41 (αIIbβ3). Molecular genetic analysis of the candidate genes and family 

genotyping identified two compound heterozygous variants in Exon 10 of ITGB3: c.1552C>T (p.Gln518*) and 

c.1639T>G (p.Cys547Gly). According to the guidelines of ACMG the variants were classified as pathogenic (Class 

5). The nonsense variant c.1552C>T has not been reported before. 
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1. Introduction 

Glanzmann Thrombasthenia (GT) is a well characterized platelet disease with mostly autosomal recessive 

inheritance (OMIM #273800). The key feature of GT is severely impaired or absent platelet aggregation in response 

to multiple platelet agonists except for ristocetin and a reduction/absence of integrin αIIbβ3 surface expression or 

dysfunction of the receptor [1]. The integrin αIIbβ3 is the main platelet fibrinogen receptor and consists of 2 

subunits: αIIb (ITGA2B; 30 exons) and β3 (ITGB3; 15 exons). The encoding genes are less than 200 kb apart on 

chromosome 17q21 [2-4]. There are three classical types of GT. In type I, αIIbβ3 expression is very low (<5%), 

whereas in GT type II αIIbβ3 expression is slightly reduced (5-20%) and in variant-type GT αIIbβ3 is dysfunctional 

and may be due to a defect in genes involved in integrin activation [1, 5, 6]. The subunits of αIIb and β3 consolidate 

as a non-covalent heterodimer [7]. The subunit αIIb has four major extracellular domains known as β-propeller, 

thigh, calf-1 and calf-2. The subunit β3 comprises of 8 domains: four EGF (epidermal growth factor) domains, the 

domains bI, hybrid, PSI (plexin/semaphoring/integrin) and the β-tail [8-14]. Variants causing GT can affect 

biosynthesis as well as structure and function of αIIbβ3 complex [15]. To date the public version of Human Genome 

Mutation Database (HGMD) comprises 204 pathogenic variants in ITGA2B and 149 in ITGB3 [access 06/2020]. 

Affected patients are suffering from moderate to severe hemorrhagic syndrome. Symptoms can appear rapidly after 

birth including gastrointestinal bleeding, petechiae, hematomas and mucocutaneous bleeding (i.e. epistaxis) [16]. 

There are several other defects in the primary hemostasis which may present with similar symptoms (i.e. other 

platelet receptor defects). Therefore, comprehensive diagnostics are important to identify the cause of bleeding 

diathesis.  

 

Here, we report compound heterozygous pathogenic variants in ITGB3 causing Glanzmann disease, to our 

knowledge one of them is novel and has not been reported before. 

 

2. Patient, Materials and Methods 

The index patient is a one-year old Caucasian girl presenting with petechiae and hematomas distributed over the 

whole body already several hours postpartum. The girl also experienced postnatal cytomegalic virus infection and 

has two small muscular ventricular septal (VSD) defects, which are not relevant considering hemodynamics. After 

the baby started crawling even larger hematomas developed. Dentition caused prolonged bleeding for a day and was 

stopped using tranexamic acid. Sometimes mild bleeding symptoms were observed after scratching. Post-puncture 

bleeding symptoms occurred for 2 hours after blood sampling. Blood analyses revealed that the platelet count was 

increased (502 G/l). Normal values were found for red and white blood cell count and blood smear. Global 

coagulation tests (aPTT, INR) and von Willebrand parameters were normal. The girl is the first child of non-

consanguine parents. The mother is easily prone to hematomas after insignificant trauma. During delivery the 

mother suffered major blood loss due to placenta accreta and received two red blood cell concentrates. There was no 

bleeding during and after a nose operation. No bleeding diathesis is reported for the father. 
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2.1 Platelet Functional Analyses 

