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Abstract
Substantial strides were made in the nano-therapeutic and nano-

diagnostic fields. The clinical deployment of the investigational 
nanomedicine improved treatment outcomes significantly. Currently, there 
is an urge to develop a single nanoparticle that can serve as both detection 
and treatment tools, in addition to the possibility of tailoring it to integrate 
more than one therapeutic agent. Furthermore, scientists are interested 
in developing functionalized-nanoparticles that can be activated only at 
the desired tissues and organs or be taken up by specific cells. Finding 
nanoparticles with these unique properties is insufficient as concerns 
about nailing the appropriate doses and accumulation, tolerance, time-
dependent, and patient-dependent issues persist. Such concerns necessitate 
establishing better data mining tools as available data is scattered. By 
integrating artificial intelligence (AI) with nanomedicine, information 
platforms for this very promising field can be created. Furthermore, 
through the use of AI-nanomedicine-interface, combinatorial-nano-
therapy can be optimized and made more sustainable, moving it one 
step closer to clinical application. This article, to this end, will focus on 
implementing AI to improve the sustainability of nanotherapeutics and 
nanodiagnostics as well as highlighting the possible concerns that AI can 
address to ensure a smooth translation of the developed nanotherapeutics 
and nanodiagnostics from bench to clinical use.
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Introduction 
The nanomedicine field offers various attractive opportunities. The precise 

engineering of nanomaterials with desirable physiochemical properties while 
controlling their behavior in the human body is an example. Such control 
can be gained through chemically engineering nanomaterials with tunable 
parameters to tailor their half-life in the body; designing nanomaterials 
with different porosities to control the release kinetics (e.g., release and 
clearance profiles) of the incorporated pharmaceuticals. Which, by default, 
will affect tissue selectivity and their uptake/accumulation in cells, tissues, 
and organs, as well as the local and systemic toxicity. It is nearly impossible 
to control these parameters when dealing with small-sized drugs due to the 
lack of a quantitative understanding of the structure–activity relationships 
(QSAR) [1]. In contrast, the same parameters are achievable for the larger 
nanoformulated drugs, such as the advanced drug de-livery systems (DDS), 
due to the possibility of controlling their dimensions, porosity, surface charge 
and chemistry, and physicochemical properties precisely. Furthermore, 
DDS can protect the loaded therapeutic agents from environmental factors, 
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enzymes’ early degradation, and immune system clearance. 
They can also interact with the loaded drugs (synergistic 
action), providing passive targeting and being traceable/
imageable to localize nanoparticles accumulations sites. 
A key feature of DDS is that they can be functionalized to 
activate and release the loaded therapeutic agents under 
certain circumstances. However, the diversity in the human 
tissues, organs, and cells requires using both small and large 
nanoformulations as tools for drug delivery and disease 
detection, which is why nanomedicine cannot only focus on 
DDS. Despite the many advances made in the nanomedicine 
field, it is still associated with poor clinical translation. This 
is attributed to the lack of a quantitative and/or qualitative 
understanding of the exact link between the nanomaterials 
and the biological outcomes [2,3]. Notwithstanding, 
nanomaterials heuristic and pseudo-rational design practices 
were commonly used. Unsurprisingly this practice did 
not lead to many significant outcomes, and neither did it 
help enhance the clinical translation of the nanomaterials. 
Thus, a different approach is being considered now in the 
nanomedicine field to better understand the relationships 
between nanomaterials and physicochemical and biological 
outcomes. Such approaches include implementing artificial 
intelligence (AI) in nanomedicine [1]. Early research on AI 
dates back to the 1950s[4], when machines were recognized 
as trainable tools that could be used in setting up problem-
solving strategies. Since then, AI has been used by scientists 
in the nanomedicine field to determine and analyze the 
nanoformulation’s pharmacokinetics [4], pharmacodynamics 
[5], and image analysis using SEM and TEM [6] [25]. 
Moreover, AI was used to rationalize the selection and the 
design of the nanoparticles as well as the other chemical 
modifications that could be used to achieve controlled 
release, adjust the drug’s pharmacokinetics, provide targeting 
delivery, and avoid local and systemic toxicity. In addition, 
AI-nanomedicine interface is preferred because it can provide 
a principally different vision that could be used in generating 
hypothesis, designing experimental meth-odologies, planning 
evaluation procedures, and analyzing generated data [2,3].

