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Abstract

The Atrtificial intelligence (AI) represents a paradigm shift in healthcare
delivery, particularly in data-intensive, time-sensitive clinical specialties.
Anesthesiology, intensive care medicine, and emergency medicine stand at
the forefront of this technological transformation due to their reliance on
continuous physiological monitoring, rapid decision-making, and complex
data interpretation. Beyond acute care specialties, emerging applications
extend to palliative care, pain management, and traditional East Asian
medicine, demonstrating Al's versatility across diverse clinical contexts.
This comprehensive narrative review synthesizes recent literature on Al
applications across these specialties, providing a balanced assessment of
current achievements, persistent limitations, and future research priorities.
Al has demonstrated significant promise across multiple clinical domains,
with applications including real-time anesthetic depth monitoring, predictive
models for postoperative complications, ICU early warning systems, sepsis
prediction algorithms, emergency department triage optimization, palliative
care referral support, personalized pain management, and modernization of
traditional medicine practices. Despite these advances, significant limitations
persist, including lack of prospective validation in diverse populations,
challenges in model interpretability, heterogeneity in data quality, and ongoing
concerns regarding algorithmic bias and ethical implications. Al technology is
positioned to augment rather than replace clinical expertise, offering enhanced
precision, efficiency, and personalized patient care. However, successful
implementation requires addressing fundamental challenges in model
validation, regulatory approval, and clinical integration. Future progress
depends critically on the development of explainable AI models, robust
external validation, establishment of comprehensive regulatory frameworks,
and thoughtful integration strategies that preserve essential human judgment,
empathy, and the therapeutic relationship.
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Introduction
Historical context and evolution of Al in medicine
The integration of artificial intelligence (Al) into healthcare represents one

of the most transformative and rapidly evolving trends in modern medicine. The
journey began in the 1970s with knowledge-driven systems such as MYCIN,
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an expert system developed at Stanford University that used
rule-based reasoning to diagnose bacterial infections and
recommend antibiotics. While MYCIN demonstrated expert-
level performance, its reliance on manually encoded rules
limited scalability and adaptability.

Contemporary medical Al has evolved into primarily
data-driven approaches, characterized by exponential
advances in computational capacity, unprecedented data
availability, and sophisticated machine learning (ML)
techniques that fundamentally reshape clinical practice
across diverse medical disciplines. The convergence of
several key factors has created an optimal environment for Al
adoption: the widespread implementation of electronic health
records (EHRs), the proliferation of continuous monitoring
devices, advances in cloud computing infrastructure, and
the development of increasingly sophisticated algorithms
capable of processing complex, multimodal healthcare data.

Three paradigms of modern medical Al

Contemporary Al applications in healthcare can be
categorized into three complementary paradigms, each
addressing different aspects of clinical decision-making:

Knowledge-driven Al systems, exemplified by MYCIN
and early expert systems, rely on explicit rule-based reasoning
encoded by domain experts. While largely superseded by data-
driven approaches, these systems established foundational
principles for explainability and clinical integration that
remain relevant today.

Data-driven Al encompasses machine learning, neural
networks, deep learning, and large language models (LLMs)
such as ChatGPT and Gemini. These systems learn patterns
directly from data without explicit programming. Machine
learning algorithms excel at risk stratification and outcome
prediction using structured clinical data. Deep learning,
particularly convolutional neural networks (CNNs), has
revolutionized medical image interpretation, achieving
expert-level performance in radiology, pathology, and
ultrasound analysis. Large language models, the most recent
advancement, demonstrate remarkable capabilities in natural
language understanding, clinical documentation, and patient
communication, though they require careful validation in
medical contexts.

Probabilistic  methods, including Monte Carlo
simulations and Bayesian approaches, quantify uncertainty
in predictions—a critical capability for clinical decision-
making. These methods can model variability in vascular
resistance, circulating blood volume, and intervention effects
(e.g., vasopressor or fluid administration), enabling clinicians
to understand prediction stability and risk distributions under
different clinical scenarios.

