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Abstract

Brazil has one of the most diverse herpetofauna and
snakebites are an important health issue. The oral
cavity of snakes harbored a wide range of bacteria.

Enterococci have been isolated from animals,
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however, few studies have taken in snakes. In this
sense, the present study aimed to evaluate Entero-
coccus spp. and their virulence attributes including
antimicrobial resistance in oral cavities of healthy

snake species in Brazil. Oral swabs from wild and
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captive snakes were screened for enterococci distri-
bution, antimicrobial susceptibility, resistance and
virulence genes, and CRISPRs elements by PCR.
Overall, 116 enterococci were detected and
Enterococcus faecalis was dominant in all snake
species, followed by E. faecium, E. avium, and E.
hirae. Interestingly, no resistant enterococci were
detected in wild snakes. In contrast, captive shakes
were found to be carriers of resistant strains, including
resistance to erythromycin, rifampicin, norfloxacin,
ciprofloxacin, and tetracycline. Enterococcus faecium
(50%) and E. faecalis (15.78%) isolates were multi-
drug-resistant. Erythromycin resistance genes, the
msrC and ermB, were detected in 13.33% and 6.67%
of the isolates, respectively. The tetM (70%), tetL
(30%) and tetS (10%) genes were detected in the
tetracycline-resistant strains.

Among the virulence genes, gelE was the most
frequent in all strains. CRISPR1-cas, orphan
CRISPR2, and CRISPR3-cas elements were present
in 16.03%, 15.79%, and 18.31% of the isolates,
respectively. No antibiotic resistance was associated
with CRISPRs. In conclusion, resistant enterococci in
captive snakes are the result of confinement,
antibiotic therapy and human contact. Resistant
bacteria in captive snakes provide crucial information

about public health safety.

Keywords: Enterococci; Maldi-TOF; Antimicrobial

resistance; Virulence genes; CRISPRs; Snakes

1. Introduction
Snakes play an important role in maintaining balance
in the ecosystem. The snakes diet ranges from inver-

tebrates to vertebrates; in wildlife they eat a wide
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variety of animals including snails, insects, fish, frogs,
lizards, snakes, amphibians, birds, rodents, bats,
primates, and eggs of lizards and birds [1, 2]. Snakes
are reptiles belonging to the order Squamata and sub-
order Serpente. There are more than 3,900 species of
snakes found in the world [3]. In Brazil, the diversity
of ophidians is approximately 405 species, distributed
into ten families: Anomalepididae, Leptotyphlopidae,
Typhlopidae, Aniliidae, Tropidophiidae, Boidae,
Viperidae, Elapidae, Colubridae e Dipsadidae [2, 4,
5]. These species are found in all Brazilian biomes,
and some are kept in captive conditions, like zoos and
serpent scientific breeders for poison extraction and

subsequent production of antivenom [2, 4-6].

Not all snakes are venomous, in fact, 600 species are
venomous and only 200 can kill or significantly
wound a human. Snakebite envenoming is a major
public health issue in the developing world; clinical
reports have revealed that snakebites are a neglected
public in many countries, with major impacts in
Africa, Asia and Latin America [7]. According to data
from the Brazilian Ministry of Health, during the
period of 2009-2013, 144,060 snakebites were recor-
ded in Brazil (an average of 28,812 cases per year),
with an average mortality of 119 per year [8]. The
deaths are caused by poisoning, as well as the snake
mouth is colonized by bacteria that can be transmitted
to the bitten patient through the skin injury associated
with the bite, and may cause secondary infection
along with envenomation [9]. Interesting, clinically
relevant bacterial species have been found in the oral
microbiota and bite wounds from snakes worldwide
[10-12]. Diverse studies have revealed a mixture of
both aerobic and anaerobic bacterial species in the
oral cavity of snakes [13-16]. Panda et al. [17]
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identified Gram-negative and Gram-positive bacteria,
including clinical pathogens such as Bacillus spp.,
Enterococcus faecalis, Staphylococcus aureus, and
Staphylococcus epidermidis in Indian cobra (Naja

naja).

