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Abstract	
The Artificial intelligence (AI) represents a paradigm shift in healthcare 

delivery, particularly in data-intensive, time-sensitive clinical specialties. 
Anesthesiology, intensive care medicine, and emergency medicine stand at 
the forefront of this technological transformation due to their reliance on 
continuous physiological monitoring, rapid decision-making, and complex 
data interpretation. Beyond acute care specialties, emerging applications 
extend to palliative care, pain management, and traditional East Asian 
medicine, demonstrating AI's versatility across diverse clinical contexts. 
This comprehensive narrative review synthesizes recent literature on AI 
applications across these specialties, providing a balanced assessment of 
current achievements, persistent limitations, and future research priorities. 
AI has demonstrated significant promise across multiple clinical domains, 
with applications including real-time anesthetic depth monitoring, predictive 
models for postoperative complications, ICU early warning systems, sepsis 
prediction algorithms, emergency department triage optimization, palliative 
care referral support, personalized pain management, and modernization of 
traditional medicine practices. Despite these advances, significant limitations 
persist, including lack of prospective validation in diverse populations, 
challenges in model interpretability, heterogeneity in data quality, and ongoing 
concerns regarding algorithmic bias and ethical implications. AI technology is 
positioned to augment rather than replace clinical expertise, offering enhanced 
precision, efficiency, and personalized patient care. However, successful 
implementation requires addressing fundamental challenges in model 
validation, regulatory approval, and clinical integration. Future progress 
depends critically on the development of explainable AI models, robust 
external validation, establishment of comprehensive regulatory frameworks, 
and thoughtful integration strategies that preserve essential human judgment, 
empathy, and the therapeutic relationship.
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Introduction
Historical context and evolution of AI in medicine

The integration of artificial intelligence (AI) into healthcare represents one 
of the most transformative and rapidly evolving trends in modern medicine. The 
journey began in the 1970s with knowledge-driven systems such as MYCIN, 
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an expert system developed at Stanford University that used 
rule-based reasoning to diagnose bacterial infections and 
recommend antibiotics. While MYCIN demonstrated expert-
level performance, its reliance on manually encoded rules 
limited scalability and adaptability.

Contemporary medical AI has evolved into primarily 
data-driven approaches, characterized by exponential 
advances in computational capacity, unprecedented data 
availability, and sophisticated machine learning (ML) 
techniques that fundamentally reshape clinical practice 
across diverse medical disciplines. The convergence of 
several key factors has created an optimal environment for AI 
adoption: the widespread implementation of electronic health 
records (EHRs), the proliferation of continuous monitoring 
devices, advances in cloud computing infrastructure, and 
the development of increasingly sophisticated algorithms 
capable of processing complex, multimodal healthcare data.

Three paradigms of modern medical AI
Contemporary AI applications in healthcare can be 

categorized into three complementary paradigms, each 
addressing different aspects of clinical decision-making:

Knowledge-driven AI systems, exemplified by MYCIN 
and early expert systems, rely on explicit rule-based reasoning 
encoded by domain experts. While largely superseded by data-
driven approaches, these systems established foundational 
principles for explainability and clinical integration that 
remain relevant today.

Data-driven AI encompasses machine learning, neural 
networks, deep learning, and large language models (LLMs) 
such as ChatGPT and Gemini. These systems learn patterns 
directly from data without explicit programming. Machine 
learning algorithms excel at risk stratification and outcome 
prediction using structured clinical data. Deep learning, 
particularly convolutional neural networks (CNNs), has 
revolutionized medical image interpretation, achieving 
expert-level performance in radiology, pathology, and 
ultrasound analysis. Large language models, the most recent 
advancement, demonstrate remarkable capabilities in natural 
language understanding, clinical documentation, and patient 
communication, though they require careful validation in 
medical contexts.

Probabilistic methods, including Monte Carlo 
simulations and Bayesian approaches, quantify uncertainty 
in predictions—a critical capability for clinical decision-
making. These methods can model variability in vascular 
resistance, circulating blood volume, and intervention effects 
(e.g., vasopressor or fluid administration), enabling clinicians 
to understand prediction stability and risk distributions under 
different clinical scenarios.

Modern medical AI increasingly adopts a hybrid approach, 

integrating data-driven predictions with probabilistic 
uncertainty quantification and domain knowledge constraints. 
This synthesis addresses limitations of individual paradigms 
while preserving interpretability and clinical relevance.

Technical foundations: neural networks and 
activation functions

Understanding the technical foundations of deep learning 
is essential for clinical implementation. Neural networks 
consist of interconnected layers of artificial neurons, each 
performing weighted summation of inputs followed by 
nonlinear transformation through an activation function. The 
hierarchical structure of deep networks—comprising input 
layers, multiple hidden layers, and output layers—enables 
automatic feature extraction and representation learning from 
raw data.

Activation functions introduce essential nonlinearity 
that allows neural networks to model complex patterns. 
Historical approaches used sigmoid or hyperbolic tangent 
(tanh) functions, which map inputs to bounded ranges (0-1 
for sigmoid, -1 to 1 for tanh). However, these functions 
suffer from vanishing gradient problems in deep networks. 
Contemporary architectures predominantly employ Rectified 
Linear Unit (ReLU) functions and their variants (Leaky 
ReLU, Parametric ReLU), which output the input directly 
if positive and zero (or a small negative value) otherwise. 
ReLU functions facilitate deeper network training, accelerate 
convergence, and have become the de facto standard in 
medical image analysis and signal processing applications. 
Recent theoretical work has revealed universal scaling laws 
governing signal propagation in deep networks with ReLU 
activation, providing principled guidance for architecture 
design.

In this review, "artificial intelligence (AI)" is used as 
an umbrella term encompassing three methodological 
categories: knowledge-driven systems (e.g., the historical 
MYCIN system from the 1970s which utilized rule-based 
reasoning), data-driven approaches (e.g., machine learning 
[ML], deep learning [DL], and large language models 
[LLMs]), and probabilistic methods (e.g., Monte Carlo 
simulation). The hierarchical relationship is defined such that 
DL is a subset of neural networks (NN), which is a subset 
of ML, which in turn falls under AI (DL ⊂ NN ⊂ ML ⊂ 
AI). While contemporary medical AI predominantly relies 
on data-driven models, probabilistic methods serve a critical 
complementary role by quantifying uncertainty, facilitating 
the development of "Hybrid AI" frameworks essential for 
robust clinical decision-making.

Understanding the technical foundations of these systems 
is essential for clinicians. Neural networks, the backbone 
of modern DL, consist of input, hidden, and output layers 
where information processing mimics synaptic transmission. 
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perform reliably under extreme conditions. Lessons learned 
during this period have informed current approaches to AI 
development and implementation, emphasizing the need 
for rigorous validation, ethical considerations, and careful 
integration with existing clinical workflows.

AI in Anesthesia and Perioperative Medicine
Anesthesiology is unusually well-suited to AI because it 

generates continuous, high-frequency physiologic waveforms, 
device parameters, imaging, and interventions recorded at 
exact times within a tightly controlled environment. These 
data streams enable three practical capabilities: bedside 
prediction and early warning, perioperative risk stratification 
that informs preparation and surveillance, and automation 
through closed-loop control of hypnosis, analgesia, and 
ventilation/oxygenation. In clinical use, the most effective 
systems pair predictions with clear action pathways or 
machine-executable targets, emphasize transparency and 
calibration, and ensure clinicians can take control instantly 
whenever needed. Evidence to date shows consistent 
improvements in process quality (e.g., time in target, fewer 
manual adjustments, better image acquisition) with mixed but 
growing signals for patient-centered outcomes (Figure 1).

The activation functions within these nodes, such as the 
Rectified Linear Unit (ReLU) or Leaky ReLU, determine 
the output signal. Notably, the sigmoid activation function 
historically parallels the oxyhemoglobin dissociation 
curve—a relationship fundamental to the pulse oximetry 
principle (PaO2 vs. SpO2)—illustrating the mathematical 
continuity between physiological modeling and modern AI 
architectures.

The application of AI is particularly pertinent and 
promising in clinical specialties that are inherently data-
rich, time-critical, and decision-intensive. Anesthesiology, 
intensive care medicine, and emergency medicine exemplify 
these characteristics, making them natural pioneers in 
AI integration. These specialties routinely generate vast 
amounts of high-frequency physiological data, require 
rapid decision-making under conditions of uncertainty, and 
benefit significantly from predictive analytics and automated 
monitoring systems. The unique characteristics of these 
specialties—including continuous patient monitoring, 
complex pharmacological interventions, and the need for 
immediate response to physiological changes—create an 
ideal environment for AI-driven clinical decision support.

