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Abstract
It is well known that Electronic Health Records (EHR) data contain 

inconsistent and inaccurate data, the effect of which on predictive model 
performance and risk/benefit factor identification are often neglected. This 
study investigates how varying levels of random and non-random binary 
differences, often referred to as "noise", affect modeling tools, such as logistic 
regression, support vector machines, and gradient boosting models. Using 
curated data from the All of Us database, we simulated different noise levels 
to mimic real-world variability. Across all models and noise types, increased 
noise consistently reduced classification accuracy. More importantly, noise 
diminished the variance of variable impact scores while leaving their means 
unchanged, suggesting a muted ability to identify key predictors. These 
findings imply that even modest noise levels can obscure meaningful signals. 
Measures like accuracy and hazard ratios may thus be misleading in noisy 
data contexts. The consistency of effects across models and noise mechanisms 
suggests this issue stems from inherent data variability rather than model 
brittleness, with broad implications for EHR data analyses.
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Introduction
In real-world data, such as that found in electronic health records (EHRs), 

a level of apparent inconsistency or "noise" in the data appears to be inevitable 
[1-5]. Patients with highly similar clinical conditions often have different free 
text notes and structured data in different healthcare systems and from different 
time periods [6-10]. This situation has a variety of causes including variance 
in clinical care, differing interpretations of the history, variance in data entry 
or extraction process, ambiguity in standard terminologies, and evolution 
in the terminologies. Additionally, biological variability is a feature of the 
evolutionary process, and our categories of clinical conditions (diagnoses) 
uncertain. It is unrealistic to think that the record of a person’s condition will be 
described and recorded reproducibly. Coding variation, on the other hand, is a 
well-known problem [11-15]. While human coders can make mistakes, they are 
not completely responsible for the observed differences. Sometimes physicians’ 
notes are incomplete or are ambiguous when describing the clinical diagnoses 
[16]. Additionally, coding rules may lack clarity [17]. 

All these variations, which we will refer to as noise, stemming from 
measurement errors, missing information, subjective assessments, and 
population variability, are often difficult to detect. Completely clean datasets are 
rare. As a result, the level of noise is frequently unknown and overlooked. This 
situation introduces fundamental limits to the accuracy and reliability of models 
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used to determine disease causes or make clinical predictions, 
even when advanced analytical methods are applied. To 
address the limitations of coded data, many research projects 
use natural language processing (NLP) methods to identify 
diagnoses, signs, and symptoms from accompanying text 
[18-24]. The ability of the NLP tools to identify significant 
text varies but rarely reaches 95% in both sensitivity and 
specificity. Like human coders, NLP tools also face the 
challenges of documentation quality and ambiguity in coding 
rules. Furthermore, NLP tools are typically trained and 
calibrated using human-annotated data, which also contains 
human errors [25, 26]. 

When working with large amounts of EHR data in clinical 
research, we often perform extensive data preprocessing to 
assemble a relatively “clean” dataset for a given project. In 
such endeavors, the focus is typically placed on the main 
observables and an outcome, while relying on existing coded 
data for the identification of any important covariates. One 
underlying belief or hope is that a small amount of irregularity 
will not affect the overall study outcome and that the law of 
large numbers will outweigh many concerns with the data.

Without a gold standard “clean” dataset, it is impossible to 
confirm this belief or assess the likelihood that this hope will 
prevail. Indeed, we have little evidence of the effect of noise 
in the predictors on the accuracy and utility of the findings. In 
observational research, we do not know how much variability 
will affect our results. 

As part of a larger project to improve EHR data quality, 
we investigated the effect of noise on predictive modeling 
performance and findings derived from the predictive models. 
To measure the effect, we carried out a simulation by adding 
varying amount of noise to a real-world dataset postulated to 
be accurate. To increase the generalizability of our machine 
learning results, we employed three algorithms (logistic 
regression, support vector machine classifier, and gradient 
boosting). To the best of our knowledge, such experiments 
have not been previously carried out, despite the increasing 
concern regarding replicability of biomedical research [27-
29].