Enterococcus spp. are facultative anaerobic bacteria,
belonging to the Phylum Firmicutes. Currently, the
genus is composed of more than 50 species [18], with
E. faecalis predominant in the gastrointestinal tract of
humans and other mammals, followed by E. faecium,
E. hirae, E. durans, E. casseliflavus, E. gallinarum,
and E. mundtii [19]. These genera are also found in
oral cavity and urinary tract of humans and other
animals. They can also be found in different
environments such as soil, water, sewage and plants
[18]. However, enterococci are also important
opportunistic pathogens for humans due to virulence
factors and antibiotic resistance [20]. They represent
the second most common cause of hospital-acquired
infections, particularly affecting the urinary tract,
wounds, and soft tissues. Researches have shown that
enterococci species were isolated from human wound
infections caused by dogs, cats, bears, and snake bites
[15-21]. Enterococcus spp. were the most common
pathogens isolated in infected bite wounds and oral
microbiota of Naja atra in Taiwan [12]. Huang et al.
[11], investigating bacterial infection associated with
snakebites in central Taiwan, identified Enterococcus
spp. as one of the most common pathogens. Chen et
al. [10], analyzing snakebite from Northern Taiwan
medical center, identified the Enterococcus spp. as the
most frequently pathogens in the wound. In Brazil,
group D streptococci (enterococci) were isolated in
the abscesses at the site of Bothrops spp. bite [22].
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Due to their remarkable ability to adapt to environ-
mental conditions and ubiquity, enterococci have been
used as sentinel organisms for tracking trends in
resistance to  antimicrobials [23].  Resistant
enterococci have been isolated from captive and wild
animals worldwide [24-30] and rare studies regarding
snakes [15-21]. This could be justified by the
difficulty to manipulate these animals, and also
observing them in the wild environment since they
make unseen movements in fields and forests [31].
Despite Brazil having one of the most diverse
herpetofauna, studies evaluating bacteria in snakes'
oral cavities are scarce, and most of them are
associated with abscesses caused by bites of snakes
[32-34]. This is the first study to report enterococci in
the oral cavity of captive and wild snakes of several
species in Brazil. We evaluated the antimicrobial
susceptibility and virulence determinants  of
enterococci isolated from oral cavities of snake
species in Brazil. The study intends to address if the
snakes can be a reservoir of antibiotic-resistant
enterococci that can spread through people and
animals, contributing with information for public

health safety.

2. Materials and Methods

2.1 Oral snakes samples collection

Fourteen oral swab samples were collected from wild
and captive snhake species (Table 1). Seven wild
snakes were captured in the Pacotuba National Forest
(FLONA- Pacotuba; 20°45°9.717’S, 41°17°21.27"W) —
Espirito Santo state, and Caparadé National Park (20°
25'10"S, 41°48'54") — Serra do Caparad, in the border
between the states of Espirito Santo and Minas
Gerais, southeastern Brazil. Sampling technique the

active search (visual encounter survey protocol),
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between March and May 2019, were used. Six
different wild snakes species were captured: Thamno-
dynastes strigatus, Leptophis ahaetulla, Pseudablabes
patagoniesis, Oxyrhopus petolarius, Erythrolamprus
poecilogyrus, and Bothrops jararaca. After collec-

tion, the wild snakes were returned to nature.

Captive snakes (n = 7), belong to serpent scientific
breeder of the Museum of Natural Sciences of the Rio
Grande do Sul State Department of Environment and
Infrastructure (MCN), Porto Alegre, Brazil, were
handled using a snake hook, and the sampling were
collected in January and May 2019 (Figure 1). To
avoid adding a source of stress for the healthy snakes,

the samples were collected during the routine proce-
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dures of the breeding facility, which follows all the
international standards of animal welfare and
biosecurity. Six different captive snake species were
selected: Philodryas olfersii, E. poecilogyrus, Oxyr-
hopus rhombifer, T. strigatus, Bothrops diporus and

B. jararaca.

Oral swabs were stored in Stuart transport medium
(Ox0id™) and transported to the laboratory for
microbiological analyses. The sampling was perfor-
med following regulations established by the Instituto
Chico Mendes de Conservagdo da Biodiversidade
(ICMBIo), System Authorization and Information on
Biodiversity (SISBIO) n° 300675 and n° 52838.
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Table 1: Description of wild (FLONA de Pacotuba and Caparad) and captive (MCN) shakes that oral samples were collected.

