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Abstract
Bioaerosols—airborne particles of biological origin such as 

bacteria, fungi, viruses, and allergens—are increasingly recognized as 
critical environmental factors in the pathogenesis of airway diseases, 
particularly asthma. This article provides current understanding of 
how bioaerosols interact with the airway epithelium to initiate acute 
immune responses, promote chronic inflammation, and drive airway 
remodeling. Key mechanisms include disruption of mucociliary 
clearance, activation of innate immune receptors such as TLRs 
and PRRs, and the role of surfactant proteins SP-A and SP-D in 
modulating allergic inflammation. Chronic exposure leads to cytokine-
mediated fibrosis and smooth muscle hypertrophy, contributing to 
steroid-resistant asthma. Genetic polymorphisms, especially in innate 
immunity genes like TLR2, TLR4, and CD14, influence individual 
susceptibility. The complexity of bioaerosol composition, coupled 
with environmental variability and lack of standardized exposure 
thresholds, presents challenges for effective monitoring. However, 
emerging strategies such as source control, improved ventilation, HEPA 
filtration, UV disinfection, and real-time airborne pathogen detection 
offer promising avenues for exposure mitigation. This comprehensive 
review underscores the need for interdisciplinary approaches to better 
understand and manage bioaerosol-related respiratory health risks.
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I. Introduction
Bioaerosols are airborne particles composed of biological substances

such as bacteria, fungi, viruses, pollen, and other organic matter. These 
particles are ubiquitous in both indoor and outdoor environments, varying 
in size, composition, and viability. They can stem from a wide range of 
sources, both natural and anthropogenic.

Anthropogenic sources include industrial operations, agricultural 
activities, wastewater treatment facilities, and indoor environments 
like hospitals and homes. Occupational settings such as waste sorting 
facilities, composting plants, livestock farms, and food processing units 
are particularly high-risk, where frequent exposure by workers to elevated 
levels of bioaerosols have led to an increased incidence of respiratory 
conditions, including asthma, rhinitis, and chronic inflammation [1-3]. 
Indoors, bioaerosols contribute to 5–34% of particulate matter, entering 
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through outdoor infiltration or arising from indoor sources 
such as building materials, furnishings, pets, plants, organic 
waste, and human activity—including coughing, sneezing, 
walking, and even toilet flushing [4-6].

Environmental factors such as temperature, humidity, 
and ventilation dynamics significantly influence microbial 
growth, aerosolization, and dispersion [7-11]. Climate change 
and urbanization further compound these effects, leading to 
altered bioaerosol distributions and increased exposure risks 
in densely populated regions [12-14]. As such, bioaerosols are 
increasingly recognized as key contributors to respiratory and 
systemic illnesses, including pneumonia, influenza, measles, 
asthma, allergies, and gastrointestinal infections [15].

Inhalation of bioaerosols can initiate immune responses 
that range from allergic sensitization to infection and chronic 
inflammation. Vulnerable populations—such as children, the 
elderly, and those with underlying respiratory or immune 
conditions—are disproportionately affected [16,17]. While 
the negative impacts are well documented, certain types of 
microbial exposures may be protective. For example, early-
life exposure to diverse microbial environments has been 
associated with immune modulation and reduced risk of 
allergies and asthma, particularly in children raised in rural 
or farm settings [18].

Despite growing awareness of bioaerosol-associated 
health effects, there remains considerable uncertainty 
in defining causality and risk thresholds. Variability in 
microbial composition, inconsistencies in sampling and 
analysis methods, and a lack of standardized exposure 
metrics complicate efforts to establish clear dose-response 
relationships [19-25]. Moreover, individual susceptibility and 
the influence of co-exposures to non-biological environmental 
stressors further obscure the pathophysiological landscape.

Inhalation of bioaerosols trigger allergic reactions, 
airway inflammation, airway constriction, exacerbation of 
asthma symptoms, and other pulomonary infections [26-33]. 
Bioaerosols promote epithelial barrier dysfunction, oxidative 
stress, and dysregulated immune responses. Iqbal et al. 
conducted a systematic review and meta-analysis showing 
strong associations between bioaerosol exposure and 
respiratory disease, particularly in high-burden environments 
such as poultry farms, waste sites, composting facilities, 
and industrial plants [34]. These settings often contain 
high concentrations of pro-inflammatory components like 
endotoxins and fungal β-glucans, which activate Toll-like 
receptors (TLRs) and other pattern recognition receptors 
(PRRs) on epithelial and immune cells. This interaction leads 
to cytokine release (e.g., IL-6, TNF-α, IL-8), immune cell 
recruitment, and chronic inflammation [35-37]. Repeated or 
prolonged exposure in such environments can impair lung 
function, drive bronchial hyperresponsiveness, and lead to 
airway remodeling.