2.1.1 Platelet count and platelet aggregometry: Platelet count was measured using an automated cell counter 

(Sysmex XN Series, Norderstedt, Germany). Platelet-rich plasma (PRP) and platelet-poor plasma (PPP) were 

prepared by centrifugation as described before [17]. Platelet counts in PRP were adjusted to a concentration of 250 

G/L with PPP. Platelet aggregometry analyses were performed after stimulation with the platelet agonists: collagen 

(0,19 mg/mL; Mölab, Germany), adenosine diphosphate (ADP; 20 μmoL/L; Mölab, Germany), epinephrine (100 

µM Mölab, Germany), and ristocetin (0.6 und 1.5 mg/mL; Mölab, Germany) using APACT 4004 (Labitec, 

Ahrensburg, Germany). 

 

2.1.2 Flow cytometry: Flow cytometry analysis (Navios, Beckman Coulter, Krefeld, Germany) of CD41, CD42b, 

CD62P (Beckman Coulter, Krefeld, Germany) and platelet-bound fibrinogen (Dako, Carpinteria, CA) was 

performed according to standard protocol of LADR GmbH medical care unit (Bremen, Germany). 

 

2.2 Molecular genetic analysis 

Written Informed consent was given for all family members. Genomic DNA from EDTA blood was isolated using 

QIAamp® DNA Blood Mini Kit (Qiagen, Hilden, Germany). For the index patient all exons of the genes ITGA2B 

and ITGB3 were amplified by PCR with intronic primers. The purification products were sequenced directly. 

Analysis was performed by sequence assembly and alignment software Codon Code
®
 Aligner and variant analyzing 

software Alamut
®
 visual. Variants were classified according to the guidelines of the ACMG (American College of 

Medical Genetics and Genomics). Family genotyping was done for the two pathogenic variants in ITGB3.  

 

3. Results 

Platelet aggregometry analysis revealed severely impaired aggregation after stimulation with ADP, adrenaline, 

collagen and arachidonic acid. Agglutination after stimulation with ristocetin reached normal values (Table 1). Flow 

cytometry analysis showed reduced basal expression of CD41 (GPIIb/IIIa) compared to healthy control (Figure 1) 

whereas expression of CD42 (GPIb) was normal. Also CD62 expression was normal after activation with TRAP and 

ADP. Molecular genetic analysis of the index patient identified two heterozygous variants in exon 10 of ITGB3 

(Table 2). One variant (c.1552C>T) is resulting in a premature Stop Codon at amino acid 518 (p.Gln518*; position 

without signal peptide: p.Gln492*). The variant is neither listed in population data bases (dbSNP, gnomAD, ESP) 

nor in disease databases (HGMD public version, Sinai Central, ClinVar).  

 

The second heterozygous variant c.1639T>G leads to an exchange of the highly conserved (up to C. elegans) 

cysteine at position 547 by the physiochemical different glycine (p.Cys547Gly; position without signal peptide: 

Cys521Gly). This non-synonymous coding variant is found in dbSNP as a not validated entry (rs902952044) and in 

gnomAD with low allele frequency of 0.0032% (amount of counted allele frequencies: 1/ amount of all alleles: 

30984). The variant is listed in HGMD public version. In silico prediction is concordant pathogenic in PolyPhen2, 



 

 

Arch Clin Med Case Rep 2020; 4 (5): 813-819    DOI: 10.26502/acmcr.96550268 

 

 

Archives of Clinical and Medical Case Reports    816 
 

Mutation Taster and SIFT. Family genotyping of Exon 10 identified heterozygous c.1639T>G (p.Cys547Gly) as 

paternal variant, whereas, c.1552C>T (p.Gln518*) was found maternally. Family genotyping confirmed compound 

heterozygosity in index patient (Figure 2). 

 

 

Figure 1: Flow cytometric quantification of platelet surface αIIbβ3 (CD41). Reduced expression of CD41 (Arbitrary 

unit: 340) in patient’s platelets compared to healthy control (Arbitrary unit: 780). 