Historically, anesthesiology was among the first medical 
specialties to embrace technological innovation, from the 
introduction of pulse oximetry and capnography to the 
development of sophisticated monitoring systems and drug 
delivery devices. This tradition of technological adoption 
has naturally extended to AI applications, with early 
implementations focusing on anesthetic depth monitoring, 
automated drug delivery, and perioperative risk prediction. 
Similarly, intensive care medicine, with its reliance on 
continuous monitoring and data- driven decision-making, 
has emerged as a fertile ground for AI applications ranging 
from early warning systems to predictive models for clinical 
deterioration.

Over the past decade, AI applications have expanded 
beyond acute care specialties into areas traditionally 
considered less amenable to technological intervention. 
Palliative medicine, pain management, and even traditional 
East Asian medicine are increasingly incorporating AI-driven 
approaches to enhance clinical care, optimize treatment 
selection, and improve patient outcomes. This expansion 
reflects both the maturation of AI technology and growing 
recognition of its potential to address complex clinical 
challenges across the entire spectrum of healthcare delivery.

The COVID-19 pandemic has served as a significant 
catalyst for AI adoption in healthcare, highlighting the 
critical need for predictive analytics, resource optimization, 
remote monitoring capabilities, and automated decision 
support systems. The pandemic demonstrated both the 
potential of AI to address large-scale healthcare challenges 
and the importance of robust, validated systems that can 

Figure 1: Integrated AI Workflow in Perioperative Anesthesia Care.

Prediction and early warning at the bedside
Intraoperative hypotension (IOH) is common and 

consistently linked to postoperative organ injury. Large 
perioperative cohorts show graded risk with both severity 
and duration of low mean arterial pressure (MAP). Even 
brief exposures below approximately 55 mmHg are 
associated with myocardial injury and acute kidney injury 
(AKI), while time spent below 60-65 mmHg also correlates 
with harm, supporting proactive avoidance of these ranges 
[1,2]. These relationships persist after risk adjustment 
across surgical populations, motivating bedside systems 
that forecast imminent IOH events, typically defined as 
“MAP < 65 mmHg for > 1 min in the next 5-15 min”, to 
shift care from reactive rescue to anticipatory management. 
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Acute kidney injury illustrates both potential and pitfalls. 
Large noncardiac surgical cohorts have yielded interpretable 
machine learning models that achieve AUCs around 0.83-
0.85 using preoperative and intraoperative features, with only 
modest performance loss when restricted to preoperative 
variables. This pattern is helpful for early counseling and 
optimization [9]. Calibration curves and feature attribution 
(e.g., age, preoperative serum creatinine, surgical duration) 
facilitate clinical interpretability, but multicenter external 
validation and clinical utility testing are required before 
routine adoption.

For myocardial injury after non-cardiac surgery, 
explainable multicenter models have outperformed traditional 
scores in development and internal validation; however, their 
performance typically drops on external datasets, highlighting 
the importance of transportability assessments and threshold 
selection tailored to local prevalence [10].

Neurocognitive outcomes are also an active area. 
Prospective and real-world evaluations of delirium risk 
models demonstrate acceptable discrimination and operational 
feasibility in surgical inpatients. Live clinical deployment 
has been associated with increased detection and changes in 
sedative/antipsychotic use; nevertheless, the benefits of these 
outcomes require further study [11].

Beyond model performance, implementation matters. 
A randomized clinical trial in anesthesiology investigated 
whether presenting clinicians with machine learning 
predictions improved their own risk estimates for 30-
day mortality and acute kidney injury. Assistance did 
not significantly improve AUC for clinician predictions, 
emphasizing that risk models should be embedded within 
action pathways (e.g., prompts for troponin/creatinine 
surveillance, hemodynamic, or nephroprotective bundles) 
rather than presented in isolation [12].

Deep learning for difficult airway assessment
Deep learning (DL) systems for airway assessment 

aim to reduce unanticipated difficulty by converting 
routine preoperative data, facial photographs, ultrasound 
measurements, and imaging into quantitative risk estimates 
that complement bedside tests [13,14]. DL models trained on 
facial images can flag patients at risk for a poor laryngoscopic 
view or difficult intubation, in some cohorts, outperforming 
classic scores. A recent study shows these tools can run on 
smartphone photographs taken at the bedside, which lowers 
the barrier to use in the preoperative clinics [15]. Models 
that show which visual features drove the prediction (e.g., 
highlighting limited mouth opening, neck contour, or jawline 
cues) can help clinicians plan devices and backup strategies, 
rather than simply providing a “difficult/not difficult” label 
[16].

Beyond photographs, ultrasound adds soft-tissue 

A prominent approach is the Hypotension Prediction Index 
(HPI), a machine-learning (ML) model trained on high-
fidelity arterial waveforms that captures subtle beat-to-beat 
features reflecting emerging failure of preload, afterload, 
contractility compensation, and produces a 0-100 risk score 
[3]. Prospective evidence suggests that prediction must be 
coupled to action. In a randomized clinical trial, integrating 
an HPI-based early-warning workflow with a structured 
hemodynamic diagnostic/treatment algorithm significantly 
reduced intraoperative hypotension compared to standard 
care, demonstrating process improvement while underscoring 
the need for multicenter trials powered to evaluate patient-
centered outcomes [4].

Prediction is no longer only about blood pressure. Real-
time ML models trained on perioperative data can warn of 
intraoperative hypoxemia minutes before it happens. Some 
systems also provide brief, case-specific explanations, such 
as low tidal volume or rising oxygen needs, which help 
clinicians understand and respond to the alert. In testing, 
these explanations improved the anticipation and prevention 
of desaturation [5]. Beyond the OR, continuous oximetry and 
capnography in the PACU and on surgical wards provide 
early warning of opioid-related respiratory depression. 
The multicenter PRODIGY risk prediction model uses five 
simple bedside variables (age, sex, opioid-naïve status, sleep-
disordered breathing, heart failure) to flag high-risk patients. 
It has been validated against clinical and resource outcomes 
[6].

Important limitations remain. Model performance can 
decline when models are transferred to new hospitals, devices, 
or patient groups; recent reviews recommend multicenter 
validation and ongoing monitoring after deployment [7]. The 
standard event definition, MAP < 65 mmHg for more than 1 
minute, is convenient but imperfect. Relative drops or patient-
specific targets may better reflect perfusion risk and should 
be studied [1,2]. Most trials improve process measures (e.g., 
time in hypotension) rather than hard outcomes such as AKI 
or myocardial injury, which need larger, carefully controlled 
studies [2,4,7]. Finally, many waveform-based tools require 
an arterial line, which limits use; broader impact will likely 
depend on noninvasive signals or hybrid approaches [7].

Machine learning in perioperative risk stratification
Machine learning models are increasingly used to convert 

preoperative demographics, comorbidity profiles, laboratory 
data, and intraoperative signals into individualized risk 
estimates for major postoperative complications. Recent 
systematic reviews in perioperative medicine conclude that 
discrimination is often promising. Still, external validation, 
calibration reporting, and impact evaluation remain 
inconsistent, underscoring the need for methodologically 
rigorous development and validation pipelines [8].
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suboptimal visualization conditions. Such approaches align 
with the concept of human-in-the-loop AI, in which the 
system augments rather than replaces clinical judgment [27].

Important caveats remain. Most studies are single-
center and use different reference standards for “difficulty,” 
predicting a difficult laryngoscopic view (e.g., Cormack-
Lehane 3-4), a difficult intubation (defined as failed or 
requiring multiple attempts), or difficult mask ventilation. 
Therefore, performance may not be consistent across 
different populations, devices, or teams [13,14,21]. Recent 
reviews recommend larger, multicenter, prospective studies 
with external validation, reporting of calibration and fairness 
across subgroups, and trials that test whether model-guided 
preparation reduces hypoxemia, failed first attempts, or the 
need for escalation to a surgical airway [14]. Until such 
evidence accumulates, these tools are best used as decision 
aids that complement a thorough airway examination and 
plan [17].