Habitat Species (common name) Family N? Collection Diet
Wildlife/  Bothrops jararaca (jararaca) Viperidae 01 05/03/2019 Frogs, rodents [35]
FLONA
Erythrolamprus poecilogyrus (Goldbauch-Buntnatter) Dipsadidae 01 05/03/2019 Frogs, fish, lizards and rodents [36]
Leptophis ahaetulla (parrot snake) Colubridae 01 04/24/2019 Frogs and lizards [37]
Oxyrhopus petolarius (false-coral) Dipsadidae 01 03/20/2019 Lizards, rodents and bird eggs [38]
Pseudablabes patagoniensis (Patagonia green racer) Colubridae 02 05/03/2019 Amphibians, frogs, birds, lizards,
mammals, fish and snakes [35]
Wildlife/  Thamnodynastes strigatus (coastal house snake) Dipsadidae 01 04/24/2019 Frogs, lizards and mammals [39]
Caparad
Captive/  Bothrops diporus (jararaca-pintada) Viperidae 02 01/13/2019 Wistar rats [40]
MCN
Bothrops jararaca (jararaca) Viperidae 01 01/13/2019 Wistar rats [40]
Erythrolamprus poecilogyrus (Goldbauch-Buntnatter) Dipsadidae 01 05/2412019 Fish [40]
Oxyrhopus rhombifer (Amazon false coral shake) Dipsadidae 01 05/19/2019 Wistar rats [6]
Philodryas olfersii (South American green racer) Colubridae 01 01/13/2019 Wistar rats [40]
Thamnodynastes strigatus (coastal house snake) Dipsadidae 01 01/20/2019 Wistar rats [40]

1. N: number of animals
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Figure 1: Oral sample collected from captive Bothrops diporus of the Museum of Natural Sciences of the Rio

Grande do Sul State Department of Environment and Infrastructure (MCN), Porto Alegre, Brazil. Photo: Juliana

Morais da Silva Heck.

2.2 Isolation and identification of enterococci from
the oral cavities of captive and wild snakes

Oral swabs were pre-processed according to Prichula
et al. [27]. Twenty colony-forming units were
randomly selected from each sample. Phenotypic
criteria, such as size/volume, shape, color, Gram
staining, catalase production, capacity to growth at 45
°C and bile aesculine reaction, were used to separate
the enterococci group and the non-enterococcal strains
[41].

Selected pure colonies were stored in a stock solution
of skin milk 10% (Difco, Sparks, MD, USA) and 10%

International Journal of Plant, Animal and Environmental Sciences

glycerol (Neon Comercial Ltda, S&o Paulo, SP, BR) at
-20 °C. Collected bacteria were identified by matrix-
assisted laser ionization and desorption technique
(MALDI-TOF) applied to Enterococcus, according to
Sauget et al. [42]. MALDI-TOF analysis was per-
formed using a LT Bruker microflex mass spec-
trometer (Bruker Daltonik GmbH) and spectra were
automatically identified using BrukerBioTyper ™ 1.1

software.
Strains not identified by MALDI-TOF were submitted

to species-specific PCR assay. Total DNA extraction

was carried out by a physical-chemical method [43],
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with a total volume of 25 L, containing: 100 ng of
DNA template, 1X PCR buffer (10 mM Tris—HCI [pH
9.0], (Invitrogen, Carlsbad, CA, USA), 1.5 mM of
MgCl, (Invitrogen, Carlsbad, CA, USA), 200 uM of
dNTPs (Ludwig Biotecnologia), 0.4 uM of each
primer (Invitrogen, Carlsbad, CA, USA), 1.0 U of Taq
polymerase (Invitrogen®). PCR conditions for all
amplification reactions were as follows: initial
denaturation at 94 °C for 5 min.; followed by 35
cycles of denaturation at 94 °C for 1 min.; the
appropriate annealing temperature for each species (as
listed in Supplementary Table 1) for 1 min.; extension
at 72 °C for 1 min.; and final extension at 72 °C for 5

min.