 

Figure 2: A Pedigree: Parents (I.1 mother and I.2 father) are carrier of heterozygous variants in exon 10; index 

patient (II.1) is affected compound heterozygous; arrow marks index patient. B Chromatogram (ITGB3, Exon10) 

shows heterozygous c.1552C>T in index patient and mother, resulting in a premature Stop Codon and wildtype 

sequence for father (Gln). C Chromatogram (ITGB3, Exon10) shows heterozygous c.1639 T>G in index patient and 

father and wildtype sequence for mother. Amino acid change is from Cys to Gly. 
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Inductor Max. aggregation/agglutination  Normal control 

ADP (20µmol) 3% 60-90% 

Adrenaline (100 µM). 9% 60-90% 

Collagen (0,19 mg/mL) 45% 60-90% 

Arachidonic acid (0,5 mg/mL)  3% 60-90% 

Ristocetin (0,6 mg/mL) 2% <20% 

Table 1: Platelet aggregometry analysis. 

 

Specification Variant 1 Variant 2 

Nucleotide c.1552C>T c.1639T>G 

Amino acid p.Gln518* p.Cys547Gly 

Allele frequency - gnomAD: ALL 0.0032% 

Variant type Nonsense Missense 

In silico prediction - 
Pathogenic in PolyPhen2, Mutation Taster, 

SIFT 

Occurrence in HGMD public - Yes (Buitrago et al., 2015) 

Domain β3 β3 

Class according to ACMG 5 (pathogenic, serious consequences) 5 (pathogenic) 

Family genotyping   

Index patient Heterozygous Heterozygous 

Mother Heterozygous WT 

Father WT Heterozygous 

WT, wild type; HGMD access 06/2020 

Table 2: Characteristics of the two variants identified in ITGB3 (NM_000212).  

 

4. Discussion 

In this study we describe the early onset of Glanzmann Thrombasthenia due to compound heterozygous variants in 

exon 10 of ITGB3. To our knowledge the nonsense variant has not been reported so far. The nonsense variant 

c.1552C>T (p.Gln518*) interrupts the reading frame by a premature Stop codon (normal protein length 788 aa). The 

mRNA produced might be a target for nonsense mediated decay. Due to loss of protein function we classified the 

variant as pathogenic (Class 5). The second allele carries a heterozygous non-synonymous coding variant 

c.1639T>G, (p.Cys547Gly). In silico prediction was concordant pathogenic in 3 programs. According to UniProt 

(https://www.uniprot.org/) the cysteines at position 547 and 534 form a disulfide bond. The amino acid exchange 

from cysteine to glycine is likely causing substantial impairment of the tertiary structure due to the loss of the 

disulfide bond (534-547). The importance of cysteine at position p.547 is supported by the described variant 

c.1641C>G resulting in exchange from cysteine to Tryptophan (p.Cys547Trp) in a Glanzmann Thrombasthenia 
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patient [18]. Kannan et al. used molecular modeling and showed that Cys547 is located in the EGF-3 domain of β3, 

which has intense contact with the calf-1 domain of αIIb. They presumed that the loss of Cys547 may cause 

conformational changes which lead to retention of the aberrant αIIbβ3 complex [18]. Furthermore, in HEK293 cells 

expressing the Cys547Gly variant a profound reduction in β3 expression was found [19]. Buitrago and colleagues 

anticipated that Cys547Gly would decrease receptor expression due to the loss of the disulfide bonding. According 

to these findings we classified the variant as Class 5 (pathogenic). 

 

5. Conclusions 

Biochemical and molecular genetic analysis led to early diagnosis for this patient with Glanzmann Thrombasthenia. 

Early diagnosis helped to treat bleeding symptoms more effective and improves surgical management. Identifying 

the disease-causing variants led to a better understanding of molecular genetic mechanisms affecting the αIIbβ3 

integrin receptor. In addition, the results will help regarding the genetic counseling for the parents. 
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