In addition, emerging research suggests that the 
composition of the airway microbiome may influence 
host susceptibility to bioaerosol-induced inflammation. 
Dysbiosis—disruption of the normal microbial flora—may 
exacerbate responses to inhaled pathogens or allergens, 
compounding the risk of chronic respiratory disease.

Understanding these mechanisms is critical for developing 
effective prevention and mitigation strategies. Current research 
focuses on identifying key pathways of epithelial dysfunction 
and immune activation in response to bioaerosol exposure 
[35-37]. These findings support targeted interventions such as 
advanced air filtration, optimized ventilation, antimicrobial 
surface coatings, and context-specific public health policies. 
Early detection systems also offer promise; for instance, 
Qiu et al. emphasize the importance of real-time airborne 
pathogen monitoring to guide infection control in high-risk 
areas like hospitals and public transport [38].

Mitigation strategies now incorporate technologies for 
efficient bioaerosol sampling and detection, with the goal of 
reducing disease spread and enabling rapid protective action 
[38, 39]. As we continue to understand the diverse impacts of 
bioaerosols on respiratory health, integrating these strategies 
into environmental and occupational health frameworks 
becomes increasingly vital.

The following sections of this article will critically discuss 
the underlying mechanisms by which bioaerosols influence 
airway epithelial integrity, activate immune responses, and 
contribute to disease progression. We will also highlight gaps 
in current knowledge and propose evidence-based strategies 
for exposure mitigation.

II. Methods
A comprehensive literature review was conducted 

to evaluate the impact of bioaerosol exposure on airway 
epithelial function, mucociliary clearance, innate immune 
activation, and the development of chronic airway remodeling. 
Emphasis was placed on the interaction between microbial 
components (e.g., endotoxins, fungal spores, mycotoxins) 
and host defense mechanisms, including pattern recognition 
receptors, surfactant proteins, and genetic susceptibility loci. 
The databases PubMed and Google Scholar were searched 
for relevant studies published primarily between 2000 and 
2025, with earlier foundational studies included where 
mechanistically important.

The following search terms were used alone and in 
combination: “bioaerosols and airway disease,” “mucociliary 
clearance impairment,” “aflatoxins and ciliary beat 
frequency,” “PRRs and TLRs in airway epithelium,” “innate 
immunity and fungal exposure,” “surfactant protein A and 
D immunity,” “asthma airway remodeling,” “cytokines 
and airway fibrosis,” “genetic polymorphisms TLR2 
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TLR4 CD14,” “NOD1 polymorphisms asthma,” “chronic 
inflammation and EMT,” “SP-A SP-D allergen binding,” 
“occupational bioaerosol exposure,” and “air pollution and 
innate immunity.”

Studies were filtered based on their relevance to airway 
pathophysiology in the context of bioaerosol exposure. 
Exclusion criteria included non-peer-reviewed articles, 
commentaries, and studies without primary data or 
mechanistic insight into respiratory outcomes. Priority was 
given to high-quality evidence including in vitro epithelial 
cell models, animal studies, randomized controlled trials, 
meta-analyses, and systematic reviews that addressed either 
mechanistic pathways or clinical correlations.

III. Types of Bioaerosols
IIIa. Fungi and Bacteria

Fungal and bacterial bioaerosols are widespread in various 
environments, growing on organic materials such as paper, 
textiles, wood, and damp surfaces. These microorganisms 
release allergens, enzymatic proteins, toxins, and volatile 
organic compounds (VOCs), which can cause toxic effects, 
irritations, infections, and allergic reactions [40]. Their growth 
is influenced by meteorological factors, particularly relative 
humidity, and their airborne concentrations tend to increase 
during monsoon seasons [41]. Common indoor reservoirs 
for fungal and bacterial bioaerosols include humidifiers, air 
conditioning systems, water-damaged carpets, showerheads, 
and damp ceiling panels [42].