2.3 Antibiotic resistance profiles of enterococci
strain isolated from oral samples of snakes

All strains were screened for antibiotic susceptibility
by Kirby-Bauer disk diffusion method according to
Clinical and Laboratory Standards Institute [44].
Eleven antibiotics commonly used in clinical and
veterinary medicine were evaluated: ampicillin 10 pg
(AMP), ciprofloxacin 5 pg (CIP), chloramphenicol 30
pg (CHL), erythromycin 15 pg (ERI), gentamicin 120
pg (GEN), nitrofurantoin 300 pg (NIT), norfloxacin
10 pug (NOR), rifampicin 5 pg (RIF), streptomycin
300 pg (EST), tetracycline 30 pg (TET) and
vancomycin 30 pg (VAN). Minimum inhibitory
concentration (MIC) of vancomycin was determined
by broth microdilution and interpretation of the results
was performed following CLSI guidelines [45].
Staphylococcus aureus ATCC 25923 and E. faecalis
ATCC 29212 strains were used as quality control of
disks. Isolates that showed a resistance profile to one,
two, and three or more classes of antimicrobials were

classified as: single-resistant (SR), double-resistant
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(DR), and multidrug-resistant (MDR), respectively
[46]. Intermediate-resistant strains were grouped in

the resistant strains.

2.4 Detection of virulence, resistance-associated
genes and Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPRSs) in enterococci by
PCR

The presence of virulence genes, such as ace (adhesin
to collagen of E. faecalis), cylA (cytolysin) and gelE
(gelatinase) was determined in all enterococcal
isolates. On the other hand, only erythromycin- and
tetracycline- resistance phenotypes were examined for
the presence of macrolide (ermB and msrC) and
tetracycline (tetL, tetM and tetS) resistance genes,
respectively. PCR reactions followed the protocol
described by Santestevan et al. [28]. Primers are
described in Supplementary Table 1, with the

appropriate annealing temperatures.

The presence of Type Il CRISPRs elements
(CRISPR1-cas, CRISPR2-orfan, and CRISPR3-cas)
were investigated by PCR in all enterococcal samples.
Primers for CRISPRs genes reported by Palmer and
Gilmore [45] were used in PCR reactions. The
primers and annealing temperatures used are listed in
Supplementary Table 1. The PCR was performed as
described by Huescas et al. [47].

3. Results

3.1 Enterococci species in the oral cavities of
captive and wild snakes species from Brazil

A total of 116 enterococci (64 from wild and 52 from
captive snakes) were recovered from 13 oral samples
of snakes belonging to the species including T.

strigatus, L. ahaetulla, P. patagoniesis, O. rhombifer,
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O. petolarius, P. olfersii, B. diporus and B. jararaca.
Only in one sample of captive snake belonging to E.

poecilogyrus species was not detected enterococci.

As result, among the 116 Enterococcus spp. reco-
vered, the most frequently isolated species were E.
faecalis (78.45%), followed by E. faecium (12.07%),
E. avium (6.03%), and E. hirae (3.45%).

154

Enterococcal strains (nj

DOI: 10.26502/ijpaes.202118

Differences in the distribution of enterococci species
were detected amongst the two groups of snakes, as
shown in Figure 2. Among the 64 enterococci isolates
from wild snakes, the species E. faecalis (82.81%; n =
53), E. avium (10.93%; n = 7), and E. hirae (6.25%; n
= 4) were identified. On the other hand, 52
enterococci were isolated from captive snakes
belonging to E. faecalis (73.07%; n = 38) and E.
faecium (26.92%; n = 14).

O E. faecalis
B E. avium
n
]

E. faecium

N
{f"\f o ﬁﬁl ra
fﬁ"'” - Het T
A &
Captive

Figure 2: Distribution of Enterococcus species between wild and captive snake species.

3.2 Resistance profile in enterococci from wild and
captive snakes

The enterococci isolated from wild snakes were
susceptible to all antimicrobial agents tested. In
contrast, of the 52 strains isolated from captive
snakes, 45 (86.53%) were resistant to at least one
antimicrobial agent tested. Strains showed resistance
to erythromycin (57.69%), rifampicin (50%),
(30.77%),
(19.23%), nitrofurantoin (13.46%), and chloramphe-
nicol (5.77%).

ciprofloxacin/norfloxacin tetracycline

International Journal of Plant, Animal and Environmental Sciences

The percentages of DR and MDR strains isolated
were 32.69% and 25%, respectively (Table 2). Of the
13 MDR strains, six (15.78%) were E. faecalis and
seven (50%) were E. faecium. Interesting, one E.
faecalis isolated from captive B. diporus showed
resistance to six different antimicrobials tested
(norfloxacin; chloramphenicol; erythromycin; nitro-

furantoin; rifampicin; tetracycline) (Table 3).
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Table 2: Antimicrobial resistance profiles among enterococci isolated from oral samples of captivity snakes.