AI use in the Nanomedicine field
In addition to the use of AI in determining drug targeting 

and ratiometric delivery, AI-nanomedicine interface can help 
indemnify the dynamic patient response to different treatments 
and provide better accountability for the treatments’ dynamic 
modulation as current conventional approaches do not 
provide the required accountability in clinics[7]. Harnessing 
AI can agnostically optimize nanomedicine-based treatment 
strategies in a mechanism-independent manner. It correlates 
inputs, including drug selection, dose adjustment, stimuli 
(responsive), and frequency determination, with the outputs, 
including drug efficacy and safety, as well as targeting and 
localization effects. This indicates that AI can be regarded 
as a powerful tool that could be used to rationally optimize 

the combination of nanotherapy. Such data can be used by 
both individuals and populations to overcome the many 
challenges that confront the nano-medicine field as it uses 
different algorithms (e.g., deep learning algorithms)[8-10]. 
Such algorithms can optimize drug delivery, efficacy, and 
synergy and guide the nanotherapy’s clinical use. AI-based 
optimization was recently suggested to develop the advances 
in combinatorial nanomedicine further. Such interfacing 
can help execute substantial improvements in the treatment 
outcomes simply because nanomedicine-based combination 
alone is subjected to the same constraints that unmodified 
combination therapies face. At the same time, AI can 
overcome these constrains [11]. Figure 1 summarizes the 
different ways AI can be used to revolutionize and improve 
the nanomedicine field.

AI and the Drug selection paradigm
During the conventional screening strategies, drugs with 

no apparent treatment efficacy are eliminated. However, a 
virtually insurmountable brute force interrogation is used in 
AI where the drug and dose space is prohibitively ample. As 
such, even if the drug alone has no efficacy, the same drug 
might have or mediate a beneficial effect when delivered 
in combination with other drugs (right drugs), and the 
appropriate doses or when it interacts with the nanocarrier 
is used in delivering it. Noteworthy, AI methodologies can 
be used in predicting the drug combinations’ efficacy based 
on the drug synergy with the nanocarrier. However, without 
an AI interface, it is very difficult to identify the potential of 
combination therapy [7,12-14]. An example is using an AI 
platform named Quadratic Phenotypic Optimization Platform 
(QPOP). QPOP is a multi-parametric global optimization 
approach that can overcome the different hurdles facing 
the drug development process, resulting in finding both 
efficacious and safer nanotherapies, which will redefine the 
drug development roadmap and pave the way for a smooth 
clinical translation. Furthermore, in this platform, large pools 
of drugs for a desired disease are used to design a novel 
combination therapy, then computational results are used in 
designing patient-specific regimens.

AI implementation in the nanomedicine-based 
combination therapy design 

Besides the nanomedicine-based combination therapy 
design, AI will play a major role in determining the synergistic 
effect between the selected drugs and their interaction with 
the used nanocarrier. Moreover, AI can help optimize the 
route of administration and possible ways of activating 
unmodified drug combinations [15-22]. In doing so, AI uses 
different big data-driven approaches, where the outcome of 
the patient’s electronic medical records, their genetic and 
broader–omics profiling, and other information are employed 
in the drug selection process. Collectively these strategies 
represent a crucial first step towards establishing valuable 
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nanomaterials-drugs databases with the required in-formation 
to refine the nanotherapeutic regimen (Dose)-design process, 
alternatively improving the efficacy and safety of the broader 
patient population. However, even after regimens selection, 
identifying synergies and patient-specific responses are key 
challenges that must be addressed. Interestingly, AI uses 
a powerful technology platform, the so-called CURATE, 
which comprises dosing strategies such as parabolic 
personalized dosing (PPD) [7]. Furthermore, CURATE.AI 
works by mapping the relationship between the input (e.g., 
intervention) and the output (e.g., individual’s phenotypic 
result), making it exclusively based or personalized to that 
individual’s data. Some studies showed that using CURATE.
AI can significantly shorten the treatment time, enhance 
treatment efficacy, improve patient outcomes, reduce the care 
cost, and implement a broad clinical use for this application. 
Most importantly, using CURATE.AI in nanomedicine 
and drug development programs can predict and show the 
inter-patient variability that could occur in response to drug 
interactions, which can establish stronger grounds for AI-
based future improvements in response rates [23]192.