IIIb. Endotoxins
Endotoxins are lipopolysaccharide (LPS) from Gram-

negative bacteria with high pro-inflammatory activity [43]. 
They consist of a core polysaccharide chain, O-specific 
polysaccharide side chains (O-antigen), and a lipid component 
(Lipid A), which is responsible for their toxic effects [44]. 
Due to their ability to bind easily to dust particles, endotoxins 
pose a constant inhalation risk [45].

Human responses to endotoxins vary based on dose, 
exposure route, and individual susceptibility. Symptoms 
include fever, shivering, increased white blood cell count 
(leukocytosis), neutrophilic airway inflammation, dyspnea, 
bronchial obstruction, and chest tightness [46]. Endotoxins 
have been identified as major contributors to occupational 
lung diseases such as organic dust toxic syndrome [47]. 
Occupational exposure studies report significant endotoxin 
levels among textile workers (2160 EU/m³), dairy workers 
(329 EU/m³), animal feed and grain workers (662 EU/m³), 
and sewage treatment plant workers (214 EU/m³) [48-50].

IIIc. β-Glucans
β-Glucans are glucose polymers found in the cell walls 

of bacteria, fungi, yeasts, algae, lichens, and plants (e.g., oats 

and barley) [51]. Their airborne concentrations vary across 
different environments. In Ohio, USA, indoor β-glucan 
levels were 1.0 ng/m³ (range: 0.81–1.2 ng/m³), while outdoor 
levels were significantly higher at 7.34 ng/m³ (range: 6.1–
8.9 ng/m³) [52]. In Beijing, China, concentrations ranged 
from 0.02 to 1.2 ng/m³ across multiple urban locations, 
including offices, hospitals, dormitories, subway stations, and 
commercial streets [53]. In contrast, β-glucan concentrations 
in concentrated animal feeding operations in Illinois, USA, 
were much higher, ranging from 2.4 to 538 ng/m³ [54].

β-Glucans have been studied for their immune-modulating 
properties, often being used in dietary supplements for 
immune enhancement and treatment of high cholesterol, 
diabetes, and cancer [55]. However, airborne exposure to 
β-glucans has been associated with inflammatory responses 
and respiratory symptoms, with effects varying based on 
glucan type and co-exposure to other bioaerosols [56].

IIId. Mycotoxins
Mycotoxins are toxic secondary metabolites produced by 

fungi and molds. A single mold species can produce multiple 
mycotoxins, and the same mycotoxin can be produced by 
multiple fungal species [57]. These compounds are classified 
based on their chemical structures and reactive functional 
groups, including amines, carboxylic acids, hydroxyl groups, 
lactams, and amides [58].

Health effects associated with mycotoxin exposure range 
from immune suppression, allergic reactions, and irritation to 
severe diseases and even death. The severity of mycotoxicosis 
depends on exposure duration, concentration, and host factors 
such as age, health status, and genetics [59]. Additional risk 
factors, including alcohol consumption, vitamin deficiencies, 
caloric deprivation, and existing infections, can exacerbate 
the toxic effects of mycotoxins [59]. Mycotoxin exposure 
primarily occurs via ingestion, inhalation of airborne spores, 
and dermal contact with contaminated surfaces.

IIIe. Allergens
Allergens are antigens that trigger abnormal immune 

responses, leading to allergic reactions. Symptoms of allergen 
exposure include runny nose, nasal congestion, sore throat, 
itchy eyes, and sneezing, with prolonged exposure increasing 
the risk of asthma and other allergic diseases. Common 
bioaerosol allergens include fungal spores and hyphae, 
arthropods (dust mites, cockroaches), vascular plants (fern 
spores, pollen, soy dust), pet dander, and royal jelly [60,61]. 
Environmental factors such as mechanical disturbances, wind, 
rain, and active spore discharge influence allergen release into 
the air. Indoor humidity and water-damaged surfaces (e.g., 
carpets, ceilings, walls) serve as major reservoirs for dust 
mite and mold allergens [62]. Improper ventilation and high 
indoor moisture levels further increase bioaerosol allergen 
concentration, exacerbating allergic diseases and asthma. 
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Table 1 summarizes key bioaerosol types, their sources, innate 
immune receptors involved in host recognition, mechanisms 

of airway injury, and the resulting clinical manifestations 
such as asthma and chronic inflammation.

