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Abstract
Objectives: Our study validates the preliminary steps needed to introduce 
FT-IR spectroscopy as a point-of-care diagnostic tool, particularly for 
patients at high risk for cancer. 

Materials and methods: FT-IR spectroscopy was used to determine 
molecular changes and classify saliva samples of control, smoker, and 
occasional smoker groups. 

Results: Correctly classified instances were 72.7% for the control group, 
65.5% for occasional smokers and 75% for smokers. Sample differences 
were observed in the peaks at 1076cm-1, 1403cm-1 symmetric CH3 modes 
of protein methyl groups and δsCH3 of collagen, 1451cm-1 asymmetrical 
CH3 bending modes of the protein methyl groups, 1547cm-1 of protein 
band, amide II, peptide and proteins amide II, and 1646cm-1 amide I, C5 
methylated cytosine, C==O bond, C==C stretching uracil and NH2 guanine. 

Conclusion: Our research demonstrates the potential of FT-IR spectroscopy 
in detecting subtle molecular changes in saliva, which can be correlated 
with smoking habits. This non-invasive technique could be instrumental in 
the early detection and monitoring of oral and systemic diseases, especially 
those related to tobacco use. Future research should focus on refining the 
classification algorithms and expanding the sample size to further improve 
the diagnostic accuracy and reliability of this technique.

Keywords: Oral cancer, saliva, smoker, FTIR spectroscopy, optical 
diagnostics, point of care diagnostics, oral pathology

Introduction
Over the years, the scientific community has understood the need 

for improvements in medical diagnostic capacity, which is why several 
spectroscopic techniques have been improved in   biodiagnosis [1], [2]. 
Smoking is a global problem of civilization, and the estimated number of 
tobacco smokers is about 1.3 million [3], [4]. Habitual smoking is the most 
significant threat to the world's population, being responsible for 30% 
of premature deaths [2], [5]. Cigarette smoke contains more than 4800 
chemicals, including 69 carcinogens [6], which according to the literature, 
appear to be of crucial importance in the development of several diseases [2], 
[7], such as cardiovascular diseases [2], [5], [7] , accidental stroke, peripheral 
vascular disease, lung carcinoma [8], chronic obstructive pulmonary diseases 
[2], [5], the risk of oral cancer increases [2], [8], larynx, esophagus, stomach, 
kidney, bladder and possibly others, as well as premature aging of the skin, 
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osteoporosis and impaired fertility, including male impotence 
[8], since the substances contained in tobacco affect and 
damage various organs and tissues [2], [8]. Chemical 
dependency related to smoking is a habit that is harmful to 
oral health and can also cause several diseases such as tooth 
decay, periodontal disease, halitosis and mouth cancer [9]. 
Smoking can affect saliva production, leading to decreased 
salivation, which is an important biofluid for maintaining a 
healthy balance in the mouth, thus leading to the risk of tooth 
decay[9], [10] 

Biomarkers are immunoreactive compounds found in body 
fluids and tissues, each containing a biochemical signature. 
Saliva is no different. The scientific community considers 
saliva to be a biofluid capable of containing biomarkers and 
has been used as a diagnostic tool for systemic and chronic 
diseases such as neoplasia. For example, the proteins that 
make up saliva can indicate normal function or the risk of a 
disease occurring due to changes in the common patterns of 
the fluid, as well as oral cancer [11], [12], [13], [14].

Squamous cell carcinoma (SCC) represents more than 
90% of oral malignant tumors [15].  Etiology is multifactorial 
and includes extrinsic factors such as smoking status and/
or intrinsic factors such as nutritional deficiency. Tobacco 
smoking is the most common cause of SCC and corresponds 
to approximately 80% of SCC cases. Tobacco carcinogens 
include nitrosamine and benzene [2], [8]. Currently, cancer 
is diagnosed by histopathological analysis following 
biopsies, which detects cancer based on morphological 
cellular changes. However, this technique has disadvantages 
such as environmental contamination by the agents used 
for sample preparation, the time-consuming analysis 
process and experience of the pathologist. To suppress 
these disadvantages, optical biopsy techniques [5], [16], 
[17], [18] have been increasingly studied for the detection 
of tissue biochemical changes. One of these techniques is 
Fourier-transform infrared (FT-IR) spectroscopy, which has 
the potential to be used for disease detection, diagnosis and 
monitoring by analyzing the chemical composition of cells 
and tissues.