Strains (n) Number (%) of resistant strains! Profiles?

CIP/NOR CHL ERY NIT RIF TET SR DR MDR
E. faecalis (38) 11 (28.95) 3 (7.89) 21(55.26) 6(15.79)  18(47.37) 6(15.79) 11 (28.94) 16 (42.10) 6 (15.78)
E. faecium (14)  5(35.71) 0 9(64.29) 1(7.14)  8(54.14)  4(2857) 3(21.42) 1(7.14) 7 (50)
Total (52) 16 (30.77) 3(5.77) 30(57.69) 7(13.46) 26 (50) 10 (19.23) 14 (26.92) 17 (32.69) 13 (25)

tAntimicrobials: CIP/NOR, ciprofloxacin/norfloxacin; CHL, chloramphenicol; ERY, erythromycin, NIT, nitrofurantoin; RIF, rifampicin, TET, tetracycline.

2Profiles: SR, single-resistant; DR, double-resistant; MDR, multidrug-resistant.
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Table 3: Antimicrobial resistance phenotypic profile of Enterococcus spp. isolated from oral samples of captive

snakes.

Number of resistant enterococci by snake species

Profile’  Antimicrobials® Species Bd® Bj’ or® Po° Ts'
SR RIF E. faecalis 3 1
E. faecium 1
TET E. faecalis
ERY E. faecalis 1 3
E. faecium 1
NIT E. faecium 1
NOR-CIP E. faecalis 1 2
DR ERY/RIF E. faecalis 7
CLO/NOR E. faecalis 1
ERI/NIT E. faecalis 1 1
CLO/ERY E. faecalis 1
ERY/NOR E. faecalis 1
RIF/NIT E. faecalis 1
RIF/NOR E. faecalis 1 1
RIF/TET E. faecalis 1
TET/ERY E. faecium 1
MDR TET/RIF/ERI E. faecium 2
RIF/ERY/CIP-NOR E. faecium 4
E. faecalis 2 1 1
TET/RIF/ERY/NOR E. faecium 1
TET/RIF/ERINIT E. faecalis 1
TET/RIF/CLO/ERY/NOR/NIT E. faecalis 1

1. SR: single-resistant; DR: double-resistant; MDR: multidrug-resistant. 2. Antimicrobials: ERY, erythromycin;
CIP, ciprofloxacin; NOR, norfloxacin; RIF, rifampicin; NIT, nitrofurantoin; CHL, chloramphenicol; TET,
tetracycline. 3. B.d: Bothrops diporus (jararaca-pintada); 4. B.j: Bothrops jararaca (jararaca); 5. O.r: Oxyrhopus
rhombifer (Amazon false coral snake); 6. P.o: Philodryas olfersii (South American green racer) and 7: T.s.:

Thamnodynastes strigatus (coastal house shake).

3.3 Occurrence of resistance and virulence- enterococci
associated genes and Clustered Regularly Inter- The frequency of erythromycin-resistant strains (n =
spaced Short Palindromic Repeats (CRISPRS) in 30) positive for the ermB and msrC genes were 6.67%
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(n = 2) and 13.33% (n = 4), respectively (Supple-
mentary Table 2). Among the 10 tetracycline-resistant
enterococci, seven (70%) were positive to tetM gene,
three (30%) to tetL gene, and one (10%) to tetS gene
(Supplementary Table 2).

Virulence genes were detected among all enterococci
species. The gelE was the most frequent (59.48%; n =
69), followed by ace (57.76%; n = 67), and cylA
(1.72%; n = 2). The gelE gene presented a higher
percentage in wild snakes, while ace and cylA genes

showed a similar frequency between the snakes

DOI: 10.26502/ijpaes.202118

Supplementary Table 3).

CRISPR1-cas, orphan-CRISPR2, and CRISPR3-cas
elements were positive in 16.03%, 15.79%, and
18.31% of the strains, respectively (Table 4). The
orphan-CRISPR2 was detected at a low frequency in
enterococci strains collected from captive snakes and
CRISPR3-cas in wild snakes. CRISPR1-cas was fou-
nd in similar frequency among the strains. No
antibiotic resistance was associated with CRISPRs

elements.