Deep learning-assisted ultrasound for peripheral 
nerve blocks

Deep learning-assisted ultrasound systems for peripheral 
nerve blocks utilize computer vision to highlight nerves, 
vessels, and relevant fascial planes on live scans, aiming to 
simplify view acquisition and interpretation for clinicians. In 
an external validation across nine block regions, an assistive 
overlay correctly identified target structures in most cases and 
was judged likely to reduce the risk of adverse events or block 
failure [28]. In a randomized study involving non-expert 
anesthetists, assistance increased the rate of acquiring an 
acceptable block view. It improved the correct identification 
of sono-anatomy compared to standard scanning [29]. A 
subsequent randomized crossover study suggested these 
benefits were still present two months after training, 
indicating potential support for skill retention beyond the 
immediate teaching period [30]. Recent scoping reviews 
map a rapidly growing literature and conclude that computer 
vision assistance can standardize scanning and accelerate 
learning, while emphasizing the need for robust prospective 
trials that link assistance to patient-centered outcomes such as 
block success and complications [31-33].

On the algorithmic side, multiple groups report the use of 
deep-learning models for nerve detection and segmentation in 
common block regions. Studies have demonstrated automatic 
localization of the interscalene brachial plexus on ultrasound 
[34,35] and femoral nerve segmentation with good agreement 
to expert annotations [36]. An evaluation compared AI-based 
nerve segmentation across the brachial plexus, femoral, 
and sciatic regions, highlighting both the promise of these 
tools and the need for standardized benchmarks and clinical 
endpoints [37]. Limitations across the literature include 
single-center designs, heterogeneity in probes and machines, 
small datasets, and a focus on process measures (acceptable 

information that simple inspection misses [17]. Prospective 
work shows that combining ultrasound measurements (e.g., 
skin-to-epiglottic distance, tongue thickness, thyromental 
metrics) with standard clinical tests improves discrimination 
for difficult laryngoscopy compared with either alone 
[18,19]. In small single-center studies, composite ultrasound-
clinical models have reported AUCs around 0.75-0.85 with 
high negative predictive values (93-99%) [18,19]. Tongue 
thickness alone shows more variable performance (AUC 
0.92 for predicting difficult laryngoscopy, 0.69 for difficult 
intubation; negative predictive values 76% for difficult 
intubation) [20].

Imaging-based approaches extend this idea. A large 
study trained a DL model on lateral cervical radiographs 
and predicted Cormack-Lehane grade 3 or 4 views with high 
internal performance [21]. Radiomics work has combined 
clinical measurements with 3D CT features to estimate the 
risk of difficult mask ventilation in oral and maxillofacial 
surgery populations [22]. Three-dimensional facial scans 
have also been used to model facial geometry associated with 
mask seal and ventilation difficulties in prospective cohorts 
[23].

CNN-based image segmentation for tracheal 
intubation

Recent advances in convolutional neural networks (CNNs) 
and image segmentation have enabled the development of AI-
assisted systems for airway management. Tracheal intubation 
fundamentally relies on the rapid visual identification of 
laryngeal structures, including the epiglottis, vocal cords, 
arytenoids, and the glottic opening. From a computer vision 
perspective, this task can be formulated as a semantic or 
instance segmentation problem, in which anatomically 
relevant regions are identified at the pixel level.

Fully convolutional networks (FCNs) and their 
derivatives, such as U-Net [24]  and SegNet architectures 
[25], have demonstrated strong performance in medical 
image segmentation tasks due to their ability to preserve 
spatial resolution while extracting hierarchical features. 
These architectures are particularly suitable for real-time 
analysis of laryngoscopic images and video streams, as they 
enable dense prediction without reliance on fully connected 
layers. In airway management, FCN-based models can be 
trained to segment the glottic opening and surrounding soft 
tissues, thereby providing objective, real-time visualization 
of airway anatomy during intubation attempts.

Instance segmentation techniques, such as Mask R-CNN 
[26], may offer additional advantages in difficult airway 
scenarios, where edema, tumors, secretions, or anatomical 
variants obscure the laryngeal view. By separating individual 
anatomical structures within the same class, instance-
level models can support airway identification even under 
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view, time to view, trainee confidence) rather than patient 
outcomes; generalizability and post-deployment monitoring 
remain priorities for future work [31-33,37].

Machine learning-assisted closed-loop control in 
anesthesia

Contemporary “autonomous” anesthesia is best 
understood as a form of supervised autonomy. Clinicians 
set goals and safety limits, and the software adjusts drug 
delivery to keep EEG-derived depth of anesthesia and 
nociception surrogates within target ranges [38]. Design 
principles emphasize robust feedback signals, conservative 
control rules, explicit limits and alarms, and the ability for the 
clinician to take over immediately [39]. Evidence syntheses 
of intravenous closed-loop systems suggest tighter time in 
target and small efficiency gains, while underlining variable 
bias, heterogeneity, and the need for outcome-powered trials 
[40].

Hypnosis–closed-loop TIVA: Randomized trials 
comparing BIS-guided closed-loop propofol with manual 
control show more time spent with BIS values of 40-60 
and fewer overshoots during induction and maintenance 
[41]. A multicenter trial of a Bayesian controller similarly 
achieved better hypnosis control than manual titration [42]. 
Pediatric data indicate feasibility and smoother depth control 
in preschool children without added adverse events [43]. 
Early reports of dual-drug loops (propofol and remifentanil) 
demonstrate technical feasibility, but larger trials are needed 
to illustrate patient-centered benefits [44]. Overall, closed-
loop TIVA improves process metrics and may reduce drug 
use or recovery times, yet generalizability across monitors/
patient groups remains a key gap [40].

Analgesia–nociception-guided titration: ML-supported 
nociception monitors (e.g., Nociception Level: NOL, 
Analgesia Nociception Index: ANI) convert multi-signal 
physiology into a real-time pain surrogate, guiding 
intraoperative opioid dosing [45,46]. A pooled analysis 
of two RCTs found lower PACU pain and fewer cases of 
severe pain with NOL-guided fentanyl vs standard care [46]. 
A meta-analysis reported reduced postoperative pain and 
opioid consumption with NOL guidance. However, effects on 
postoperative nausea and vomiting and length of stay were not 
significant, and study results varied widely [45]. A network 
meta-analysis across five nociception monitors suggested 
monitor-guided strategies can improve perioperative 
analgesic use and early pain endpoints, while stressing the 
need for standardized protocols and outcome trials [47]. For 
ANI, a systematic review and meta-analysis in patients under 
sedation or general anesthesia reported moderate diagnostic 
accuracy and lower opioid use with ANI-guided care, again 
with considerable variation between studies [48].

Ventilation and oxygenation automation: Closed-

loop ventilatory controllers adjust respiratory rate, tidal 
volume/pressure support, FIO2, and sometimes PEEP to 
keep end-tidal CO2 and SpO2 within targets while limiting 
undue pressures/volumes. In perioperative and immediate 
postoperative settings, these systems have reduced the 
need for manual adjustments and kept patients closer to 
the intended gas-exchange and “lung-protective” ranges 
compared with clinician-set modes, without generating new 
safety signals [49,50]. In a randomized trial following cardiac 
surgery, fully automated ventilation increased the time spent 
in lung-protective settings, reduced severe hypoxemia, and 
accelerated the return to spontaneous breathing compared to 
conventional ventilation [51]. In an ICU randomized trial, 
closed-loop ventilation required fewer manual interventions 
and achieved more time with optimal SpO2 and tidal volume 
than conventional modes over 48 hours [50]. Automated 
oxygen titration is maturing in parallel. In patients with 
acute hypoxemic respiratory failure receiving high-flow 
nasal oxygen, a randomized crossover trial demonstrated 
that closed-loop FIO2 control increased time spent within 
the individualized SpO2 range and reduced bedside workload 
compared to manual titration [52]. A meta-analysis reported 
substantially more time within prescribed SpO2 targets and 
signals for less hypoxemia and lower workload with closed-
loop oxygen control [53].

AI in Critical and Intensive Care Medicine
The intensive care unit (ICU) represents an optimal 

environment for AI applications, characterized by continuous 
collection of high-dimensional physiological, laboratory, and 
imaging data from critically ill patients who require immediate 
intervention for life-threatening conditions. The complexity 
of critical care decision-making, combined with the volume 
and velocity of data generation, creates unique opportunities 
for AI-driven clinical support systems to enhance patient care 
and outcomes.

Early warning systems and sepsis prediction
Biesheuvel et al. [7] outlined a comprehensive framework 

for AI integration in acute and intensive care, highlighting 
three primary domains of application: forecasting clinical 
deterioration, predicting sepsis onset, and optimizing resource 
allocation [7]. Their analysis emphasized the potential for ML 
systems to process vast amounts of continuously generated 
data to identify subtle patterns indicative of impending 
clinical deterioration, often hours before traditional 
monitoring approaches would detect changes. These early 
warning systems represent a paradigm shift from reactive to 
proactive critical care management.