Modern medical Al increasingly adopts a hybrid approach,
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integrating data-driven predictions with probabilistic
uncertainty quantification and domain knowledge constraints.
This synthesis addresses limitations of individual paradigms
while preserving interpretability and clinical relevance.

Technical foundations: neural networks and

activation functions

Understanding the technical foundations of deep learning
is essential for clinical implementation. Neural networks
consist of interconnected layers of artificial neurons, each
performing weighted summation of inputs followed by
nonlinear transformation through an activation function. The
hierarchical structure of deep networks—comprising input
layers, multiple hidden layers, and output layers—enables
automatic feature extraction and representation learning from
raw data.

Activation functions introduce essential nonlinearity
that allows neural networks to model complex patterns.
Historical approaches used sigmoid or hyperbolic tangent
(tanh) functions, which map inputs to bounded ranges (0-1
for sigmoid, -1 to 1 for tanh). However, these functions
suffer from vanishing gradient problems in deep networks.
Contemporary architectures predominantly employ Rectified
Linear Unit (ReLU) functions and their variants (Leaky
ReLU, Parametric ReLU), which output the input directly
if positive and zero (or a small negative value) otherwise.
ReLU functions facilitate deeper network training, accelerate
convergence, and have become the de facto standard in
medical image analysis and signal processing applications.
Recent theoretical work has revealed universal scaling laws
governing signal propagation in deep networks with ReLU
activation, providing principled guidance for architecture
design.

In this review, "artificial intelligence (AI)" is used as
an umbrella term encompassing three methodological
categories: knowledge-driven systems (e.g., the historical
MYCIN system from the 1970s which utilized rule-based
reasoning), data-driven approaches (e.g., machine learning
[ML], deep learning [DL], and large language models
[LLMs]), and probabilistic methods (e.g., Monte Carlo
simulation). The hierarchical relationship is defined such that
DL is a subset of neural networks (NN), which is a subset
of ML, which in turn falls under AI (DL € NN € ML c
Al). While contemporary medical Al predominantly relies
on data-driven models, probabilistic methods serve a critical
complementary role by quantifying uncertainty, facilitating
the development of "Hybrid AI" frameworks essential for
robust clinical decision-making.

Understanding the technical foundations of these systems
is essential for clinicians. Neural networks, the backbone
of modern DL, consist of input, hidden, and output layers
where information processing mimics synaptic transmission.
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The activation functions within these nodes, such as the
Rectified Linear Unit (ReLU) or Leaky ReLU, determine
the output signal. Notably, the sigmoid activation function
historically parallels the oxyhemoglobin dissociation
curve—a relationship fundamental to the pulse oximetry
principle (PaO, vs. SpO,)—illustrating the mathematical
continuity between physiological modeling and modern Al
architectures.

The application of Al is particularly pertinent and
promising in clinical specialties that are inherently data-
rich, time-critical, and decision-intensive. Anesthesiology,
intensive care medicine, and emergency medicine exemplify
these characteristics, making them natural pioneers in
Al integration. These specialties routinely generate vast
amounts of high-frequency physiological data, require
rapid decision-making under conditions of uncertainty, and
benefit significantly from predictive analytics and automated
monitoring systems. The unique characteristics of these
specialties—including continuous patient monitoring,
complex pharmacological interventions, and the need for
immediate response to physiological changes—create an
ideal environment for Al-driven clinical decision support.

Historically, anesthesiology was among the first medical
specialties to embrace technological innovation, from the
introduction of pulse oximetry and capnography to the
development of sophisticated monitoring systems and drug
delivery devices. This tradition of technological adoption
has naturally extended to AI applications, with early
implementations focusing on anesthetic depth monitoring,
automated drug delivery, and perioperative risk prediction.
Similarly, intensive care medicine, with its reliance on
continuous monitoring and data- driven decision-making,
has emerged as a fertile ground for Al applications ranging
from early warning systems to predictive models for clinical
deterioration.