FT-IR spectroscopy consists of illuminating samples 
with polychromatic light and measure the amount of infrared 
light absorbed by these samples. Fourier Transform is used 
to convert the collected raw data into absorption spectra 
[19]. The advantages of FT-IR spectroscopy consist of easy 
instrumentation, minimal sample preparation, small sample 
volumes, and real-time in vitro diagnosis [18], [20]. As an 
optical vibrational spectroscopy method, it has the ability 
to non-invasively characterize biomolecules including the 
observation of lipid, protein, nucleic acid and carbohydrate 
levels. The characterization of the biomolecules is typically 
based on the fingerprint region of FT-IR spectra [16] and 

is commonly used to differentiate healthy and pathological 
tissues [20].

FTIR spectroscopy has been researched as a potential 
alternative to laboratory tests due to high sensitivity and 
specificity to analyze cardiac and skeletal tissue, as well as body 
fluids such as blood, saliva, and urine [21]. When analyzing 
biofluids, the aim is typically gathering enough data to build 
sample classification models for point-of-care diagnostics. 
By building robust classification models and making high-
throughput screening tests available commercially, patient 
prognosis for diseases to be detected can be considerably 
improved. Also, patient uptake can be facilitated by the non-
invasiveness and fast evaluation provided by FT-IR as a 
tool for point-of-care diagnostics, since FT-IR is currently a 
mature and widely available technology with higher chances 
to be translated to clinic. Clinical translation is only possible 
after collecting data from a considerable number of patients 
and identifying signal features corresponding to early stages 
of the disease to be detected. In this study, this disease is 
SCC, which is predominantly caused by smoking. Therefore, 
the objective of this study to evaluate the classification 
performance of machine-learning sample and classification 
models (classifiers), to analyze saliva samples of control 
(non-smoker), smoker, and occasional smoker groups using 
FT-IR spectroscopy and to determine their intrinsic molecular 
changes as well as the performance of sample differentiation 
by using several types of classifiers. With perspective to the 
future aim to compare FT-IR spectra of saliva of smoking, 
cancer patients and health patients to potentially identify 
features of early-stage SCC.

Materials and Methods
The study was approved by the Research Ethics Committee 

of the University of Taubaté – UNITAU, São Paulo, Brazil, 
under protocol number 19436919.7.0000.5501. It was 
conducted in accordance with Helsinki Declaration [22], 
informed consent was obtained from all subjects prior to their 
participation in the study. Patients were considered eligible 
for enrolment into the research if they fulfilled the following 
inclusion criteria: all volunteers are over 18 years-old and no 
gender distinction, smoking and occasionally smoker was 
considered before accepted, saliva samples were collected. 
Samples were collected at the Department of Dentistry of the 
University of Taubaté and in a private clinic in Joinville. The 
28 volunteers were divided into control non-smoker (n=11), 
smoker (n=9), and occasional smoker (OS) (n=8) groups. In 
the control group, saliva samples from 11 volunteers who had 
never tried any form of tobacco were collected and analyzed. 
In the occasional smoker group, 8 samples of patients who 
smoke sporadically and/or socially were collected and 
analyzed.

Saliva samples were collected by spit/expectoration. 
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contamination samples to be measured next. 32 background 
scans of the equipment were performed for each sample 
analyzed to remove possible instrumental and environmental 
interferences. The samples were analyzed by the FT-IR 
spectral fingerprint region between 900-1800 cm-1. In the 
control group, 11 samples were analyzed and 33 spectra 
were obtained. In the sporadic smoker group, 8 samples were 
analyzed and 24 spectra were obtained. In the smoker group, 
9 samples were analyzed and 27 spectra were obtained. A 
total of 84 spectra was analyzed. The spectral pre-processing 
and analysis were performed in the Origin Pro8.5 and in the 
Orange software, respectively. The article from Movasaghi 
et. al. [23] was used to identify the vibrational modes with 
found in saliva samples and associate them with biochemical 
compounds. During the pre-processing step, the raw FT-IR 
spectra was smoothed by using a Savitsky-Golay filter (2nd 
polynomial order in 11 points of the frame window), baseline 
corrected by using a Rubber band algorithm with positive 
peak direction, and vector normalized. 