Mușat et al. [54] conducted systematic reviews of 
machine learning (ML) in sepsis, covering both deterioration 
and outcome predictions [54]. They consistently reported 
encouraging discrimination but emphasized the heterogeneity 
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of sepsis definitions, time windows, predictors, and validation 
strategies. Recent years have seen a shift from retrospective 
model development to implementation research. Adams et 
al. [55] reported a multisite prospective study examining 
associations between the deployment of an ML-based sepsis 
early warning system (TREWS) and improved process/
outcome measures [55]. While demonstrating feasibility 
and some positive signals, the study also highlighted open 
questions about generalizability, alert fatigue, and causal 
attribution in real-world deployments. These findings 
underscore the critical importance of careful implementation 
strategies and ongoing monitoring when transitioning AI 
tools from development to clinical practice.

Diagnostic applications and risk stratification
The work by Yoon et al. [56] provided an extensive 

review of AI applications in critical care diagnostics, with 
particular emphasis on neuroimaging for traumatic brain 
injury and risk stratification for multi-organ failure [56]. 
Their analysis highlighted the superior performance of deep 
learning models in interpreting complex imaging studies, 
including computed tomography scans for intracranial 
hemorrhage detection and chest radiographs for pneumonia 
identification. These DL-driven diagnostic tools can provide 
rapid, accurate interpretations that support clinical decision-
making, particularly in settings where immediate specialist 
consultation may not be available.

ARDS-focused systematic reviews by Tran et al. [57] and 
Yang et al. [58] have reported that ML supports diagnosis, risk 
stratification, and mortality prediction [57,58]. Performance 
depends strongly on dataset scale, feature availability, and 
external validation. These studies demonstrate AI's potential 
to identify patients at risk for developing ARDS before 
clinical criteria are fully met, enabling earlier intervention and 
potentially improved outcomes. However, the heterogeneity 
of ARDS definitions, variable timing of predictions, and 
differences in patient populations across studies limit 
generalizability and highlight the need for standardized 
approaches.

Mechanical ventilation and respiratory support
Regarding mechanical ventilation, comprehensive reviews 

by Ahmed et al. [59] and Jiang et al. [60] have described ML 
applications in ventilator management, weaning prediction, 
and detection of patient–ventilator asynchrony [59,60]. These 
efforts are clinically aligned with reducing the duration of 
ventilation and associated complications. ML-driven weaning 
prediction models analyze multiple physiological parameters, 
ventilator settings, and patient characteristics to identify 
optimal timing for extubation attempts, potentially reducing 
the risks of both premature and delayed extubation. Patient-
ventilator asynchrony detection algorithms can identify 
subtle mismatches between patient effort and ventilator 
delivery that may escape clinical observation, enabling timely 

adjustments that improve comfort and potentially reduce 
ventilator-induced lung injury. However, these applications 
remain limited by heterogeneous labels, varying definitions 
of successful weaning, and bedside integration barriers.

Workflow optimization and clinical decision support
Saqib et al. [61] expanded the scope of AI applications 

in critical illness, providing a comprehensive assessment 
of impacts on workflow efficiency, patient monitoring, and 
safety outcomes [61]. Their review demonstrated that AI 
implementation in critical care settings can significantly 
reduce alarm fatigue through intelligent filtering of 
physiological alerts, improve medication dosing accuracy 
through predictive pharmacokinetic models, and enhance 
communication between healthcare team members through 
automated documentation and clinical summaries. These 
workflow enhancements have the potential to reduce 
cognitive burden on clinicians, allowing more time for direct 
patient care and complex decision-making.

The nursing perspective on AI in critical care, as examined 
by Porcellato et al. [62], revealed important insights into 
the practical implementation challenges and opportunities 
[62]. Their systematic review emphasized AI's potential to 
optimize nursing workload distribution, enhance patient 
risk monitoring, and support clinical decision-making at the 
bedside. The integration of AI tools into nursing workflows 
requires careful consideration of user interface design, alert 
management, and the preservation of critical thinking skills 
among healthcare providers. Successful implementation 
depends on engaging nurses early in the design process and 
ensuring that AI systems complement rather than complicate 
existing workflows.

Large language models in critical care
The emergence of large language models (LLMs), a class 

of deep learning-based generative AI, introduces entirely new 
possibilities for AI application in intensive care settings [63]. 
These sophisticated natural language processing systems 
can automate clinical documentation, provide decision 
support through analysis of medical literature, facilitate 
patient and family communication, and support medical 
education through interactive learning platforms. However, 
the implementation of LLMs in critical care requires careful 
validation to ensure accuracy, reliability, and appropriate 
integration with existing workflows. Concerns about 
hallucinations, outdated information, and liability must be 
addressed before widespread clinical adoption.

Current barriers and future directions
Despite these promising applications, substantial barriers 

to routine ICU-scale deployment persist. Prospective 
validation in diverse patient populations remains limited, 
with most studies conducted in single centers or specific 
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patient subgroups. Transportability across different ICU 
environments, with varying patient populations, staffing 
models, and technical infrastructure, represents a significant 
challenge. Model interpretability remains critical for clinical 
acceptance, as intensivists require understanding of why 
a particular prediction or recommendation was generated. 
Governance frameworks that define roles, responsibilities, 
and liability for AI-assisted decisions are still evolving. 
Moving forward, AI should be deployed as a supervised 
clinical tool that augments expertise within regulatory and 
ethical frameworks that preserve human judgment, clinical 
autonomy, and the irreplaceable value of experienced 
intensivists in managing complex, critically ill patients.

AI in Emergency Medicine
Emergency departments (EDs) generate large volumes 

of clinical data, yet many high-stakes decisions must be 
made within minutes. In major trauma, acute coronary 
syndromes, and acute ischemic stroke, small delays can 
translate into irreversible organ injury and worse long‑term 
function. The field’s familiar shorthand—“golden hour,” 
“time is brain,” “time is myocardium”—reflects a system 
that is highly sensitive to technologies capable of removing 
avoidable latency between arrival, diagnostic clarification, 
and definitive treatment.

However, ED presentations are frequently undifferentiated, 
and diagnostic uncertainty is often greatest at the point where 
time pressure is most intense. In this setting, false-positive 
outputs risk increasing cognitive load, contributing to alert 
fatigue, and prompting unnecessary escalation or intervention. 
False-negative outputs can be more consequential still, 
because they may suppress urgency when it is most needed 
and delay time‑critical care. ED-facing AI therefore needs 
to be assessed as a clinical intervention embedded in work: 
who receives the output, what thresholds trigger action, what 
safeguards exist, and how responsibility is assigned when 
recommendations are followed—or ignored.

Recent reviews have underscored both the breadth of 
development and the fragility of real‑world translation. 
Farrokhi et al. [64] catalogued AI applications spanning 
prehospital care, emergency radiology, triage and patient 
classification, diagnostic and interventional support, trauma 
and pediatric emergency care, and outcome prediction, while 
emphasizing that most published work remains retrospective 
and that prospective trials are required to establish true 
clinical value [64]. Amiot et al. [65] similarly reviewed 
recent advances in AI and emergency medicine, balancing 
opportunities and challenges—illustrating how AI holds 
promise for improving emergency care while emphasizing 
the need for careful attention to explainability, bias, privacy, 
and validation across diverse settings [65]. Taken together, 
these syntheses point to a practical lesson for emergency 

care: workflow design often determines whether an algorithm 
improves timeliness without compromising safety.

A useful way to keep this problem clinically grounded 
is to organize ED AI by system function—that is, where 
in the acute pathway a tool intervenes and which delays it 
is meant to remove. Here, ED AI can be framed as three 
complementary functions: (1) front-end prioritization, (2) 
diagnostic acceleration, and (3) operational optimization. 
This structure aligns with how emergency care fails under 
strain: mis‑prioritization at the front door, bottlenecks in 
high‑throughput diagnostics, and throughput collapse during 
crowding. It also keeps attention on actionable effects—
earlier recognition, earlier escalation, earlier definitive care—
rather than prediction as an end in itself.

Front-end prioritization
Front-end prioritization concerns decisions closest to 

entry into emergency care: triage, initial clinician assessment, 
and (in some systems) prehospital screening. The unit of 
action is the individual patient. The clinical aim is to support 
consistent choices about who must be seen first, who can 
safely wait, and which time‑sensitive pathways should begin 
before diagnostic certainty is established. Inputs are typically 
limited to data available at triage— vital signs, age, chief 
complaint, brief text, and proxies for comorbidity—because 
any requirement for delayed testing defeats the purpose.