Over the past decade, Al applications have expanded
beyond acute care specialties into areas traditionally
considered less amenable to technological intervention.
Palliative medicine, pain management, and even traditional
East Asian medicine are increasingly incorporating Al-driven
approaches to enhance clinical care, optimize treatment
selection, and improve patient outcomes. This expansion
reflects both the maturation of Al technology and growing
recognition of its potential to address complex clinical
challenges across the entire spectrum of healthcare delivery.

The COVID-19 pandemic has served as a significant
catalyst for Al adoption in healthcare, highlighting the
critical need for predictive analytics, resource optimization,
remote monitoring capabilities, and automated decision
support systems. The pandemic demonstrated both the
potential of Al to address large-scale healthcare challenges
and the importance of robust, validated systems that can
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perform reliably under extreme conditions. Lessons learned
during this period have informed current approaches to Al
development and implementation, emphasizing the need
for rigorous validation, ethical considerations, and careful
integration with existing clinical workflows.

Al in Anesthesia and Perioperative Medicine

Anesthesiology is unusually well-suited to Al because it
generates continuous, high-frequency physiologic waveforms,
device parameters, imaging, and interventions recorded at
exact times within a tightly controlled environment. These
data streams enable three practical capabilities: bedside
prediction and early warning, perioperative risk stratification
that informs preparation and surveillance, and automation
through closed-loop control of hypnosis, analgesia, and
ventilation/oxygenation. In clinical use, the most effective
systems pair predictions with clear action pathways or
machine-executable targets, emphasize transparency and
calibration, and ensure clinicians can take control instantly
whenever needed. Evidence to date shows consistent
improvements in process quality (e.g., time in target, fewer
manual adjustments, better image acquisition) with mixed but
growing signals for patient-centered outcomes (Figure 1).
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Figure 1: Integrated Al Workflow in Perioperative Anesthesia Care.

Prediction and early warning at the bedside

Intraoperative hypotension (IOH) is common and
consistently linked to postoperative organ injury. Large
perioperative cohorts show graded risk with both severity
and duration of low mean arterial pressure (MAP). Even
brief exposures below approximately 55 mmHg are
associated with myocardial injury and acute kidney injury
(AKI), while time spent below 60-65 mmHg also correlates
with harm, supporting proactive avoidance of these ranges
[1,2]. These relationships persist after risk adjustment
across surgical populations, motivating bedside systems
that forecast imminent IOH events, typically defined as
“MAP < 65 mmHg for > 1 min in the next 5-15 min”, to
shift care from reactive rescue to anticipatory management.
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A prominent approach is the Hypotension Prediction Index
(HPI), a machine-learning (ML) model trained on high-
fidelity arterial waveforms that captures subtle beat-to-beat
features reflecting emerging failure of preload, afterload,
contractility compensation, and produces a 0-100 risk score
[3]. Prospective evidence suggests that prediction must be
coupled to action. In a randomized clinical trial, integrating
an HPI-based early-warning workflow with a structured
hemodynamic diagnostic/treatment algorithm significantly
reduced intraoperative hypotension compared to standard
care, demonstrating process improvement while underscoring
the need for multicenter trials powered to evaluate patient-
centered outcomes [4].

Prediction is no longer only about blood pressure. Real-
time ML models trained on perioperative data can warn of
intraoperative hypoxemia minutes before it happens. Some
systems also provide brief, case-specific explanations, such
as low tidal volume or rising oxygen needs, which help
clinicians understand and respond to the alert. In testing,
these explanations improved the anticipation and prevention
of desaturation [5]. Beyond the OR, continuous oximetry and
capnography in the PACU and on surgical wards provide
early warning of opioid-related respiratory depression.
The multicenter PRODIGY risk prediction model uses five
simple bedside variables (age, sex, opioid-naive status, sleep-
disordered breathing, heart failure) to flag high-risk patients.
It has been validated against clinical and resource outcomes

[6].