Table 4: Number (%) of CRISPRs elements identified in enterococci isolated from oral samples of wild and captive

snakes.

Number (%) CRISPRs elements

Habitat Species (n) | I 11
E. faecalis (38) 2 (5.26) 2 (5.26) 11 (2.94)
Captive E. faecium (14) 8 (57.14) 0 3(21.42)
Subtotal (52) 10 (19.23) 2 (3.84) 14 (26.92)
E. avium (7) 0 0 0
E. hirae (4) 1 (25) 0 0
Wildlife
E. faecalis (53) 6 (11.32) 16 (30.18) 5 (9.43)
Subtotal (64) 7(10.93) 16 (25) 5 (7.81)
Total (116) 17(14.65) 18 (15.51) 19 (16.37)
4. Discussion oral microorganisms from captive and wild Brazilian

4.1 Enterococci species occurrence and dis-
tribution in oral cavities of captive and wild Bra-
zilian snake species

In this study, we detected the enterococci genus,
bacteria of clinical relevance known as multidrug-
resistant nosocomial pathogens, in snake species from

Brazil. A few studies have previously examined the
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snake species [33, 34, 48]. Fonseca et al. [33] detected
the presence of diverse bacterial, including clinical
pathogens such as coagulase-negative staphylococci,
Bulkolderia sp., Moraxella sp., Proteus sp., S. aureus,
and Yersinia enterocolitica in oral samples of several
captive snakes species. Jorge et al. [34] detected the

presence of group D streptococci (Enterococcus spp.)
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in oral samples of B. jararaca. Currently, in relation
to wild snakes, there is only one study that isolated
Pseudomonas aeruginosa and Proteus vulgaris from
oral samples of Crotalus durissus terrificus snakes in
Brazil [48].

Enterococcus faecalis was the most common
enterococcal species detected in oral samples of
captive and wild snakes in this study. The results
observed here are in agreement with the literature,
Padhi et al. [13] identified E. faecalis as the most
frequent enterococci species in the oral cavity of free-
living vipers (Echis carinatus) in Orissa, India. Plentz
et al. [49] collected 46 samples from boid snake
species and also identified E. faecalis as one of the
most frequent species in oral and traqueal samples of
Python bivittatus. A microbiological study carried out
by Gatti et al. [50] in Argentina analyzed the oral
cavity of free-living B. alternatus, B. neuwiedi, B.
ammodytoides, B. jararaca and B. jararacussu and
found 37 bacterial strains; among them, six were E.
faecalis and one Enterococcus sp. The other
enterococci species isolated here have already been
found in samples of amphibians, reptiles, mammals,
and birds [18, 27, 28, 30].

The diet of snakes ranges from invertebrates to
vertebrates, and varies widely among species, some
being generalist and preying on a wide variety of prey
categories, while others are highly specialized [1, 2,
36]. There is a distinct difference between the snakes
diet of captive and wild snakes. One of the greatest
differences is the availability of food variety or lack
of it. Whereas in the wild they have high dietary
diversity, in captivity they are fed with a low dietary

diversity composed of small rodents (Wistar rats) or
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fish. These differences in the diet may have contri-
buted to the distribution of enterococci species among

the snakes evaluated in this study.

4.2 Multidrug-resistant enterococci in captive
snakes and absence of resistant strains in wild
snakes

The antimicrobial susceptibility profile showed that
only captive snakes revealed resistant enterococci
colonizing the oral cavity. The absence of resistant
enterococci in samples from wild snakes may be
associated with two factors in the wildlife: (i) the
snakes can go without eating for about six months,
thus reducing exposure to microorganisms; and (ii)
the snakes try to avoid human contacts, being less
exposed to impacts of anthropogenic activities. Our
findings were consistent with other studies that
evaluated the antimicrobial susceptibility of bacteria
isolated from the oral cavity of wild snakes [51-53].
Shaikh et al. [51] also observed that Gram-positive
and Gram-negative bacteria isolated from venomous
snakes, in India, were susceptible to antimicrobials.
Artavia-Leon et al. [52] found that the vast majority
of wild snake isolates in Costa Rica showed antibiotic
susceptible microorganisms. A recent study with
presumed Naja spp. bites in Vietnam found large
amounts of susceptible E. faecalis strains isolated

from local wounds [53].