Background
The Shannon Channel Capacity Theorem, introduced by 

Claude Shannon in 1948 [30] defines the theoretical limit 
for transmitting information over a noisy channel using 
error-correcting methods. The theorem states that if the 
rate of information transmission R is less than the channel 
capacity C, then it is possible to design coding schemes that 
reduce the probability of error to an arbitrarily low level. In 
essence, reliable communication is achievable so long as the 
transmission rate stays below the channel’s capacity. On the 

other hand, if R>C, no coding method can ensure reliable 
transmission. There will always be a non-negligible error rate, 
which grows as the transmission rate increases. Therefore, 
when the rate exceeds the channel’s capacity, accurate 
information transfer cannot be guaranteed. The case where 
R=C is not fully addressed by the theorem. This principle has 
important implications in the context of medical data. Unlike 
engineered communication systems, medical data is highly 
complex and inherently noisy. 

A review of the literature reveals several studies that 
examine the impact of random noise on the performance of 
machine learning algorithms [31]. In a simulation study, Xiao 
and Higgins introduced varying levels of random noise into 
the data and found that as noise increased, the strength of 
the relationship between covariates and outcomes (measured 
by regression weights) weakened [32]. They cautioned that 
adding more covariates can amplify the noise, potentially 
overwhelm the signal and lead to invalid or inconsistent 
results. Plevris et al. simulated different levels of Monte 
Carlo Markov Chain Gaussian noise and observed that most 
predictive modeling metrics deteriorated as noise increased.33 
Their findings emphasize the importance of accounting 
for covariate inaccuracies when modeling the relationship 
between predictors and outcomes. Kolmar et al. studied the 
effects of experimental error, modeled as Gaussian noise, 
on RMSE and R-squared metrics across several machine 
learning models.34 They found that both metrics worsened as 
the level of random variation increased. None of these studies 
were conducted within the biomedical domain, nor did they 
compare different types of noise mechanisms. Moreover, they 
primarily focused on prediction accuracy rather than feature 
contributions (such as risk factors), which are often of greater 
importance in biomedical research.

Methods
We extracted a real-world dataset from the US NIH All 

of Us project [35]. In the prediction models, the outcome 
variable was the recording of an Alzheimer’s Disease or 
Related Dementia (ADRD) condition, and the independent 
variables were comorbidities represented by International 
Classification Diseases (ICD) codes. Since ICD-codes 
assignments are known to be very inconsistent [36], the ICD-
9CM and ICD-10CM codes were aggregated into broader 
categories referred to as code blocks [37].

ADRD Condition Definition
We used a broad definition of ADRD to include different 

related mental conditions, including dementia, cerebral 
degeneration, and senile dementia and subtypes [38]. These 
conditions were identified using the ICD 9 and ICD 10 codes. 
Table A-1 in Appendix A lists the ICD 9 and ICD 10 codes 
and their description to identify ADRD conditions.
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Code Blocks
Code blocks are binary variables that represent conditions 

with a common component as designated by their ICD 10 
codes. (01= presence of condition; 0 = absence of condition) 
For example, conditions associated with ICD 10 codes A00 
through A09 are collectively described as intestinal infectious 
diseases and grouped into Code Block 1, and conditions in the 
ICD 10 code range A15 through A19 are grouped into Code 
Block 2 associated with tuberculosis. Table A-2 in Appendix 
A presents ICD 10 code ranges grouped into Code Blocks 
with terms describing the category.

Data
From the All of Us database (with Controlled Tier 

access), a cohort of patients with age 55 years and older were 
selected. Data before January 1, 2000, were removed due to 
sparsity and inconsistency. In the cohort, cases are patients 
with an ADRD diagnosis. The control group was randomly 
sampled from those without ADRD diagnosis at 1:1 ratio 
(total n = 6,794). Data on predictors were collected before 
the first ADRD diagnosis for the cases and before the last 
visit for the controls. We converted ICD9 to ICD10 codes 
using the General Equivalence Mapping Tables provided by 
the Centers for Disease Control, and then mapped the ICD10 
codes to their appropriate code blocks.

Simulated Noise
In addition to the actual data retrieved from All of 

Us, we simulated 5%, 10%, 15%, 20%, 25%, and 30% of 
noisy data of the code blocks (i.e., the features) to study the 
effect of noise on the prediction of ADRD. In simulation 
studies investigating the effect of noise on machine learning 
algorithm performance, noise can be added as perturbation 
either to the features (attribute noise) or the outcome (class 
noise), or both. In our study, we chose to inject noise into the 
features and keep the outcome unmodified. 