Bioaerosol Component Source Innate Immune 
Receptors Mechanism of Injury Clinical Outcomes

Endotoxins (LPS) Gram-negative bacteria TLR4, CD14 Cytokine storm, barrier 
dysfunction Asthma, COPD exacerbation

β-Glucans Fungal cell walls Dectin-1, TLR2 Th2/Th17 skewing, immune 
activation

Allergic asthma, 
hypersensitivity

Mycotoxins Fungal spores N/A (toxic effect) Epithelial injury, oxidative stress Chronic inflammation, 
carcinogenesis

Allergens (e.g., pollen) Plants, fungi, insects TLR4, TLR9, SP-A/
SP-D (modulate) IgE-mediated hypersensitivity Allergic rhinitis, asthma

Bacteria/Fungi Soil, compost, water, etc. TLR2, TLR4, TLR5, 
NOD1

Pattern recognition, cytokine 
release

Non-atopic asthma, 
hypersensitivity pneumonitis

Table 1: Bioaerosol Components and Their Pathophysiologic Mechanisms.

IV. Acute Immune Responses to Bioaerosols
IVa. Mucociliary Clearance

Mucociliary clearance is the primary innate defense 
mechanism of the lungs, responsible for removing inhaled 
pathogens and particles. The functional components are the 
protective mucous layer, the airway surface liquid layer, 
and the cilia on the surface of ciliated cells. It relies on 
ciliated epithelial cells, which move in coordinated waves 
to propel mucus, along with trapped foreign materials, 
toward the throat for elimination [63-65]. This system is 
significantly impaired by bioaerosols. Lee et al. demonstrate 
that aflatoxins, mycotoxins secreted by Aspergillus species, 
reduce ciliary beat frequency (CBF) in airway epithelial 
cells. This reduction in CBF impairs mucociliary clearance, 
a critical defense mechanism of the respiratory tract, thereby 
contributing to the pathogenesis of fungal airway diseases 
[66]. Thus, exposure to microbial toxins and allergens 
reduces ciliary beat frequency and disrupts epithelial junction 
integrity, impairing the migration and repair of airway 
epithelial cells. This dysfunction results in increased mucus 
retention and impaired pathogen clearance, predisposing the 
airways to recurrent infections and chronic inflammation. 
The destruction of epithelial tight junctions by proteolytic 
allergens further facilitates deeper bioaerosol penetration into 
the airway tissue, triggering sustained immune activation and 
local tissue damage [67].

IVb.  Innate Immune Receptors
Bioaerosols, including allergens, bacterial endotoxins, 

and fungal spores, interact with the airway epithelium 
through innate immune receptors, including Toll-like 
receptors (TLRs), pattern recognition receptors (PRRs), 
protease-activated receptors (PARs), and calcium-dependent 
collectins such as pulmonary surfactant proteins A and D 
(SP-A and SP-D), as well as mannose binding protein. These 
interactions activate immune pathways, leading to epithelial 

cell signaling, cytokine production, and recruitment of 
inflammatory cells like macrophages, dendritic cells, and 
eosinophils. 

IVb.1 Pattern Recognition Receptors (PRRs) and 
Toll-Like Receptors (TLRs)

Epithelial cells serve as PRR-bearing cells, playing a role 
in innate immune system defense by recognizing pathogen-
associated molecular patterns (PAMPs)—structural motifs 
unique to microbes. Among PRRs, TLRs are key receptors 
in microbial recognition and immune activation. Originally 
discovered in Drosophila, their human counterparts were 
identified shortly after as components of host defense against 
bacteria, viruses and fungi [68-70].

PRRs are classified based on their ability to detect 
microbial components. TLR-1, TLR-2, TLR-4, TLR-5, 
and TLR-6 recognize bacterial surface markers, such as 
lipopolysaccharides (LPS) from Gram-negative bacteria and 
peptidoglycans from Gram-positive bacteria. TLR-3, TLR-
7, TLR-8, and TLR-9 detect viral RNA and unmethylated 
CpG DNA, allowing identification of viral infections [71-
74]. Other PRRs include nucleotide-binding oligomerization 
domain (NOD1, NOD2) receptors, scavenger receptors (SR-
A and SR-B), C-type lectin receptors (CLRs) (e.g., mannose 
and dectin-type receptors), and macrophage galactose-type 
lectin (MGL) receptors, all of which contribute to microbial 
clearance, facilitating immune modulation [75-79].