The evaluation of the saliva classification model was 
performed by using the leave-one-out validation. Classification 
performance metrics were obtained for the following 
classifiers k-nearest neighbors (kNN), decision tree, Support 
vector machine (SVM) with a radial basis function (RBF) 
kernel, Stochastic Gradient Descent (SGD), Random Forest, 
Neural Network, Naive Bayes, Logistic Regression, Gradient 

Participants were instructed to rinse water for one minute 
and remain without swallowing for a few minutes. At the 
end of the given time, participants spit all saliva into a sterile 
universal collector (Figure 1A). All samples were vortexed to 
be homogenized. After performing this process, samples were 
transferred from the sterile universal biofluid collector to the 
Eppendorf microtube (Figure 1B) using a pipette calibrated 
at 1000μm. The samples were stored in a freezer at -20ºC. 
The samples were transferred in a Styrofoam with ice to the 
Institute for Energy and Nuclear Research of University of 
Sao Paulo at the Center for Laser and Applications (CLA) 
for analysis. Thermo Scientific Nicolet 6700 ATR FT-
IR Spectrometer (Figure 1C) was used to collect spectral 
measurements presented in this study. The spectrometer 
contains a diamond crystal for the acquisition of spectral 
data. In the equipment, 1 μl of saliva sample were placed on 
the crystal (without additives) by using a calibrated pipette. 
Once samples were placed on the crystal, these samples were 
allowed to completely dry for an average time of 5 minutes. 
Drying time ranged from 2 to 7 minutes. The analysis was 
performed with 32 scanning scans to obtain the average of 
the spectra with a resolution of 4cm-¹. Spectra were obtained 
in triplicate. 

After each analysis, the sample was removed from the 
crystal using absorbent paper and cleaned with 92.8% alcohol 
to totally remove the sample from the crystal and avoid 

Figure 1: A) Sterile biofluid collector, B) Centrifuge microtube used to store saliva samples in freezer, and C) Thermo Scientific Nicolet 6700 
ATR FT-IR spectrometer used for spectral measurements collected in this study.
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Boosting and AdaBoost.  The classification performance 
metrics for each classification model were obtained by 
including all groups (non-smokers, smokers, and occasional 
smokers) and each pair of groups separating between 1) the 
control and smokers, 2) smokers and occasional smokers, and 
3) control and occasional smokers).

Results
Figure 2 shows that the spectral mean (solid line) and 

standard deviation (shaded area) of each group overlap 
considerably. Values for the sporadic smoker group tend to be 
lower in the region between 1000-1200 cm-¹ and have a larger 
standard deviation in this region and that between 1300-1500 
cm-¹. In the mean spectra (figure 2), some FTIR peaks can
be evidenced and assigned to vibrational modes according
to Table 1. The peak occurring in 1076 cm-¹ corresponds
to the skeletal cis conformation of DNA and symmetric
phosphate [PO2] stretching. The peak centered in 1403 cm-¹ is
associated with the symmetric CH3 bending modes of protein
methyl groups and δsCH3 of collagen. The peak at 1451 cm-¹
corresponds to asymmetric CH3 bending modes of protein
methyl groups. The peak at 1547 cm-¹ corresponds to the
amide II group of peptides and proteins, and the peak at 1646
cm-¹ which corresponds to amide I, C5 methylated cytosine
C==O, stretching C==C uracil, and NH2 guanine.

In table 2, tables A and B indicate the results of the 
classifier and shows that the most accurate model was the 
Neural Network. Classification performance metrics of the 
Neural Network classifier included 0.857 of Area Under the 
receiver operating characteristic Curve (AUC), classification 
accuracy of 0.713, F1 score of 0.712, precision of 0.715, 
and recall of 0.713 (Table A). The confusion matrix (Table 
B) shows that correctly classified instances were 72.7% for
the control group, 65.5% for occasional smokers and 75% 
for smokers. Tables C, D, E, F, G and H, show that SGD 
was the most accurate classification model for the group 
pairs 1) control and smokers, and 2) control and occasional 
smokers, whereas Neural Network was the most accurate 
for the group pair smokers and occasional smokers. When 
classifying samples of the control and smoker groups, 86% 
of specificity and 84.4% of sensitivity were achieved (F). 
The classification of control and occasional smoker groups 
resulted in 76.7% specificity and 73.9% sensitivity (G). 
Finally, 71.4% of occasional smoker measurements and 
78.8% of smoker measurements were correctly classified by 
the Neural Network model (H).

Figure 2: A) Mean and standard deviation of FT-IR spectra collected 
in this study. The control group is represented by the curve and 
shaded area in blue color, the sporadic smoker group is represented 
in red color, and the smoker group is represented in the green color. 
B) Assignment of vibrational modes and structural components to
FT-IR peaks evidenced in saliva spectra of the control group.