Important limitations remain. Model performance can
decline when models are transferred to new hospitals, devices,
or patient groups; recent reviews recommend multicenter
validation and ongoing monitoring after deployment [7]. The
standard event definition, MAP < 65 mmHg for more than 1
minute, is convenient but imperfect. Relative drops or patient-
specific targets may better reflect perfusion risk and should
be studied [1,2]. Most trials improve process measures (e.g.,
time in hypotension) rather than hard outcomes such as AKI
or myocardial injury, which need larger, carefully controlled
studies [2,4,7]. Finally, many waveform-based tools require
an arterial line, which limits use; broader impact will likely
depend on noninvasive signals or hybrid approaches [7].

Machine learning in perioperative risk stratification

Machine learning models are increasingly used to convert
preoperative demographics, comorbidity profiles, laboratory
data, and intraoperative signals into individualized risk
estimates for major postoperative complications. Recent
systematic reviews in perioperative medicine conclude that
discrimination is often promising. Still, external validation,
calibration reporting, and impact evaluation remain
inconsistent, underscoring the need for methodologically
rigorous development and validation pipelines [8].
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Acute kidney injury illustrates both potential and pitfalls.
Large noncardiac surgical cohorts have yielded interpretable
machine learning models that achieve AUCs around 0.83-
0.85 using preoperative and intraoperative features, with only
modest performance loss when restricted to preoperative
variables. This pattern is helpful for early counseling and
optimization [9]. Calibration curves and feature attribution
(e.g., age, preoperative serum creatinine, surgical duration)
facilitate clinical interpretability, but multicenter external
validation and clinical utility testing are required before
routine adoption.

For myocardial injury after non-cardiac surgery,
explainable multicenter models have outperformed traditional
scores in development and internal validation; however, their
performance typically drops on external datasets, highlighting
the importance of transportability assessments and threshold
selection tailored to local prevalence [10].

Neurocognitive outcomes are also an active area.
Prospective and real-world evaluations of delirium risk
models demonstrate acceptable discrimination and operational
feasibility in surgical inpatients. Live clinical deployment
has been associated with increased detection and changes in
sedative/antipsychotic use; nevertheless, the benefits of these
outcomes require further study [11].

Beyond model performance, implementation matters.
A randomized clinical trial in anesthesiology investigated
whether presenting clinicians with machine learning
predictions improved their own risk estimates for 30-
day mortality and acute kidney injury. Assistance did
not significantly improve AUC for clinician predictions,
emphasizing that risk models should be embedded within
action pathways (e.g., prompts for troponin/creatinine
surveillance, hemodynamic, or nephroprotective bundles)
rather than presented in isolation [12].

Deep learning for difficult airway assessment

Deep learning (DL) systems for airway assessment
aim to reduce unanticipated difficulty by converting
routine preoperative data, facial photographs, ultrasound
measurements, and imaging into quantitative risk estimates
that complement bedside tests [13,14]. DL models trained on
facial images can flag patients at risk for a poor laryngoscopic
view or difficult intubation, in some cohorts, outperforming
classic scores. A recent study shows these tools can run on
smartphone photographs taken at the bedside, which lowers
the barrier to use in the preoperative clinics [15]. Models
that show which visual features drove the prediction (e.g.,
highlighting limited mouth opening, neck contour, or jawline
cues) can help clinicians plan devices and backup strategies,
rather than simply providing a “difficult/not difficult” label
[16].