Upon activation, PRRs trigger intracellular signaling 
cascades that lead to three primary immune responses. 
First, they induce immediate antimicrobial defenses through 
reactive oxygen species (ROS) production, antimicrobial 
peptide release, and enzymatic degradation of pathogens. 
Second, they stimulate inflammatory cytokine production (IL-
6, IL-8, TNF-α, and interferons), which recruit neutrophils, 
macrophages and dendritic cells to the infection site, 
amplifying the immune response. Finally, PRRs contribute 
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to the initiation of adaptive immunity by enhancing antigen 
presentation to T-lymphocytes, which strengthens long-term 
immune memory and allows for a faster response to future 
pathogen exposure [70].

IVb.2 Role of SPA-A and SPA-D in Airway Immunity
SP-A and SP-D, members of the pulmonary surfactant 

protein family, are essential for immune defense in the 
airways. These proteins bind to various carbohydrates on 
bacterial, fungal, and viral surfaces, facilitating pathogen 
clearance and immune regulation [80,81]. SP-A-deficient 
mice exhibit delayed microbial clearance and heightened 
inflammation, while SP-D deficiency results in impaired 
viral clearance and increased airway inflammation [80,82]. 
In addition to their role in pathogen clearance, SP-A and 
SP-D modulate allergic airway inflammation. They bind 
to environmental allergens, including house dust mites 
and Aspergillus fumigatus, blocking IgE binding and thus 
reducing allergic inflammation [81,83,84]. These surfactant 
proteins also suppress lymphocyte proliferation, monocyte 
maturation, and IL-8 production by eosinophils, further 
downregulating inflammatory responses [85-87]. By directly 
binding to glycosylated allergen regions, SP-A and SP-D 
not only contribute to pathogen elimination but also help 
regulate immune tolerance, minimizing unnecessary airway 
inflammation and hyperreactivity.

V. Chronic Inflammation and Airway 
Remodeling: Cytokine-Mediated Fibrosis and 
Airway Thickening

Prolonged exposure to bioaerosols leads to a cascade 
of inflammatory and structural changes within the airways, 
culminating in chronic inflammation, airway fibrosis, 
and smooth muscle hypertrophy, all of which contribute 
to irreversible airway remodeling and progressive lung 
dysfunction [88]. This process is driven by bioaerosol-
induced cytokine production, particularly IL-6 and TNF-α, 
which promote fibroblast activation and extracellular 
matrix deposition, exacerbating airway fibrosis and asthma 
pathogenesis [89]. In chronic exposure settings, persistent 
inflammation induces epithelial-to-mesenchymal transition 
(EMT), further amplifying tissue remodeling and airway 
wall thickening [90-93]. Airway remodeling is marked by 
epithelial barrier dysfunction, goblet cell metaplasia, airway 
smooth muscle thickening, and increased angiogenesis, 
which drive steroid-resistant asthma and acute exacerbations. 
These structural changes increase airway stiffness and reduce 
bronchodilator responsiveness, hallmarks of severe asthma 
and COPD [94-96].

VI. Genetic Polymorphisms and Susceptibility 
to Asthma

Asthma has an estimated heritability of 60%-80%, with 

genome-wide association studies (GWASs) identifying 128 
asthma-associated single-nucleotide polymorphisms (SNPs), 
primarily in European populations [97]. However, populations 
with a high disease burden, such as those of African ancestry, 
have been underrepresented, prompting efforts to increase 
genetic research in diverse populations [98-100]. Chang  
et al. conducted the largest meta-analysis of genetic variation 
in asthma among African American individuals, starting with 
GWASs in 6975 asthma cases and 4429 controls at CHOP 
[101]. While individual cohort analyses showed no significant 
results, combining the three datasets identified a novel locus 
on chromosome 6 of unknown functional significance [101]. 
A subsequent meta-analysis of 19,628 subjects across 13 
datasets revealed 12 loci meeting genome-wide significance 
[98,99,101].