Adaboost
Base estimator Tree

Number of estimators 50

Learning rate 1

Classification algorithm SAMME.R

Regression loss function Linear

SVM
Cost 1

Regression loss epsilon 0.1

RBF Kernel

Tolerance 0.001

Interation limit 100

Logistic Regression
Regularization type Ridge (L2)

Stranght C=1

SGD
Classification Hinge

Regression Squate Loss

Regularization Ridge (L2)

Strength (alpha) 0.00001

Learning rate constant (=0.01)

Number of iterations 1000

Tolerance 0.001

Gradient Boosting
Number of Trees: 100

Table 1: Classifier parameters used to build saliva classification 
models.
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Learning rate 0.1

Limit depth of individual tress 3

Do not split subsets smaller than 2

Fraction of training instances 1

Tree
 Binary tree

Minimum number of instances in leaves 2

Do not split subsets smaller than 5

Limit the maximal tree depth to 100

Classification Stop when majority 
reaches 95%

KNN
Number of neighbors 5

Metric Euclidean

Weight Uniform

Neural Network
Neuros in Hidden layers 100

Activation ReLu

Solver Adam

Regularization a=0.0001

Maximal number of interations 200

Random Forest
Number of trees 500
Number of attibulates considered at each 
split 3

Do not split subsets smaller than 5

A) Model AUC CA F1 Precision Recall

kNN 0.717 0.584 0.575 0.588 0.584

Tree 0.754 0.634 0.633 0.632 0.634

SVM 0.783 0.634 0.612 0.638 0.634

 SGD 0.722 0.644 0.635 0.633 0.644

Random Forest 0.8 0.634 0.621 0.627 0.634

Neural Network 0.857 0.713 0.712 0.715 0.713

Naive Bayes 0.676 0.545 0.535 0.536 0.545

Logistic Regression 0.641 0.475 0.379 0.397 0.475

Gradient Boosting 0.819 0.663 0.657 0.668 0.663

AdaBoost 0.692 0.604 0.601 0.605 0.604

B)
Predicted

Control Occasional 
Smokers Smokers

True class

Control 72.70% 20.70% 10.70%

Occasional Smokers 9.10% 65.50% 14.30%

Smokers 18.20% 13.80% 75.00%

C) Model AUC CA F1 Precision Recall

Table 2: A) Classification performance metrics for models classifying samples of all groups (control, smokers, and occasional smokers). 
Evaluated metrics were Area Under the receiver operating characteristic Curve (AUC), classification accuracy (CA), F1 score, precision, 
recall. B) Confusion matrix for the most accurate model (Neural Network) classifying samples of all groups (control, smokers, and occasional 
smokers). The percentage of corrected classified instances are showing in the diagonal of the matrix (correspondence beween predicted and 
true classes for each group). Following the sequence, the classficiation performance metrics for models classifying samples of each pair of 
groups: Control x Smokers (C), Control x Occasional smokers (D), and Occasional smokers x Smokers (E). Evaluated metrics were Area 
Under the receiver operating characteristic Curve (AUC), classification accuracy (CA), F1 score, precision, recall. Confusion matrix for the 
most accurate models classifying samples of each pair of groups: Control x Smokers (F), Control x Occasional smokers (G), and Occasional 
smokers x Smokers (H). The percentage of corrected classified instances are showing in the diagonal of the matrix (correspondence between 
predicted and true classes for each group).
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Control x 
Smokers