Beyond photographs, ultrasound adds soft-tissue
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information that simple inspection misses [17]. Prospective
work shows that combining ultrasound measurements (e.g.,
skin-to-epiglottic distance, tongue thickness, thyromental
metrics) with standard clinical tests improves discrimination
for difficult laryngoscopy compared with either alone
[18,19]. In small single-center studies, composite ultrasound-
clinical models have reported AUCs around 0.75-0.85 with
high negative predictive values (93-99%) [18,19]. Tongue
thickness alone shows more variable performance (AUC
0.92 for predicting difficult laryngoscopy, 0.69 for difficult
intubation; negative predictive values 76% for difficult
intubation) [20].

Imaging-based approaches extend this idea. A large
study trained a DL model on lateral cervical radiographs
and predicted Cormack-Lehane grade 3 or 4 views with high
internal performance [21]. Radiomics work has combined
clinical measurements with 3D CT features to estimate the
risk of difficult mask ventilation in oral and maxillofacial
surgery populations [22]. Three-dimensional facial scans
have also been used to model facial geometry associated with
mask seal and ventilation difficulties in prospective cohorts
[23].

CNN-based
intubation

image segmentation for tracheal

Recent advances in convolutional neural networks (CNNs)
and image segmentation have enabled the development of Al-
assisted systems for airway management. Tracheal intubation
fundamentally relies on the rapid visual identification of
laryngeal structures, including the epiglottis, vocal cords,
arytenoids, and the glottic opening. From a computer vision
perspective, this task can be formulated as a semantic or
instance segmentation problem, in which anatomically
relevant regions are identified at the pixel level.

Fully convolutional networks (FCNs) and their
derivatives, such as U-Net [24] and SegNet architectures
[25], have demonstrated strong performance in medical
image segmentation tasks due to their ability to preserve
spatial resolution while extracting hierarchical features.
These architectures are particularly suitable for real-time
analysis of laryngoscopic images and video streams, as they
enable dense prediction without reliance on fully connected
layers. In airway management, FCN-based models can be
trained to segment the glottic opening and surrounding soft
tissues, thereby providing objective, real-time visualization
of airway anatomy during intubation attempts.

Instance segmentation techniques, such as Mask R-CNN
[26], may offer additional advantages in difficult airway
scenarios, where edema, tumors, secretions, or anatomical
variants obscure the laryngeal view. By separating individual
anatomical structures within the same class, instance-
level models can support airway identification even under
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suboptimal visualization conditions. Such approaches align
with the concept of human-in-the-loop Al in which the
system augments rather than replaces clinical judgment [27].

Important caveats remain. Most studies are single-
center and use different reference standards for “difficulty,”
predicting a difficult laryngoscopic view (e.g., Cormack-
Lehane 3-4), a difficult intubation (defined as failed or
requiring multiple attempts), or difficult mask ventilation.
Therefore, performance may not be consistent across
different populations, devices, or teams [13,14,21]. Recent
reviews recommend larger, multicenter, prospective studies
with external validation, reporting of calibration and fairness
across subgroups, and trials that test whether model-guided
preparation reduces hypoxemia, failed first attempts, or the
need for escalation to a surgical airway [14]. Until such
evidence accumulates, these tools are best used as decision
aids that complement a thorough airway examination and
plan [17].

Deep learning-assisted ultrasound for peripheral
nerve blocks

Deep learning-assisted ultrasound systems for peripheral
nerve blocks utilize computer vision to highlight nerves,
vessels, and relevant fascial planes on live scans, aiming to
simplify view acquisition and interpretation for clinicians. In
an external validation across nine block regions, an assistive
overlay correctly identified target structures in most cases and
was judged likely to reduce the risk of adverse events or block
failure [28]. In a randomized study involving non-expert
anesthetists, assistance increased the rate of acquiring an
acceptable block view. It improved the correct identification
of sono-anatomy compared to standard scanning [29]. A
subsequent randomized crossover study suggested these
benefits were still present two months after training,
indicating potential support for skill retention beyond the
immediate teaching period [30]. Recent scoping reviews
map a rapidly growing literature and conclude that computer
vision assistance can standardize scanning and accelerate
learning, while emphasizing the need for robust prospective
trials that link assistance to patient-centered outcomes such as
block success and complications [31-33].