Additionally, genetic polymorphisms in TLR2, TLR4, and 
CD14 influence susceptibility to asthma. Variations in these 
genes modulate immune responses to bioaerosols, shaping 
disease severity [88]. Polymorphism for CD14 was shown to 
be associated with sCD14, total IgE and skin tests . Similarly, 
a polymorphism in TLR gene was a major susceptibility gene 
for children living on farms. Eder et al. identified TLR2 as 
a major gene for asthma in children of European farmers, 
with the TLR2/-16934 T allele being associated with a lower 
risk of asthma and atopic sensitization among farm children 
[102]. Lau et al. found significant interactions between TLR6 
SNPs and childhood farm exposure, suggesting that genetic 
variations in TLR genes modulate the protective effects of 
farm environments on asthma risk [103]. Polymorphisms 
of intracellular NOD1 protein, which binds cell wall 
peptidoglycans of Gram-negative bacteria, were shown to be 
especially associated with atopic eczema and asthma

VII. Challenges and Considerations in Bioaerosol 
Monitoring and Exposure Assessment
VIIa. Bioaerosol Sampling and Exposure Assessment

Bioaerosol sampling has gained significant attention as a 
tool for assessing occupational exposures, identifying potential 
health hazards, and monitoring the transmission of infectious 
diseases in healthcare and industrial settings [5,104,105]. 
However, bioaerosol monitoring presents several challenges, 
particularly due to the lack of standardized exposure limits 
for airborne bioaerosols such as fungi, bacteria, pollen, 
and viruses [23,104,106-108]. While exposure limits exist 
for certain organic materials like cotton and grain dust, no 
definitive concentration threshold has been established 
for bioaerosols due to their complex nature, diverse health 
effects, and inter-individual variability in immune response 
[109]. Moreover, bioaerosols can cause respiratory illnesses 
through multiple pathways, including allergic reactions, 
infections, and toxicity, further complicating exposure 
assessments [104,110].
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VIIb. Bioaerosols in Disease Transmission and 
Environmental Influences

Bioaerosols play a critical role in disease transmission, 
particularly in healthcare settings, where infectious 
microorganisms such as measles and tuberculosis can be 
aerosolized and spread via respiratory droplets [111,112]. 
Occupational exposure to soil saprophytic fungi, such 
as Coccidioides immitis, can also pose a risk, especially 
in settings where soil disturbances lead to aerosolization 
and subsequent inhalation, potentially resulting in acute 
pulmonary infections [113,114]. Beyond healthcare, 
bioaerosol concentrations fluctuate significantly based on 
environmental conditions, with studies showing that fungal 
and bacterial bioaerosol levels vary seasonally. For example, 
bacterial bioaerosol concentrations in Tehran, Iran, were 
significantly higher in summer (1973 CFU/m³) compared to 
winter (1016 CFU/m³) [115], while in the USA, winter fungal 
concentrations ranged from 3 to 59 CFU/m³ and bacterial 
levels varied from 19 to 607 CFU/m³ [42]. In South Korea, 
fungal bioaerosol concentrations increased from 24–654 
CFU/m³ in winter to 60–930 CFU/m³ in summer, indicating 
the influence of temperature and humidity on bioaerosol 
proliferation [66,116].

VIIc. Indoor Bioaerosol Concentrations and 
Influencing Factors

Indoor bioaerosol concentrations are highly dependent 
on occupancy and ventilation. Xin et al., 2021 conducted a 
study at Universiti Sains Malaysia, assessing the density and 
diversity of airborne fungi. They found that indoor fungal 
concentrations ranged from 81 to 1743 CFU/m³ in Trial 1 
and from 229 to 699 CFU/m³ in Trial 2, with predominant 

genera being Aspergillus, Penicillium, and Cladosporium 
[117]. Similarly, bioaerosol concentrations in laboratories 
(320 and 460 CFU/m³ for bacteria and fungi, respectively) 
were higher than those in office rooms (61 and 140 CFU/m³), 
demonstrating how occupant density influences microbial 
loads [118]. Poor ventilation has also been shown to increase 
indoor bacterial bioaerosol levels, particularly in enclosed 
spaces [13]. In healthcare settings, infectious bioaerosol 
concentrations decline with increasing distance from an 
infected patient, as larger droplets settle out of the air [112]. 
These spatial variations in bioaerosol distribution emphasize 
the need for careful sampling strategies to accurately assess 
exposure risks [115,119].