Two influential studies illustrate how routinely collected 
triage data can support meaningful early risk stratification. 
Raita et al. [66], using adult ED data from the National 
Hospital and Ambulatory Medical Care Survey (NHAMCS, 
2007–2015), trained several machine‑learning models 
using triage‑available predictors (demographics, vital signs, 
chief complaints, comorbidities) and compared them with 
a conventional approach based on Emergency Severity 
Index (ESI) level [66]. They evaluated outcomes that map 
directly to early prioritization—critical care (ICU admission 
or in‑hospital death) and hospitalization (admission or 
transfer)—and reported better discrimination with machine 
learning than the ESI-based reference model (e.g., AUC 0.86 
vs 0.74 for critical care in the deep neural network model). 
The implication is not that triage should be automated, but 
that clinically useful signals exist in early data and can help 
identify high‑risk patients who may be embedded within 
apparently lower‑acuity strata.

Levin et al. [67] developed an electronic triage tool 
(“e‑triage”) based on a random forest model that predicts the 
need for critical care, an emergency procedure, and inpatient 
hospitalization in parallel, then translates predicted risk into 
triage-level designations [67]. In a multisite retrospective 
study of 172,726 ED visits, e‑triage showed AUC values 
ranging from 0.73 to 0.92 and was reported to improve 
identification of acute outcomes relative to ESI, particularly 



Yamakage M, et al., Anesth Crit Care 2026 
DOI:10.26502/acc.096

Citation: Michiaki Yamakage, Soshi Iwasaki, Atsushi Sawada, Tomohiro Chaki, Ken-Ichiro Kikuchi, Yusuke Iwamoto. Arti icial Intelligence in 
Anesthesia, Critical Care, and Beyond: Current Applications, Future Prospects, and Limitations. Anesthesia and Critical care. 8 (2026): 06-24.

Volume 8 • Issue 1 14 

within ESI level 3—a large, heterogeneous group in many 
ED. When matched to the ESI distribution, e‑triage identified 
more than 10% of ESI level 3 patients as needing up‑triage; 
those up‑triaged patients had higher rates of critical care or 
emergency procedure (6.2% vs 1.7%) and hospitalization 
(45.4% vs 18.9%). This addresses a common operational 
failure mode: when workload rises, heterogeneity within 
“middle acuity” categories can obscure time‑critical illness 
unless reassessment is frequent and systematic.

A central question, however, is whether front-end tools 
change timelines and outcomes rather than only improving 
retrospective discrimination. A concrete example comes 
from a multisite quality improvement study by Hinson et 
al. [68] evaluating an AI‑informed, outcomes‑driven triage 
decision support system for adults presenting with chest 
pain [68]. At arrival, TriageGO estimates probabilities for 
critical care, emergency procedures, and hospital admission 
from variables including demographics, arrival mode, vital 
signs, chief complaints, and active medical problems, then 
recommends an acuity level. Implementation across three 
EDs was staggered between 2021 and 2023, and the tool 
replaced ESI at those sites. After adjustment, length of stay for 
hospitalized patients decreased (by 76.4 minutes), and time 
to emergency cardiovascular procedures decreased (by 205.4 
minutes; cardiac catheterization by 243.2 minutes), without 
observed changes in 30‑day mortality or 72‑hour ED returns 
requiring hospitalization or emergency procedures. Even 
allowing for the limitations inherent to quality improvement 
designs, this study is valuable because it evaluates a triage 
algorithm using endpoints that matter to ED systems: time-to-
procedure, throughput, and proximate safety signals.

Across these examples, the operational lesson is 
consistent. Front-end prioritization tools are most defensible 
when they do not simply add alerts, but instead tighten the 
mapping between early data and predetermined actions 
(earlier reassessment, earlier senior review, earlier pathway 
activation) while monitoring both over‑intervention and 
missed deterioration.

Diagnostic acceleration
Diagnostic acceleration targets time loss in 

high‑throughput diagnostic steps where queues, interpretation 
delays, and communication friction become rate‑limiting. 
In many ED pathways, the bottleneck is not ordering or 
acquiring a test, but the interval from data availability to 
interpretation, notification, and mobilization of the team 
capable of definitive treatment. Imaging‑driven workflows 
are a natural focus because time‑critical conditions often 
require CT or CT angiography, and because rapid benefit 
depends on converting findings into coordinated action.

Acute ischemic stroke due to large vessel occlusion 
(LVO) has become a leading implementation target because 

the workflow has discrete, measurable milestones and clear 
time dependence. Martinez‑Gutierrez et al. [69] conducted a 
cluster randomised stepped‑wedge clinical trial across four 
comprehensive stroke centers (January 2021 to February 
2022) assessing automated CT angiogram interpretation 
coupled with secure group messaging [69]. The intervention 
produced real‑time alerts to clinicians and radiologists 
within minutes of CT completion. Among included patients 
treated with thrombectomy, implementation was associated 
with a reduction in door‑to‑groin time by 11.2 minutes 
(95% CI −18.22 to −4.2) and a reduction in time from CT 
initiation to endovascular therapy start by 9.8 minutes (95% 
CI −16.9 to −2.6), with no differences in IV thrombolysis 
times or hospital length of stay. The mechanism is clinically 
intelligible: earlier notification advances team mobilization 
and compresses communication delays that often sit between 
imaging and procedure.

This example also clarifies what “diagnostic AI” must 
include to matter in emergency care. Detection alone is 
insufficient if outputs are not routed to the responsible team, 
if thresholds are poorly calibrated to local prevalence, or 
if the tool disrupts the radiology–ED interface. Reviews 
focused on emergency imaging highlight both the 
promise of rapid interpretation support and the persistent 
implementation challenges—bias, privacy, and the need for 
extensive validation across institutions and patient groups. 
For diagnostic acceleration, therefore, the key evaluation 
endpoints are not limited to sensitivity or AUC, but include 
time-to-notification, time-to-team activation, time-to-
definitive intervention, and the downstream consequences of 
false alarms (avoidable mobilization) and misses (avoidable 
delay).

Operational optimization
Operational optimization addresses system-level delays 

driven by congestion, crowding, and downstream capacity 
constraints. Even when diagnoses are recognized promptly 
and pathways are activated appropriately, definitive care 
can be delayed by boarding, bed shortages, imaging queues, 
and staffing mismatches. Operational AI tools therefore 
focus on forecasting and resource allocation: predicting 
near-term arrivals and acuity mix, anticipating bottlenecks, 
estimating admission likelihood early enough to trigger bed 
management, and supporting staffing or space adjustments 
intended to stabilize flow.

Here, the evidence base is expanding, but also uneven. 
Farimani et al. [70] systematically reviewed models 
predicting ED length of stay and identified substantial 
heterogeneity, with common shortcomings in reporting and 
methodological quality [70]. Among included studies, only 
a minority externally validated models, and several recurrent 
issues were noted—predictor selection practices, sample size 
considerations, reproducibility, handling of missing data, 
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and problematic dichotomization of continuous variables. 
These limitations matter because operational predictions are 
highly sensitive to local practice patterns (testing thresholds, 
admission policies, staffing), and transport poorly across 
institutions without careful recalibration and monitoring.

Demand forecasting faces similar challenges. Blanco et 
al. [71] reviewed AI-based models for hospital ED demand 
forecasting (2019–2025) and found that machine learning 
and deep learning methods often outperform classical time 
series approaches, particularly when external variables—
weather, air quality, and calendar effects—are incorporated 
[71]. Yet the same review noted limited external validation 
and relatively infrequent use of interpretability methods, both 
of which constrain confident deployment. The consequence 
is that operational tools must be treated as part of governance 
and planning, not simply as technical add-ons: forecasts 
need explicit decision hooks (e.g., staffing triggers, surge 
bed activation thresholds) and a process for auditing whether 
actions actually reduce waiting, boarding, or time-to-critical 
intervention.

Across all three functions, one requirement is constant: 
ED AI must be integrated into real work with clear 
accountability. Farrokhi et al. [65] emphasized that much 
of the field remains retrospective and that prospective trials 
are essential to establish value in emergency settings [65]. 
Function-based framing can help design those evaluations. 
Front-end prioritization should be studied using under‑triage, 
time-to-senior review, time-to-pathway activation, and safety 
outcomes that capture over‑intervention as well as missed 
deterioration. Diagnostic acceleration should be evaluated 
with pathway-relevant time endpoints (scan-to-notification, 
door-to-procedure) and measures of workflow burden (false 
alerts, unnecessary mobilization). Operational optimization 
should be judged on avoidable waiting and maintenance of 
access for time‑critical patients under strain, rather than on 
predictive accuracy alone.