On the algorithmic side, multiple groups report the use of
deep-learning models for nerve detection and segmentation in
common block regions. Studies have demonstrated automatic
localization of the interscalene brachial plexus on ultrasound
[34,35] and femoral nerve segmentation with good agreement
to expert annotations [36]. An evaluation compared Al-based
nerve segmentation across the brachial plexus, femoral,
and sciatic regions, highlighting both the promise of these
tools and the need for standardized benchmarks and clinical
endpoints [37]. Limitations across the literature include
single-center designs, heterogeneity in probes and machines,
small datasets, and a focus on process measures (acceptable
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view, time to view, trainee confidence) rather than patient
outcomes; generalizability and post-deployment monitoring
remain priorities for future work [31-33,37].

Machine learning-assisted closed-loop control in
anesthesia

Contemporary  “autonomous”  anesthesia is  best
understood as a form of supervised autonomy. Clinicians
set goals and safety limits, and the software adjusts drug
delivery to keep EEG-derived depth of anesthesia and
nociception surrogates within target ranges [38]. Design
principles emphasize robust feedback signals, conservative
control rules, explicit limits and alarms, and the ability for the
clinician to take over immediately [39]. Evidence syntheses
of intravenous closed-loop systems suggest tighter time in
target and small efficiency gains, while underlining variable
bias, heterogeneity, and the need for outcome-powered trials
[40].

Hypnosis—closed-loop TIVA: Randomized trials
comparing BIS-guided closed-loop propofol with manual
control show more time spent with BIS values of 40-60
and fewer overshoots during induction and maintenance
[41]. A multicenter trial of a Bayesian controller similarly
achieved better hypnosis control than manual titration [42].
Pediatric data indicate feasibility and smoother depth control
in preschool children without added adverse events [43].
Early reports of dual-drug loops (propofol and remifentanil)
demonstrate technical feasibility, but larger trials are needed
to illustrate patient-centered benefits [44]. Overall, closed-
loop TIVA improves process metrics and may reduce drug
use or recovery times, yet generalizability across monitors/
patient groups remains a key gap [40].

Analgesia—nociception-guided titration: ML-supported
nociception monitors (e.g., Nociception Level: NOL,
Analgesia Nociception Index: ANI) convert multi-signal
physiology into a real-time pain surrogate, guiding
intraoperative opioid dosing [45,46]. A pooled analysis
of two RCTs found lower PACU pain and fewer cases of
severe pain with NOL-guided fentanyl vs standard care [46].
A meta-analysis reported reduced postoperative pain and
opioid consumption with NOL guidance. However, effects on
postoperative nausea and vomiting and length of stay were not
significant, and study results varied widely [45]. A network
meta-analysis across five nociception monitors suggested
monitor-guided  strategies can improve perioperative
analgesic use and early pain endpoints, while stressing the
need for standardized protocols and outcome trials [47]. For
ANI, a systematic review and meta-analysis in patients under
sedation or general anesthesia reported moderate diagnostic
accuracy and lower opioid use with ANI-guided care, again
with considerable variation between studies [48].

Ventilation and oxygenation automation: Closed-
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loop ventilatory controllers adjust respiratory rate, tidal
volume/pressure support, FIO,, and sometimes PEEP to
keep end-tidal CO, and SpO, within targets while limiting
undue pressures/volumes. In perioperative and immediate
postoperative settings, these systems have reduced the
need for manual adjustments and kept patients closer to
the intended gas-exchange and “lung-protective” ranges
compared with clinician-set modes, without generating new
safety signals [49,50]. In a randomized trial following cardiac
surgery, fully automated ventilation increased the time spent
in lung-protective settings, reduced severe hypoxemia, and
accelerated the return to spontaneous breathing compared to
conventional ventilation [51]. In an ICU randomized trial,
closed-loop ventilation required fewer manual interventions
and achieved more time with optimal SpO, and tidal volume
than conventional modes over 48 hours [50]. Automated
oxygen titration is maturing in parallel. In patients with
acute hypoxemic respiratory failure receiving high-flow
nasal oxygen, a randomized crossover trial demonstrated
that closed-loop FIO, control increased time spent within
the individualized SpO, range and reduced bedside workload
compared to manual titration [52]. A meta-analysis reported
substantially more time within prescribed SpO, targets and
signals for less hypoxemia and lower workload with closed-
loop oxygen control [53].