VIId.  Temporal Variability and the Need for 
Comprehensive Monitoring

Because bioaerosol concentrations fluctuate with time 
and environmental factors, their monitoring should be 
part of a comprehensive exposure assessment strategy, 
integrating environmental inspections, HVAC assessments, 
and health surveys [120-122]. Temporal variations have been 
observed in multiple studies, such as indoor airborne mold 
levels being 26 times higher in summer than in winter [123] 
and fungal bioaerosols exhibiting daily fluctuations, with 
higher concentrations in the morning than in the afternoon 
[119]. Similarly, in a study on airborne influenza virus in 
a healthcare clinic, bioaerosol concentrations varied daily 
depending on patient presence and viral shedding [124]. 
These findings highlight the limitations of single-timepoint 
bioaerosol sampling and the importance of longitudinal 
monitoring across multiple locations and time periods [108].

Despite these challenges, bioaerosol sampling remains an 
essential tool for research and exposure assessment when used 

 
Figure 1: Circular Systems Map Illustrating Epithelial, Immune, and Genetic Interactions in Bioaerosol-Induced Asthma.
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appropriately. It is particularly useful for comparing indoor 
and outdoor bioaerosol levels to identify problem sources or 
for targeting specific microbial contaminants in occupational 
settings such as composting operations or sewage treatment 
facilities [125,126]. However, routine bioaerosol sampling 
without a clear interpretation strategy can be misleading, 
given the lack of established dose-response data and inherent 
variability in bioaerosol exposure. As a result, agencies 
such as NIOSH recommend environmental inspections and 
remediation efforts over routine air sampling for assessing 
respiratory illness risks in damp buildings [108].

Overall, while bioaerosol sampling remains a crucial 
component of exposure assessment, its effectiveness relies 
on thoughtful application and interpretation within a broader 
environmental and occupational health framework. Future 
research and standardized guidelines are needed to enhance 
its utility in mitigating health risks associated with airborne 
microbial contaminants.

VIII. Strategies to Control and Mitigate 
Bioaerosol-Related Health Effects
VIIIa. Source Control

Source control is a primary strategy for mitigating 
bioaerosol-related health effects. This includes reducing 
resuspension of particles, implementing integrated pest 
management, and controlling moisture levels to prevent mold 
growth. Matsui et al. highlighted the effectiveness of IPM 
practices, such as sealing entry points, reducing food and 
water sources, and using non-chemical control methods, in 
reducing indoor allergens and bioaerosols associated with 
asthma exacerbations [127]. Wu and Wong emphasized the 
importance of controlling indoor relative humidity levels to 
prevent mold growth, recommending maintaining RH levels 
below 75% or at 30-60% to prevent mold contamination 
[128]. Regular cleaning and maintenance of indoor 
environments are essential. Periodic cleaning operations, 
maintenance activities, and proper waste management can 
reduce the accumulation of bioaerosols [129]. Additionally, 
controlling sources of bioaerosols in specific environments, 
such as wastewater treatment plants, involves using aeration-
based strategies, improving ventilation, and implementing 
protective measures such as periodic monitoring of 
disinfection efficiency and pathogenic load. [130-132].

VIIIb.  Ventilation Improvements
Enhancing ventilation is another critical strategy. 

Ensuring sufficient ventilation in buildings can significantly 
reduce bioaerosol concentrations. This can be achieved 
by increasing the rate of air exchange and using high-
efficiency particulate air (HEPA) filters in HVAC systems. 
HEPA filters are particularly effective in capturing airborne 
particles, including bioaerosols, thereby improving indoor 

air quality. The American Society of Heating, Refrigerating 
and Air-Conditioning Engineers (ASHRAE) recommends 
maintaining proper ventilation to reduce indoor bioaerosol 
levels [133]. Improved ventilation strategies, such as 
effective ventilation with adequate supply of clean air and 
minimizing air recirculation, are crucial in specific settings 
like wastewater treatment plants [129,134].

VIIIc. Air Filtration and Disinfection
Air disinfection methods, such as germicidal ultraviolet 

(UV) light, can further reduce the presence of bioaerosols. UV 
light has been shown to inactivate various microorganisms, 
including bacteria and viruses, making it a valuable tool in 
mitigating bioaerosol-related health risks. Lu et al. evaluated 
the performance of UV disinfection across the 222-365 nm 
spectrum against aerosolized bacteria and viruses, including 
Escherichia coli, Staphylococcus epidermidis, Salmonella 
enterica, MS2, P22, and Phi6. They found that the krypton 
chloride excilamp emitting at 222 nm was the most efficient in 
inactivating viral bioaerosols, while a low-pressure mercury 
lamp emitting at 254 nm performed well in both inactivation 
efficacy and energy efficiency [135]. Additionally, air 
filtration systems equipped with HEPA filters can effectively 
remove bioaerosols from indoor air [136]. The use of tight-
fitting face masks to trap infectious aerosols and reduce 
inhalation exposure to contaminated air is also critical for 
disease control [39,134,137].