However, as evidenced in this work, captive snakes
revealed multidrug-resistant enterococci colonizing
the oral cavity. The occurrence of MDR strains has
been associated with the proximity of animals to
human activities, since enterococci are sentinel
species [24, 54]. In the captive environment, feeding,

use of antibiotics in a therapeutic manner, and human
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contact may have a major impact on the resistance of
enterococci from captivity snakes. Other studies have
associated resistant-enterococci isolated from animals
with the proximity of human activities and/or to the
environmental resistance [25-28, 55-57]. Previous
studies examining the oral microbiota of captive
snakes found high incidences of antibiotic resistance
traits [17, 58, 59]. In India, N. naja captured from
various localities (households) of Odisha were found

to be harbouring antibiotic-resistant bacteria [17].

As shown by Hejnar et al. [58], resistant Steno-
trophomonas maltophilia strains were isolated from
captive snakes. Besides, Salmonella enteritidis
isolated from edible snakes showed resistance to most
drugs, but susceptibility to tetracycline and amikacin
[59].

The emergence of MDR clinical pathogens such as
enterococci are well-recognized to be one of the most
important current public health issues [60]. Broad
spectrum antibiotics are usually prescribed following
snakebite and wound infection after cobra bites
worldwide. Prophylactic antibiotic administration in
snake bitten patients is recommended to prevent
secondary infections from animal bites, and according
to international guidelines amoxicillin-clavulanate is

recommended [61].

However, to avoid the selection of pathogenic bacteria
resistant to drugs, studies have been showing that
antibiotic administration in snake bitten patients
should be considered only in those with severe local
signs of envenomation, or empiric use in those having
local or general signs of infection, regardless of the

degree of envenoming [61].
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4.3 Determinants of virulence and antibiotic
resistance genes in enterococci isolated from wild
and captive snakes from Brazil

Tetracycline and erythromycin are prescribed in
veterinary medicine [62, 63]. The isolation of
tetracycline and erythromycin-resistant enterococci in
captive snakes can be related to the administration of
antibiotics in these animals, as well as in rodents. In
the present study, tetL, tetM and tetS genes were
detected in tetracycline-resistant and ermB and msrC
genes were present in erythromycin-resistant
enterococci strains. The frequency of these genes
detected in the present study is congruent with the
results obtained in previous studies conducted on
Enterococcus strains isolated from wild and captive
animals [24, 27, 28, 54].

Genes likely important for colonization in many
contexts, but also studied for coding virulence traits
were revealed in this study. The gelE gene was
detected in enterococci from samples of snakes of the
both groups, although it was more prevalent in wild
snakes while ace and cylA genes had a similar
prevalence in both groups. Our data corroborate other
studies that recovered E. faecalis isolated from
diverse origins over the past 100 years and showed a
prevalence of the gelE and ace genes in genomes of
clinical and environmental strains [26]. The presence
of ace genes may be associated with the permanence
of strains in the oral cavity of snakes, as it encodes an
adhesion to collagen, aiding in the colonization and
permanence of host cells. In contrast, the low fre-
quency of the cylA gene in the analyzed samples
corroborates with recent studies that recovered
enterococci for animals, such as mammals [30],
reptiles [27], birds [26-27] and insects [25]. The

Vol. 11 No. 3 — September 2021 515



Int J Plant Anim Environ Sci 2021; 11 (3): 503-523

virulence genes in the snake strains analyzed in this
study may demonstrate a symbiotic characteristic

between strains and the host.

In clinical, MDR E. faecium and E. faecalis are asso-
ciated with CRISPR defects [18, 45]. In this study, we
observed that there was not a direct association
between the absence of CRISPR-Cas and the
presence of resistance in enterococci isolated from
captive snakes. Therefore, further studies involving
the analysis of the whole genome sequencing of these
isolates might elucidate the genetic aspects of
CRISPRs in enterococci strains isolated from captive

and oral snake species in Brazil.