Finally, implementation requires continuous surveillance: 
performance drift monitoring, auditing of alerts and actions, 
and periodic recalibration as case mix, staffing, and processes 
change. Without these controls, ED AI is vulnerable to 
distribution shift and to subtle harm through misplaced 
confidence. Under appropriate governance, however, AI can 
contribute to the ED’s core objective: timely definitive care 
delivered safely in an environment defined by uncertainty and 
constraint.

AI in Palliative Care
Palliative care, traditionally characterized by nuanced 

clinical judgment, empathetic communication, and 
individualized approaches to complex psychosocial needs, 
represents an emerging frontier for machine learning 
application. While the integration of technology in this 

humanistic specialty requires careful consideration of ethical 
implications and preservation of the therapeutic relationship, 
machine learning tools are beginning to demonstrate 
significant potential in supporting clinicians and improving 
patient outcomes.

Prognostic modeling and identification of needs
Wilson et al. [72] conducted a landmark randomized 

clinical trial examining the effect of a machine learning-
based decision support tool on palliative care referral patterns 
in hospitalized patients [72]. Their study demonstrated that 
the ML-driven system, which analyzed multiple data points 
including diagnosis, prognosis, functional status, symptoms, 
and healthcare utilization patterns, resulted in a statistically 
significant increase in appropriate referrals, earlier 
intervention, and improved patient and family satisfaction. 
This proactive approach addresses the longstanding challenge 
of delayed palliative care referrals, ensuring that patients 
receive symptom management and goal-concordant care 
earlier in their disease trajectory.

Quantitative comparison of machine learning 
models with traditional prognostic indices

Traditional prognostic tools in palliative care, such as the 
Palliative Prognostic Index (PPI) and Palliative Performance 
Scale (PPS), have demonstrated moderate discriminative 
ability for survival prediction. Stone et al. [73] reported that 
for 3-week survival prediction, PPS alone achieved an area 
under the receiver operating characteristic curve (AUROC) 
of approximately 0.71, while a simplified PPI incorporating 
PPS components achieved an AUROC of 0.87 [73]. For 
6-week survival prediction, PPS demonstrated an AUROC
of approximately 0.69, compared to 0.73 for simplified PPI.
While these tools provide valuable clinical guidance, their
reliance on single-time-point assessments limits their ability
to capture disease trajectory dynamics.

Machine learning approaches that integrate longitudinal 
data demonstrate superior prognostic accuracy. Huang et 
al. [74] developed models incorporating actigraphy data 
(objective physical activity monitoring) alongside traditional 
clinical variables [74]. In their prospective validation, 
baseline Karnofsky Performance Status (KPS) achieved 
an AUROC of 0.833, while PPI demonstrated an AUROC 
of 0.615. Actigraphy data alone substantially improved 
discrimination to 0.893, and the combination of actigraphy 
with clinical variables achieved an AUROC of 0.924. 
This substantial improvement reflects machine learning's 
capacity to model temporal dynamics and complex nonlinear 
interactions that static indices cannot capture. Such enhanced 
accuracy enables earlier and more confident advance care 
planning discussions, ensuring that interventions align with 
patients' values and goals. However, the communication of 
ML-generated prognostic information requires sensitivity and 
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skill, ensuring that predictions are presented as ranges with 
appropriate uncertainty quantification and used to empower 
rather than distress patients.

Symptom management and communication support
The bibliometric analysis conducted by Pan et al. [75] 

revealed emerging research hotspots and trends in machine 
learning applications for palliative care [75]. Key areas of 
development include symptom assessment and management 
systems that continuously monitor patient-reported symptoms 
and recommend personalized interventions. Deep learning 
algorithms analyzing voice biomarkers or facial expressions 
can detect pain or distress in patients unable to communicate 
verbally, enabling more effective symptom control.

Depression and psychological distress detection
Depression represents one of the most prevalent and 

undertreated symptoms in palliative care populations, yet 
physical frailty, fatigue, and disease burden may limit 
patients' ability to articulate emotional suffering. Deep 
learning-based analysis of facial expressions, gaze behavior, 
head movements, and Facial Action Coding System (FACS) 
features has emerged as a promising approach for detecting 
and monitoring depressive states.

Studies using video-recorded clinical interviews have 
demonstrated that deep learning models trained on facial 
and behavioral features can discriminate between depressed 
and non-depressed individuals with high accuracy. Facial 
expression analysis using long short-term memory (LSTM) 
neural networks has achieved classification accuracy of 
approximately 91.7% and F1-scores of 88.9% in detecting 
depressive states [76]. Multimodal approaches integrating 
facial analysis with voice biomarkers and linguistic 
patterns show even greater potential, with some systems 
demonstrating sensitivity and specificity exceeding 80% 
for major depressive disorder detection [77]. Patient Health 
Questionnaire (PHQ) score prediction using machine 
learning has achieved mean absolute errors of approximately 
3.7 points, enabling continuous monitoring without repeated 
questionnaire administration [78].

Clinical implementation of these technologies requires 
careful consideration of contextual factors that may affect 
model performance, including cultural differences in 
emotional expression, effects of sedation or delirium, and 
fatigue-related changes in facial appearance. These systems 
should complement rather than replace clinical assessment, 
serving as screening tools that prompt comprehensive 
evaluation when concerning patterns are detected.

Large language models in palliative care 
communication

Large language models represent a distinct application 
domain, offering support for clinical communication and 
patient education. These systems can help clinicians prepare 

for difficult conversations by generating empathetic language 
frameworks for breaking bad news, simulating patient 
interactions for communication skills training, and creating 
personalized educational materials that explain complex 
medical concepts in accessible language tailored to individual 
health literacy levels. Furthermore, AI-driven bereavement 
support platforms can provide personalized resources and 
follow-up for grieving families, extending the continuum of 
care beyond the patient's death.

Ethical considerations and future outlook
The implementation of machine learning and AI 

technologies in palliative care requires rigorous attention 
to ethical considerations, including patient autonomy, 
data privacy protection, algorithmic transparency, cultural 
sensitivity in emotional expression interpretation, and the 
preservation of human connection in end-of-life care. There 
is a risk that reliance on algorithmic predictions could 
inadvertently lead to the "medicalization" of dying, introduce 
bias in resource allocation decisions, or create pressure for 
prognostic certainty that is incompatible with the inherent 
uncertainty of end-of-life trajectories.

Success depends on designing systems that augment 
rather than replace human judgment and empathy, ensuring 
that technology enhances rather than diminishes the 
therapeutic relationship between patients, families, and 
healthcare providers. Machine learning models should be 
presented as decision support tools that provide additional 
information to inform clinical judgment, not as definitive 
answers that dictate care decisions. Future research must 
focus on prospective validation in diverse cultural contexts, 
assessment of impact on patient-reported outcomes and 
quality of life, and ensuring alignment with the core values 
of palliative medicine: relieving suffering, honoring patient 
autonomy, and supporting dignity throughout the dying 
process.

AI in Pain Management
The management of chronic pain remains one of the 

most complex challenges in contemporary medicine, 
requiring integration of biological, psychological, and social 
dimensions. AI offers an increasingly powerful means of 
addressing this complexity by analyzing multimodal data, 
revealing hidden patterns, and generating individualized 
predictions that extend beyond the scope of conventional 
clinical reasoning. Recent advances in machine learning, deep 
learning, and natural language processing have positioned 
AI as a transformative tool in pain medicine, capable of 
enhancing assessment accuracy, guiding treatment decisions, 
and improving long-term outcomes.

Zhang et al. [79] conducted a comprehensive scoping 
review encompassing thirty studies that explored AI-based 
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interventions for pain assessment and management [79]. 
Their analysis demonstrated that algorithms using facial 
recognition, thermography, data mining, and natural language 
processing could identify pain with remarkable precision, 
even in non-verbal or cognitively impaired patients. Deep 
learning approaches analyzing facial expressions achieved 
diagnostic accuracies exceeding 90%, while text-based 
classifiers reliably detected pain documentation within 
electronic health records. Other models integrated imaging 
and clinical data to predict postoperative or chronic pain 
trajectories, such as the development of persistent pain 
following breast surgery or microvascular decompression. 
Mobile-health applications that applied adaptive algorithms 
to deliver behavioral feedback improved self-management 
and functional outcomes among individuals with chronic 
back pain.