kNN 0.768 0.72 0.714 0.722 0.72

Tree 0.748 0.733 0.734 0.739 0.733

SVM 0.839 0.787 0.785 0.787 0.787

SGD 0.85 0.853 0.853 0.853 0.853

Random Forest 0.819 0.76 0.759 0.759 0.76

Neural Network 0.894 0.84 0.837 0.846 0.84

Naïve Bayes 0.737 0.68 0.68 0.68 0.68

Logistic Regression 0.657 0.56 0.424 0.535 0.56

Gradient Boosting 0.827 0.76 0.759 0.759 0.76

AdaBoost 0.76 0.76 0.761 0.762 0.76

D) Model AUC CA F1 Precision Recall

Control x 
Occasional 
smokers

kNN 0.752 0.712 0.714 0.725 0.712

Tree 0.592 0.576 0.576 0.576 0.576

SVM 0.858 0.738 0.786 0.787 0.788

SGD 0.805 0.803 0.804 0.809 0.803

Random Forest 0.842 0.758 0.754 0.756 0.758

Neural Network 0.85 0.773 0.775 0.785 0.773

Naïve Bayes 0.57 0.515 0.519 0.537 0.515

Logistic Regression 0.429 0.591 0.439 0.349 0.591

Gradient Boosting 0.782 0.773 0.773 0.774 0.773

AdaBoost 0.742 0.742 0.744 0.749 0.742

E) Model AUC CA F1 Precision Recall

Occasional 
smokers x 
Smokers

kNN 0.704 0.738 0.738 0.753 0.738

Tree 0.588 0.623 0.624 0.625 0.623

SVM 0.797 0.738 0.738 0.738 0.738

SGD 0.719 0.721 0.722 0.723 0.721

Random Forest 0.818 0.754 0.754 0.755 0.754

Neural Network 0.854 0.787 0.787 0.788 0.787

Naïve Bayes 0.713 0.705 0.705 0.705 0.705

Logistic Regression 0.563 0.557 0.399 0.311 0.557

Gradient Boosting 0.794 0.721 0.722 0.727 0.721

AdaBoost 0.738 0.738 0.738 0.741 0.738

F) Predicted

Control Smokers

True class
Control 86.00% 15.60%

Smokers 14.00% 84.40%
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G) Predicted

Control Occasional 
Smokers

True class
Control 76.70% 26.10%

Occasional Smokers 23.30% 73.90%

H) Predicted

Occasional 
Smokers Smokers

True class
Occasional Smokers 71.40% 21.20%

Smokers 28.60% 78.80%

Discussion
For the following study, the biofluid of choice was saliva, 

due to its characteristics, such as being easily collected using 
a non-invasive technique. Several studies conducted with this 
biofluid have demonstrated its effectiveness for diagnosis, 
including the fact that researchers have demonstrated that 
the content of saliva alterations is closely related to the onset 
of oral diseases and systemic diseases [2, 12, 13, 24]. Our 
results suggested that biochemical changes can be observed 
mainly in DNA, Proteins, Collagen, Amide I and Amide 
II bands between saliva of the study groups (non-smokers, 
smokers, and occasional smokers). These changes may 
be associated with oral cancer, as smoking is a risk factor 
[2], [8]. In general, FT-IR spectroscopy was effective in 
differentiating these groups, especially between control and 
smokers. Classification models built with SGD and Neural 
Network methods were the most accurate. 

Once determining which vibrational modes are similar 
between saliva FT-IR spectra of smokers and cancer 
patients, following up the presence of these vibrational 
modes in a larger population and over a longer period of 
time (e.g., 2 or 5 years follow up studies), this will allow us 
to investigate which modes and corresponding biochemical 
changes (biomarkers) are associated to the development 
of oral cancer by smoking as its main risk factor. At this 
stage, FT-IR spectroscopy can be used as a point-of-care 
(POC) diagnostics tool to identify oral cancer biomarkers, 
given that the FT-IR technology is sufficiently mature for 
compact and cost-effective instruments to be produced [2], 
[24]. These instrument production aspects combined with the 
small sample volume required and real-time sample analysis 
provided by FT-IR spectroscopy potentially enables quicker 
clinical translation and commercialization as fundamental 
steps towards implementation of POC technologies for high-
throughput screening tests. It is important to note that all 
classification performance metrics have been obtained with 
leave-one-out validation, which illustrates the maximum 
performance the classification model will reach by assuming 

the biological variability of the dataset is the same as that 
of larger populations. Increasing the sample size over 
the numbers of our preliminary study will help to 
confirm whether the same metrics are achievable. Finally, 
our study is a pilot study in which the number of patients 
should be increased to evaluate features of different forms 
of smoking substances in FT-IR spectra of saliva samples 
of smokers, as well as find similarity of these spectra 
with FT-IR spectra of cancer patients. The technique was 
effective for characterizing the samples and could be used 
as a tool for analysis of saliva [2].Future steps include 
increase the number of volunteers involved in the study to 
incorporate more data on the biological variability into 
classification models and for subsequent exploratory 
analysis.

Conclusion
It is worth noting that a clinical translation requirement 

of FT-IR is the training of clinicians who can use it daily in 
the clinic. Therefore, early involvement of multiple clinical 
research centers and the implementation of robust machine 
learning methods providing scores of risk of oral cancer 
for individual patients even with preliminary datasets 
would be beneficial to engage clinicians in a growing 
multicenter study, potentially culminating in the 
development of technologies for cancer screening 
programs nationally and internationally. If these screening 
programs are implemented, benefits to patients range from 
early cancer detection to improved prognosis, while 
clinicians benefit from a larger number of patients 
complying to cancer screening, as FT-IR spectroscopy 
enables non-invasive and non-destructive analysis of 
saliva samples unlike conventional biopsies followed 
by histopathological analysis. In a long-term, 
initiating cancer treatments at earlier stages could make 
a difference to every patient independently on his/her 
socio-economic status.
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