Our noise generation process was modelled on three 
different types of missing values mechanisms from missing 
value research literature as described by Rubin [39]. Noise 
completely at random (NCAR) refers to noises that are not 
related to collected data (observed variables) or outside 
the collected data (unobserved variables). NAR (Noise At 
Random) refers to the noises related to observed data but not 
noises themselves. NNAR (Noise Not At Random) refer to 
noises related to a hidden variable (which could be the noise 
itself). 

In NCAR generation, we generated random noises by 
randomly switching a variable’s value from 0 to 1 or 1 to 0. In 
the NAR scheme, we simulated noise in a subset of the data 
that was constrained by an observed variable. Specifically, 
we randomly separated features into "changeable" and 

"unchangeable' subsets. We then randomly flipped the values 
of the changeable features for the instances with the highest 
sum of the "unchangeable' values. In the NNAR scheme, 
we generated noise by randomly changing the 0s into 1s. 
Because in the changed data the original 0s are hidden, this 
is considered to be not at random.  We varied the amounts of 
noises as different proportions of the data: 5%, 10%, 15%, 
20%, 25%, and 30%. Overall, we generated 18 simulated 
datasets using 3 random noise generation mechanisms with 
6 proportions.

Analysis
We next applied three machine learning methods to the 

data for prediction of the binary outcome (ADRD). The 
effect of random noise on model performance was measured 
by noting the potential changes in area under the receiver 
operating characteristic curve (AUC) and accuracy and 
feature weights or impact scores across the 18 simulation 
experiments. 

In each experiment, we used logistic regression, gradient 
boosting (XGBoost), and linear support vector machine 
(SVM) models in Python to predict ADRD as a function of 
code blocks.  We then compared the model performances 
to evaluate how the noise mechanisms affected the AUC 
and impact scores.The impact score is a measure of the 
contribution of a variable to the model. It quantifies the impact 
of an individual feature on the target outcome and is intended 
to quantify the explanatory power of features in linear and 
nonlinear machine learning models [40]. The impact scores 
in logistic regression with binary predictors are equal to the 
coefficients. In that sense, one could think of impact scores 
as a generalization of the notion of the coefficients seen 
in logistic regression. After computing the scores for each 
variable in each model, we computed the means for each 
method across noise proportions and performed a repeated-
measures analysis of variance (RM-ANOVA) to investigate if 
noise proportions have significant effects on variable impact 
scores in the three machine learning algorithms.

Results
Model Performance Metrics

Figure 1 shows the effect of different noise proportions 
crossed by noise generation mechanisms on the AUC and 
accuracy metrics. As Figure 1 shows, as the proportion of 
random noise increases, both the AUC and accuracy scores 
drop. The exact amount of decrease varies, but the pattern 
is consistent across different noise mechanisms and machine 
learning algorithms. Tables B-1 through B-3 in Appendix B 
show the numerical results of the AUC and accuracy under 
different random noise simulation mechanisms for different 
machine learning algorithms used in this study.
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Figure 1: Change in model AUC and Accuracy as a function of noise proportion (0%, 5%, …, 30%) and noise generation mechanism (NCAR, 
NAR, NNAR).
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Figure 2: Percentage change in feature coefficients / weights as a function of different simulated noise generation mechanisms and proportions.
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Effect on Coefficients and Impact Scores
As shown in Figure 2, the coefficients in the logistic 

regression model change drastically, even at the 5% noise 
level. Similar drastic change patterns can be seen for the 
weights from SVM and XGBoost models (see Appendix 
C in the online supplement). The implication for research, 
and especially research replication is that even 5% of 
inconsistency or noise in data (through factors or covariates) 
can have a very noticeable effect. Equally alarming is the 
fact that the variance in the coefficients and impact scores 
diminish as more noise is added (see the distribution boxplots 
in Appendix D in the online supplement.)

In the examination of impact scores, the results of 
RM-ANOVA showed that the difference between various 
proportions of noise is not statistically significant (for all 
experiments, F < 2.6, p > 0.05). A closer examination of 
the 10 variables with the largest impact scores from logistic 
regression (which are the same values as the coefficients) 
reveals that the changes on the individual variable level are 
very concerning (Table 1 and Figure 3). At 5% noise level, 

all impact scores dropped sharply, and their relative ranks 
altered. We also observed such changes in SVM and in 
XGboost. (see Appendix E in the online supplement.)