5. Conclusion

In conclusion, this work advances our understanding
of the nature and ecology of enterococci in wild and
captive snake species in Brazil. Our data showed that
enterococci seem to be a natural member of the oral
microbiota of these animals, although the presence of
resistance traits in captive animals indicate that
human contact and confinement may be important
factors in the spread of resistant enterococci. There-
fore, further studying monitoring the resistant strains
on the oral cavity of these animals constitutes
important for snakebite management to determine

public health safety plans.
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Supplementary Table 1: Primers used in the PCR reactions carried out for detection of enterococci species (E.

faecalis and E. faecium), resistance (ermB, msrC, tetL, tetM, tetS), virulence (ace, cylA, and gelE), and CRISPRs
genes (CRISPR1, CRISPR2, and CRISPR3).

Gene Nucleotide sequence (5'-3") AT (°C)  Size (bp? Reference
E. faecalis E16s-F CCGAGTGCTTGCACTCAATTGG 66 136 [64]
E16s-R CTCTTATGCCATGCGGCATAAAC
E. faecium EM1A-F TTGAGGCAGACCAGATTGACG 62 172 [65]
EM1B-R CGGAAGTGATGCTTCCTACTG
Erythromycin ermB_F GAAAAGGTACTCAACCAAATA 5 £47 [66]
ermB_R AGTAACGGTACTTAAATTGTTTAC
msrC 3 AAGGAATCCTTCTCTCTCCG
52 343 [67]
msrC 4 GTAAACAAAATCGTTCCCG
Tetracycline tetL_F ACTCGTAATGGTGTAGTTGC
58 625 [68]
tetL_R TGTAACTCCGATGTTTAACACG
tetM_F GTTAAATAGTGTTCTTGGAG
52 657 [69]
tetM_R CTAAGATATGGCTCTAACAA
tetS_F TGGAACGCCAGAGAGGTATT
58 720 [69]
tetS_R ACATAGACAAGCCGTTGACC
Adhesion acel F AAAGTAGAATTAGATCACAC
57 320 [29]
ace2_ R TCTATCACATTCGGTTGCG
Cytolysine cylA_TE17 TGGATGATAGTGATAGGAAGT - 517 [70]
cylA_TE18 TCTACAGTAAATCTTTCGTCA
Gelatinase gelE_TE9 ACCCCGTATCATTGGTTT
50 402 [71]
gelE_TE10 ACGCATTGCTTTTCCATC
CRISPRs crisprl_F CAGAAGACTATCAGTTGGTG - 283 [52]
crisprl_R CCTTCTAAATCTTCTTCATAG
crispr2_F CTGGCTCGCTGTTACAGCT .
) 55 variable [52]
crispr2_R CCAATGTTACAATATCAACCA
crispr3_F GCTGAATCTGTGAAGTTACTC
. 50 258 [52]
crispr3_R CTGTTTTGTTCACCGTTGGAT

LAT: annealing temperatures; 2bp: base pair.

Supplementary Table 2: Distribution of erythromycin- and tetracycline-resistance genes in the enterococci isolated

International Journal of Plant, Animal and Environmental Sciences

from oral samples of captivity snakes.
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Specie Number (%) of strains positive for resistance genes
Erythromycin Tetracycline
R*  msrC ermB R tetL tetM tetS
E. faecalis 21 3(14.29) 2(9.52) 6 1(16.67) 3(50) 1(16.67)
E. faecium 9 1(11.11) 0 4 2 (50) 4(100) 0
Total 30 4(13.33) 2 (6.67) 10 3(30) 7 (70) 1(10)

*R, number of resistant strains.

Supplementary Table 3: Number (%) of virulence genes among enterococci isolated from oral samples of wild and

captive snakes.

Habitat Strains (n) Number (%) of positive enterococci
ace cylA gelE
Wildlife E. avium (7) 4 (57.14) 0 6 (85.71)
E. hirae (4) 0 0 4 (100)
E. faecalis (53) 32 (60.38) 1(1.89) 42 (79.25)
Subtotal (64) 36 (56.25) 1 (1.56) 52 (81.25)
Captive E. faecalis (38) 21 (55.26) 1(2.63) 13 (34.21)
E. faecium (14) 10 (71.43) 0 4 (28.57)
Subtotal (52) 31 (59.62) 1(1.92) 17 (32.69)
Total (116) 67 (57.76) 2(1.72) 69 (59.48)
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