Data mining and acquisition
Collecting adequate material-related data is required 

to access the aforementioned biological responses. Since 
many open materials science databases exist, these data can 

be extracted from published articles using data mining tools 
and/or other screening techniques. However, the lack of 
comprehensive nanomedicine databases creates the need for 
screening studies based on comprehensive AI and machine 
learning (ML)-assisted research to curate and reproduce 
experimental and theoretical data. Examples of partially 
or fully automated AI and ML-assessed data mining data 
approaches include HTSy and HTSc. Proper data mining is 
a powerful approach that uses existing data in testing hy-
potheses through data extraction, cleaning, and representing 
materials digitally, as well as data augmentation, clus-tering, 
and visualization, throughout patterns uncovering, detecting 
data anomalies and the data’s statistically signif-icant 
structures. In doing so, Natural language processing (NLP) 
is required to extract data from research articles [24,25]. 
The lack of sufficient data is one of the main obstacles NLP 
faces in nanomedicine. Hence, several data augmentation 
approaches to achieve optimal performance exists, such 
as generative adversarial networks (GANs) [26], TL [27], 
molecular rotation [28], tautomerism structural properties 
[29], start token replacement [30], descriptor noising[31], and 
physical domain knowledge [32]…etc. Nevertheless, these 
data augmentation techniques suggest some assumptions 
whose validity strongly depends on the form of the user data 
and the relationships between the dependent and independent 
variables. Following mining, data goes through several 

Figure 1: Different applications in the nanomedicine field. The picture was produced using Biorender.
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preprocessing stages that include data cleaning, missing data 
handling, normalization, data integration, data reduction,  
transformation, and noise identification are performed [33]. 
Nanomedicine-related data is usually sparse and is only found 
in high-dimensional parameter space. Kim et al. [34] proposed 
method to generate sufficient amount of data while minimizing 
the number of parameters used. This is achieved by applying 
a variational autoencoder (VAE) to learn a lower dimensional 
representation of the data through a neural network (NN) 
learning. Furthermore, using the data augmentation technique 
for the NLP was suggested to overcome the data sparsity and 
scarcity problems. Moreover, some platforms are known to 
exist in full-cycle data mining as they have large data set 
retrieval and preprocessing stages enabling the prediction 
of the ML models con-struction [35]. Unfortunately, that is 
not the case in the nanomedicine field, indicating the need 
for high-throughput experimental data acquisition [36,37]. 
Limited nanomedicine data often accumulate manually, 
which is why HTSc/HTSy automatization via decision-
making platforms development is highly desired for the 
identification of novel nanoformulations[38]. In doing so, 
AI and ML algorithms can help in determining nanoparticles 
composition[39], enhancing synthesis procedures[40], 
self-assembly [41], tuning nanoparticle’s size, shape and 
providing surface functionalization options[5], which intern 
gives more realistic idea about the nanoparticle’s safety [42], 
pharmaco-kinetics [43], tissue/organ specificity [44], and 
most importantly the therapeutic action [41].