Complementary evidence is provided by Lo Bianco  
et al. [80], who examined the educational and communicative 
potential of generative AI in chronic opioid therapy [80]. In 
their cross-model assessment, large language models such 
as GPT-4 produced highly reliable and comprehensible 
responses to common patient inquiries about long-term opioid 
use, including addiction risk, tapering, and management of 
adverse effects. The study underscored that AI can serve as a 
valuable adjunct to patient education by offering accessible, 
empathetic, and evidence-based explanations. However, it 
also cautioned that technical accuracy and contextual nuance 
diminish when AI systems address complex pharmacological 
or individualized topics, reinforcing the necessity of clinical 
oversight and ongoing model refinement.

Synthesizing evidence from both studies, AI currently 
contributes to six interrelated domains of pain management: 
chronic pain phenotyping; personalized treatment 
recommendation; opioid risk assessment; real-time pain 
monitoring; predictive modeling of treatment response; and 
integrated care coordination. Despite encouraging results, 
implementation remains limited by the subjective nature of 
pain reporting, heterogeneity of datasets, and ethical concerns 
about privacy, transparency, and algorithmic bias. Most 
current models are trained on small, homogeneous samples, 
restricting generalizability.

AI in Traditional and East Asian Medicine
The convergence of artificial intelligence (AI) and 

traditional East Asian medicine (TEAM) represents 
a remarkable synthesis of empirical wisdom and 
computational innovation. By translating the qualitative 
insights of traditional practices into quantifiable, data-driven 
frameworks, AI provides new means to modernize diagnostic 
systems, validate pharmacological mechanisms, and design 
personalized interventions that bridge ancient and modern 
paradigms (Figure 2).

Li et al. [81] demonstrated how AI has transformed multi-

metabolite–multi-target modeling in herbal pharmacology 
[81]. Traditional Chinese Medicine (TCM) relies on the 
synergistic interaction of multiple active compounds, yet 
such complexity historically limited mechanistic elucidation. 
Through multi-omics integration, deep learning, and cross-
modal data fusion, AI now enables predictive modeling of 
compound–target networks, identification of synergistic 
bioactive components, and simulation of pharmacokinetic 
trajectories. These approaches surpass traditional 
reductionist methods, offering a systems-level understanding 
of polypharmacology while preserving TCM’s holistic 
framework.

Zhou et al. [82] expanded this technological foundation 
to industrial modernization of the TCM sector [82]. They 
emphasized AI’s role in standardization, quality assurance, 
and manufacturing optimization, addressing long-standing 
issues such as variability in raw materials and lack of 
reproducible extraction standards. Machine learning and 
computer vision tools enable automated quality grading, 
adulterant detection, and real-time process control, thereby 
aligning TCM production with international pharmaceutical 
norms.

The application of AI to acupuncture represents another 
frontier where computational precision meets clinical 
heritage. Wang et al. [83] described AI-directed acupuncture, 
in which data-mining algorithms such as the Apriori 
association rule reveal effective acupoint combinations for 
complex diseases, transforming empirical prescriptions into 
statistically validated treatment patterns [83]. Computer-
vision systems record and analyze needle manipulation 
techniques, preserving expert craftsmanship and enhancing 
reproducibility in education. Furthermore, machine-learning 
models predicting treatment response can guide patient 
selection and optimize therapy parameters. Complementing 
these mechanistic and clinical perspectives, Zhou et al. 
[82] conducted a bibliometric analysis quantifying the
global evolution of AI-acupuncture research, identifying
exponential growth and dominant methodologies like deep
learning [82].

Figure 2: AI Applica7ons in Tradi7onal and East Asian Medicine.
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Song et al. [84] assessed AI empowering TCM through 
extensive bibliometric analysis spanning 2004-2023, 
revealing exponential research growth particularly after 2019, 
with the United States and China as leading contributors 
and Harvard University as the most prolific institution 
[84]. Machine learning and deep learning emerged as 
dominant methodologies, reflecting the field's transition from 
traditional knowledge-driven to data-intensive computational 
approaches. Key application domains include AI-integrated 
TCM databases (TCMBank, ETCM v2.0, BATMAN-TCM 
2.0) enabling target discovery and herb-drug interaction 
screening; ensemble learning and AlphaFold-based structure 
prediction for TCM compound activity; constitutional 
analysis and personalized diagnosis; pulse diagnosis 
automation; tongue diagnosis using computer vision; and 
meridian mapping with acupoint localization. Challenges 
include data heterogeneity, inconsistent curation standards, 
limited model interpretability, and the need for cross-
disciplinary collaboration to align computational outputs 
with TEAM principles.

The integration of AI into TEAM holds particular 
relevance for anesthesiology and perioperative care. 
Traditional herbal formulations used in East Asian 
populations may interact with anesthetic agents, influence 
coagulation status, or affect perioperative hemodynamics. AI-
driven herb-drug interaction databases can alert clinicians to 
potential risks during preoperative assessment. Additionally, 
AI-enhanced constitutional analysis and pulse diagnosis 
may complement Western risk stratification by capturing 
patient-specific vulnerabilities not readily apparent through 
conventional assessment. Pain management represents 
another intersection, where acupuncture guided by AI-
derived acupoint selection algorithms could offer adjunctive 
analgesia in the perioperative period, potentially reducing 
opioid requirements. However, clinical integration requires 
rigorous validation of these tools in diverse populations and 
healthcare settings, ensuring that they augment rather than 
complicate existing perioperative care pathways.

Current Limitations and Challenges
Despite the promising applications of AI across 

anesthesia, critical care, emergency medicine, palliative 
care, pain management, and traditional medicine, significant 
limitations constrain widespread clinical implementation. 
These challenges span technical, methodological, regulatory, 
and ethical domains, requiring coordinated efforts across 
multiple stakeholders to address (Figure 3).

Lack of prospective validation and external 
validation

The majority of AI models in medical literature are 
developed and validated using retrospective data from single 
institutions. While retrospective studies can demonstrate 

proof-of-concept and identify promising approaches, 
they are inherently limited by selection bias, missing 
data, and the inability to assess real-world clinical impact. 
External validation—testing models on data from different 
hospitals, patient populations, and healthcare systems—
remains uncommon, yet it is essential for demonstrating 
generalizability. Models that perform excellently in 
development cohorts often show significant performance 
degradation when applied to external datasets due to 
differences in patient demographics, disease severity, clinical 
workflows, and data collection practices. Prospective 
validation studies, particularly randomized controlled trials 
that compare AI-assisted care with standard practice, are 
necessary to establish clinical utility and cost-effectiveness 
before widespread adoption.

 

Figure 3: Challenges and Solu7ons for Clinical AI Implementation.

Model interpretability and explainability
Many high-performing AI models, particularly deep neural 

networks, function as "black boxes" that provide predictions 
without transparent explanations of their reasoning. While 
techniques such as attention mechanisms, saliency maps, and 
SHAP (SHapley Additive exPlanations) values offer some 
insight into model decision-making, they often fall short 
of the level of explanation required for clinical acceptance 
and regulatory approval. Clinicians need to understand not 
only what a model predicts but why it made that prediction, 
particularly when recommendations diverge from clinical 
judgment or when outcomes are adverse. Explainable AI 
(XAI) remains an active research area, with ongoing efforts 
to develop models that balance predictive performance with 
interpretability.

Data quality and availability
AI model performance is fundamentally dependent on the 

quality, completeness, and representativeness of training data. 
Electronic health records, the primary data source for many 
medical AI applications, contain numerous quality issues 
including missing values, inconsistent coding practices, 
temporal misalignment, and documentation variability across 
providers. Laboratory values may be missing-not-at-random, 
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introducing bias when models impute or exclude these 
cases. Physiological waveforms from monitoring devices are 
susceptible to artifact, sensor malfunction, and calibration 
drift. Furthermore, available datasets often underrepresent 
certain demographic groups, socioeconomic strata, and 
geographic regions, raising concerns about algorithmic bias 
and health equity. The development of large, diverse, high-
quality datasets with standardized formats and annotation 
remains a critical priority.

Algorithmic bias and health equity
AI models can perpetuate and amplify existing 

healthcare disparities if training data reflect historical 
biases in access to care, diagnostic practices, or treatment 
decisions. For example, models trained predominantly on 
data from academic medical centers may perform poorly 
in community hospitals or resource-limited settings. Race-
based corrections in clinical algorithms have been criticized 
for reinforcing inequities; AI models that learn from such 
data may inadvertently incorporate these biases. Ensuring 
fairness requires deliberate attention to dataset composition, 
evaluation of model performance across demographic 
subgroups, and ongoing monitoring after deployment to 
detect and mitigate disparate impacts. The development of 
fairness-aware ML algorithms that explicitly optimize for 
equitable performance across protected groups represents an 
important research direction.