Discussion
In this study, our goal was to investigate the effect of 

noise in clinical data, such as data from EHR databases, on 
the prediction performance of different predictive machine 
learning models, including logistic regression, SVM, and 
gradient boosting. We mimicked variation of data quality at 
different levels by adding different proportions of random and 
non-random binary noise to existing data curated from the All 
of Us database. Since it is often impossible to determine the 
noise level in real world clinical data, we simulated noise in 
a postulated gold standard in order to measure our outcomes 
and used three different noise generation mechanism to mimic 
the variability of data in EHRs. 

The results of these analyses tell a consistent story.  In 
every case, increasing amounts of noise lead to lower 
accuracy and a diminished AUC. This result is not surprising. 

Block noise00 noise05 noise10 noise15 noise20 noise25 noise30
117 0.98 0.366 0.101 0.02 0.103 0.072 0.07

63 0.876 0.434 0.33 0.305 0.125 0.099 0.021

34 0.856 0.367 0.195 0.141 0.021 0.013 0.035

2 0.826 0.047 0.119 0.094 0.057 0.022 0.051

106 0.745 0.638 0.501 0.461 0.293 0.3 0.187

175 0.728 0.052 0.055 0.041 0.028 0.022 0.083

9 0.691 0.16 0.113 0.021 0.039 0.094 0.094

71 0.608 0.046 0.121 0.079 0.005 0.035 0.021

67 0.599 0.234 0.01 0.113 0.027 0.045 0.052

171 0.579 0.062 0.034 0.099 0.002 0.124 0.113

Table 1: Changes in 10 Largest Impact Scores of MCAR data with Logistic Regression
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Figure E-1: Line plots of blocks with highest change in impact scores across noise proportions in NCAR mechanism.
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With more noise it is increasingly difficult to detect the signal.  
Whether the "noise" is simply from a random occurrence or 
represents another variable not included in the analysis, the 
resultant uncertainty has a deleterious effect on our ability to 
detect a signal. Of note is that the diminished signal can come 
from any variable, not just those of particular significance. 
This finding suggests that ignoring the noise in covariates is 
not a good strategy. 

The most remarkable finding is that the variance of the 
impact scores (see box plots in Appendix D) diminishes 
with increasing noise, while the mean of the scores does not 
appear to change. Essentially, the impact of each variable is 
altered with diminished impact on the result.  The diminution 
of the impact factors, which measure the contribution of a 
variable on the outcome, is remarkable.  This result suggests 
that even small amounts of noise can diminish the ability to 
distinguish important risk factors in a predictive model.  As 
a result, we believe that with "noisy" data such as that found 
in EHRs, such measures as hazard ratios, accuracy, and AUC 
calculations are potentially misleading. The consistency of 
the findings using different machine learning methods and 
different randomization procedures suggests that the loss of 
sensitivity is not a problem of brittleness [41], but more of a 
problem in dealing with the inherent variability in the data.  

Our study was limited by the necessity of developing 
a reliable gold standard, leading to the requirement for 
simulating data and its variability. We chose ADRD as our 
outcome arbitrarily; we believe that the same would be true 
for other predictions for other outcomes as well. In addition 
to the effects of variability on observational studies, it is 
worthwhile to consider the possibility of similar effects on 
clinical trials. While most clinical trials using a randomized 
control design are tightly controlled in hopes of reducing 
the amount of variability involved, the hope is that any 
uncontrolled variable will be randomly assigned to either 
trial or control.  Diagnosis is an uncertain process [42,43] and 
small upstream variations may have tremendous effects on 
the results of a study. 

Conclusion
While some data may be collected from well-controlled 

settings, there will inevitably be variations. As a result, the 
data used to make predictions about biological processes will 
always be variable. The findings of this study suggest that 
the predictions may be underestimating the effect of certain 
variables, and that ignoring uncertainties in the known 
covariates may lead to misleading conclusions. The little 
foxes of variability in data may indeed spoil the vineyard of 
reproducible results.
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