Determining nanomaterials-body interaction by AI
Despite the rapid development in the nanomedicine field, 

little is known about the fundamental nanoparticles inter-
actions with biological systems, and even less is known 
about designing nanoparticles with desired biological effects. 
Data mining and computer simulation can be employed to 
determine essential design parameters. Thus, nanoinfor-
matics was largely recognized as a rational approach to 
employ weight-of-the-evidence strategies to ensure safe 
na-noparticle development. Nanoinformatics enable data 
collection, representation, sharing, collaboration, data sharing, 
and the semantic (meaningful) search and integration of data 
using AI and ML. This approach led to the establishment of 
methods that can predict different nanoparticles that could 
be used in the nanomedicine field. Moreover, a set of issues 
were addressed in this context using data mining and ML 
techniques. Such issues include functional and structural 
properties, cytotoxicity[45], nanoparticle’s size and shape, 
nanoparticle’s surface charge and composition, nanoparticle’s 
adherence and cellular uptake[46], polydispersity, and 
molecular loading and release, which could then be used for 
medical purposes[47]. Furthermore, nanomaterials interaction 
with the different cells, tissues, and organs can be determined 
using QSAR-based studies. Therefore to achieve a QSAR-
based study, the first step is to identify and reference different 

molecules, followed by the identification of the explanatory 
variable, and finally, defining the quantitative character-istics 
of the nanoparticles and the model selection for the in vitro 
and in silicio experimental designs to pave the way for the in 
vivo treatments[48]. The lack of common reporting standards 
and non-uniformity of the information reported are significant 
barriers to data sharing and re-use.

Data Sharing in Nanomedicine 
Currently, there is a lack of nanomedicine data reporting 

standards in addition to the un-uniformity of the reported 
data making it less useful for sharing and re-using. Besides, 
most of the available data on nanomedicine is found in 
journal articles in the form of texts which is inherently 
difficult to process. The situation is further exacerbated 
by the lack of terminology standards and the substantial 
gaps between the nanomedicine’s chemical, physical, and 
biological data as a result of the inadequate nanomaterials 
characterization. In addition to the absence of the minimum 
information standards needed for reporting data generated 
in nanomedicine-specific journal articles and datasets, such 
standards include data quality, completeness, and reliability. 
Unfortunately, one of the main struggles of the nanomedicine 
field is irreproducibility, as a result of the lack of standardized 
protocols for nanoparticle preparation and characterization, 
data exchange and transfer of nanoparticle synthesis, 
chemical composition and characterization, safe handling, 
and toxicity. In the nanoinformatic field, there is a lack of 
sufficient raw data to be compared with analyzed data, which 
is an essential step in normalizing data from different sources 
to maintain consistency [49] through meta-analysis. The FDA 
first recognized model-informed drug development (MID) 
in 2017. It refers to the application of various quantitative 
models acquired from preclinical and clinical data to ease 
early decision-making and increase the chances for clinical 
approval [50,51]. Another evolving area in nanomedicine-
AI is the systems thinking and quality-by-design (QbD) 
strategies that were used in producing “computational 
pharmaceutics” and the multi-scale modeling techniques, 
which together can alter the pharmaceutical sciences through 
the virtual constructing process and reducing the experiments 
N-number that is needed in the optimization process [52-54].

Conclusion
In the last 23 years, there has been an increase in AI-

related nanomedicine research indicating the benefits that 
com-putational aids can offer to the drug development field, 
with a PubMed return of 281 results for the words AI and 
nanomedicine in December 2022 (Figure 2). Interfacing 
AI with nanomedicine can overcome several issues that 
face the development of the nanomedicine field, such as 
the nanoparticle’s selection, synthesis and characterization, 
chemical functionalization, size/shape adjustment, cellular 
adherence and uptake, tissue and organ accumulation, 
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cytotoxicity, targeted delivery, pharmacokinetics and 
pharmacodynamics of the loaded molecule, synergistic 
effects, patient’s selectivity, and personalized medicine. 
Furthermore, such an interface can be used for the in vitro, 
in silicio, and in vivo model selection and the prediction of 
the success rates. However, an adequate amount of data is 
not always available in nanomedicine. Also, the current data 
is sparse and also found in high-dimensional parameters. 
In addition to the complex nature of the nanomaterials 
indicating the need for using specific algorithms, NLP to 
better use these data in overcoming the issues that face the 
development of the nanomedicine field and providing better 
answers. Therefore, It is becoming increasingly evident that 
the use of AI in nanomedicine, coupled with the development 
of advanced computational models, can greatly enhance our 
understanding of smart nanotherapeutics. This can lead to 
significant advancements in the clinical development and 
translation of these therapies.
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