Regulatory and approval pathways
AI-based medical devices are regulated as Software as a 

Medical Device (SaMD) by agencies such as the U.S. Food 
and Drug Administration (FDA) and the European Medicines 
Agency (EMA). However, regulatory frameworks designed 
for traditional medical devices may not adequately address 
the unique characteristics of AI systems, including their 
ability to learn and evolve over time, their dependence on 
data infrastructure, and their potential for performance drift. 
The FDA has proposed a framework for regulating adaptive 
AI, but implementation details remain under development. 
Clear regulatory pathways that balance innovation with 
patient safety, define requirements for validation and post-
market surveillance, and establish standards for algorithm 
transparency are essential for responsible AI deployment.

Clinical integration and workflow challenges
Successful AI implementation requires more than 

technical performance; it demands thoughtful integration 
into clinical workflows that enhances rather than disrupts care 
delivery. Poorly designed interfaces, excessive alerts, and 
lack of integration with electronic health record systems can 
lead to alert fatigue and user frustration, ultimately causing 
clinicians to ignore or override AI recommendations. The 
"human-in-the-loop" principle, ensuring that AI serves as 
a decision support tool rather than an autonomous agent, is 

critical for maintaining clinical judgment and accountability. 
Implementation science research examining barriers and 
facilitators of AI adoption, user experience design, and 
change management strategies will be essential for translating 
promising technologies into routine clinical practice.

Future Directions and Research Priorities 
(Figure 4)

Advancing AI applications in healthcare requires 
coordinated efforts across multiple domains. Key research 
priorities include:

Development of explainable AI models
Future AI systems must provide transparent, interpretable 

explanations for their predictions and recommendations. 
Research should focus on developing inherently interpretable 
model architectures, improving post-hoc explanation 
techniques, and establishing standards for what constitutes 
adequate explanation in clinical contexts. Hybrid 
approaches that combine interpretable models with deep 
learning components may offer optimal trade-offs between 
performance and explainability.

Prospective validation and implementation research
Randomized controlled trials comparing AI-assisted 

care with standard practice are essential for demonstrating 
clinical utility. Beyond efficacy trials, implementation 
science research examining real-world adoption barriers, 
user acceptance, workflow integration, and long-term 
sustainability will inform successful deployment strategies. 
Pragmatic trial designs that allow for model updates and 
adaptation during the study period may better reflect real-
world conditions than traditional RCT designs.

Regulatory and Ethical Considerations
The deployment of AI in healthcare raises complex 

regulatory and ethical questions that must be addressed 
through thoughtful policy development, stakeholder 
engagement, and ongoing dialogue.

Regulatory frameworks for adaptive AI
Traditional regulatory pathways assume that medical 

devices remain static after approval. AI systems that 
continuously learn and adapt challenge this assumption, 
requiring new frameworks that allow for iterative 
improvement while maintaining safety and efficacy standards. 
The FDA's proposed approach for predetermined change 
control plans (PCCPs) represents one model, allowing 
manufacturers to specify in advance how algorithms may be 
modified and under what conditions re-review is required. 
However, implementation details, including thresholds for 
acceptable performance drift and requirements for post-
market surveillance, remain under development.
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Liability and accountability
When AI systems contribute to medical decisions, 

questions of liability arise: Who is responsible when an AI-
assisted decision results in patient harm—the clinician who 
relied on the recommendation, the institution that deployed 
the system, or the developer who created the algorithm? 
Legal frameworks must evolve to address these questions 
while preserving incentives for innovation and ensuring that 
patients have recourse in cases of injury. The concept of "AI 
as a medical device" provides one framework, but additional 
clarity is needed regarding the standard of care for AI-assisted 
decision-making.

Data privacy and security
AI systems require large datasets for training and 

validation, raising concerns about patient privacy and data 
security. While regulations such as HIPAA in the United 
States and GDPR in Europe provide frameworks for protecting 
health information, the use of data for AI development—
particularly when data is shared across institutions or with 
commercial entities—requires careful attention to consent, 
de-identification, and data governance. Federated learning and 
differential privacy techniques offer promising approaches to 
enable collaborative model development while protecting 
individual privacy.

Informed consent and patient autonomy
Patients have the right to know when AI systems 

are involved in their care and to understand how these 
systems may influence clinical decisions. Informed consent 
processes should disclose AI involvement, explain its role 
in decision-making, and ensure that patients can opt out 
if they choose. The level of detail required for adequate 
disclosure—ranging from general notification of AI use to 
detailed explanations of specific algorithms—remains an 
area of active ethical debate.

Equity and access
As AI technologies become integral to high-quality care, 

ensuring equitable access becomes an ethical imperative. AI 
systems that require expensive infrastructure, specialized 
training, or proprietary data may exacerbate existing 
disparities between well-resourced and under-resourced 
healthcare settings. Policy interventions, including open-
source models, infrastructure support for safety-net 
hospitals, and training programs for diverse healthcare 
workforces, will be necessary to prevent AI from widening 
the equity gap.

Clinical Implementation Strategies
Successful translation of AI from research to clinical 

practice requires deliberate implementation strategies that 
address technical, organizational, and human factors.

Stakeholder engagement
Early and ongoing engagement with clinicians, nurses, 

patients, administrators, and IT personnel is essential for 
understanding needs, addressing concerns, and building 
support for AI adoption. Co-design approaches that involve 
end-users throughout the development process can ensure 
that systems align with clinical workflows and address real-
world needs.

Pilot testing and iterative refinement
Deploying AI systems initially in controlled pilot 

settings allows for identification and resolution of technical 
issues, workflow disruptions, and usability problems before 
widespread rollout. Iterative refinement based on user 
feedback and performance monitoring can improve system 
design and increase user acceptance.

Training and education
Clinicians require training not only in how to use AI 

systems but also in understanding their capabilities and 
limitations, interpreting predictions, and maintaining 
critical thinking skills. Medical education curricula should 
incorporate AI literacy, including basic concepts in machine 
learning, interpretation of algorithmic outputs, and ethical 
considerations in AI-assisted decision-making.

Continuous monitoring and quality improvement
Post-deployment monitoring is essential for detecting 

performance drift, identifying unintended consequences, 
and ensuring ongoing safety and effectiveness. Quality 
improvement frameworks should incorporate AI performance 
metrics, user satisfaction assessments, and patient outcome 
measures. Mechanisms for rapid response when problems 
are detected—including the ability to temporarily disable 
systems while issues are addressed—should be established 
before deployment.

Figure 4: Hierarchical Framework of AI Integration Across Medical 
Specialties.
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Conclusion
Artificial intelligence represents a transformative 

technology with significant potential to enhance healthcare 
delivery across anesthesiology, critical care, emergency 
medicine, palliative care, pain management, and traditional 
medicine. Current applications demonstrate AI's capacity to 
process vast amounts of data, identify subtle patterns, predict 
clinical outcomes, and support complex decision-making. 
From real-time intraoperative monitoring to personalized 
pain management and modernization of traditional medical 
practices, AI is expanding the boundaries of what is clinically 
possible.

However, realizing this potential requires addressing 
fundamental challenges in validation, interpretability, data 
quality, algorithmic bias, and clinical integration. The path 
forward demands rigorous prospective studies that demonstrate 
not only technical performance but also meaningful 
improvements in patient outcomes. Regulatory frameworks 
must evolve to accommodate the unique characteristics of 
AI systems while maintaining high standards for safety and 
efficacy. Ethical considerations—including equity, privacy, 
consent, and accountability—must be integrated into every 
stage of AI development and deployment.

Most importantly, the successful integration of AI 
into healthcare depends on maintaining the essential 
human elements of medicine: clinical judgment, empathy, 
compassion, critical thinking, and the therapeutic relationship 
between patients and providers. AI should augment rather 
than replace these irreplaceable human capabilities, 
serving as a tool that enhances clinicians' ability to provide 
personalized, evidence-based, compassionate care. The 
future of AI in medicine lies not in autonomous systems that 
operate independently of human oversight but in thoughtfully 
designed collaborative frameworks that combine the pattern 
recognition and computational power of AI with the wisdom, 
ethical judgment, and human connection that define excellent 
clinical care.
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