VIIId. Layered Approach
Implementing these strategies in a layered approach 

maximizes their effectiveness. Combining source control, 
ventilation improvements, air filtration, and disinfection 
methods can significantly reduce bioaerosol concentrations 
and mitigate their health effects. This approach ensures a 
comprehensive management of bioaerosol exposure, leading 
to safer indoor environments and improved public health 
outcomes [39,129,130]. Layered intervention strategies are 
needed to maximize risk reduction, as demonstrated in case 
studies.

Monitoring and Maintenance
Continuous monitoring and maintenance of air quality 

systems are essential to ensure their effectiveness. Regular 
inspection and maintenance of HVAC systems, air filters, and 
disinfection devices help maintain optimal performance and 
prevent the buildup of bioaerosols. A systematic review and 
meta-analysis by Dai et al. demonstrated that HVAC systems, 
particularly those equipped with HEPA filters, effectively 
reduce bioaerosol concentrations in hospital environments. 
The study found that regular maintenance of these systems 
is crucial for their optimal performance and effectiveness in 
removing airborne bacteria and fungi [136]. Recent progress 
in sensor-based data collection, analysis, cloud-based storage, 
and early warning techniques in wastewater treatment 
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plants may help reduce the risk of infectious transmission, 
especially during a pandemic situation. Zhao et al. developed 
and evaluated early-warning methods based on wastewater 
surveillance data in Detroit, Michigan. They designed eight 
early-warning methods and demonstrated their utility in 
providing early warnings for COVID-19 incidences, with 
hit rates reaching up to 100%. These methods assist health 
departments in assessing trends and implementing quick 
public health responses [138]. Additionally, Parkins et al. 
discuss the transformative potential of wastewater-based 

surveillance (WBS) for public health action. They highlight 
how novel data-sharing tools have enabled real-time, cost-
effective, and comprehensive monitoring of SARS-CoV-2 
RNA in wastewater, providing early warnings of COVID-19 
surges and facilitating evidence-informed decision-
making [139]. Table 2 outlines common occupational and 
environmental sources of bioaerosol exposure, the associated 
microbial components, their relative risk levels, health 
consequences, and recommended mitigation strategies.

By addressing these key areas, effective strategies can be developed to control and mitigate the health effects of bioaerosols, 
ensuring safer indoor environments and improved public health outcomes.

Exposure Source Common Bioaerosols Risk Level Associated Health Outcomes Mitigation Strategies

Wastewater 
treatment plants Bacteria, endotoxins, fungi High Asthma, chronic bronchitis PPE, closed systems, ventilation

Agricultural 
composting Fungi, β-glucans, spores High Hypersensitivity pneumonitis, 

asthma
Mask use, HEPA filtration, limited 

exposure time

Indoor damp 
environments Mold, mycotoxins Moderate - High Allergic asthma, cough, 

wheezing
Dehumidification, mold 
remediation, air filters

Urban pollution Mixed allergens,  
particulate - bound Moderate Atopic disease, asthma Air quality monitoring,  

indoor air purifiers

Food processing 
facilities Organic dust, bacteria Moderate Rhinitis, asthma PPE, hygiene practices,  

improved airflow

Table 2: Environmental Exposure Sources and Associated Bioaerosol Risks.

IX. Conclusion
Bioaerosols play a multifaceted role in the development 

and progression of airway diseases through mechanisms 
involving epithelial dysfunction, innate and adaptive immune 
activation, and chronic inflammation. Genetic susceptibility 
and environmental variability further modulate individual 
responses to exposure. Despite ongoing challenges in 
exposure assessment and standardization, integrated strategies 
including source control, ventilation, filtration, and real-time 
monitoring offer promising ways to mitigate health risks. 
Continued interdisciplinary research is essential to refine our 
understanding and guide targeted interventions that protect 
respiratory health in both clinical and public health settings.
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