Al in Critical and Intensive Care Medicine

The intensive care unit (ICU) represents an optimal
environment for Al applications, characterized by continuous
collection of high-dimensional physiological, laboratory, and
imaging data from critically ill patients who require immediate
intervention for life-threatening conditions. The complexity
of critical care decision-making, combined with the volume
and velocity of data generation, creates unique opportunities
for Al-driven clinical support systems to enhance patient care
and outcomes.

Early warning systems and sepsis prediction

Biesheuvel et al. [7] outlined a comprehensive framework
for Al integration in acute and intensive care, highlighting
three primary domains of application: forecasting clinical
deterioration, predicting sepsis onset, and optimizing resource
allocation [7]. Their analysis emphasized the potential for ML
systems to process vast amounts of continuously generated
data to identify subtle patterns indicative of impending
clinical deterioration, often hours before traditional
monitoring approaches would detect changes. These early
warning systems represent a paradigm shift from reactive to
proactive critical care management.

Musat et al. [54] conducted systematic reviews of
machine learning (ML) in sepsis, covering both deterioration
and outcome predictions [54]. They consistently reported
encouraging discrimination but emphasized the heterogeneity
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of sepsis definitions, time windows, predictors, and validation
strategies. Recent years have seen a shift from retrospective
model development to implementation research. Adams et
al. [55] reported a multisite prospective study examining
associations between the deployment of an ML-based sepsis
early warning system (TREWS) and improved process/
outcome measures [55]. While demonstrating feasibility
and some positive signals, the study also highlighted open
questions about generalizability, alert fatigue, and causal
attribution in real-world deployments. These findings
underscore the critical importance of careful implementation
strategies and ongoing monitoring when transitioning Al
tools from development to clinical practice.

Diagnostic applications and risk stratification

The work by Yoon et al. [56] provided an extensive
review of Al applications in critical care diagnostics, with
particular emphasis on neuroimaging for traumatic brain
injury and risk stratification for multi-organ failure [56].
Their analysis highlighted the superior performance of deep
learning models in interpreting complex imaging studies,
including computed tomography scans for intracranial
hemorrhage detection and chest radiographs for pneumonia
identification. These DL-driven diagnostic tools can provide
rapid, accurate interpretations that support clinical decision-
making, particularly in settings where immediate specialist
consultation may not be available.

ARDS-focused systematic reviews by Tran et al. [57] and
Yang et al. [58] have reported that ML supports diagnosis, risk
stratification, and mortality prediction [57,58]. Performance
depends strongly on dataset scale, feature availability, and
external validation. These studies demonstrate Al's potential
to identify patients at risk for developing ARDS before
clinical criteria are fully met, enabling earlier intervention and
potentially improved outcomes. However, the heterogeneity
of ARDS definitions, variable timing of predictions, and
differences in patient populations across studies limit
generalizability and highlight the need for standardized
approaches.

Mechanical ventilation and respiratory support

Regarding mechanical ventilation, comprehensive reviews
by Ahmed et al. [59] and Jiang et al. [60] have described ML
applications in ventilator management, weaning prediction,
and detection of patient—ventilator asynchrony [59,60]. These
efforts are clinically aligned with reducing the duration of
ventilation and associated complications. ML-driven weaning
prediction models analyze multiple physiological parameters,
ventilator settings, and patient characteristics to identify
optimal timing for extubation attempts, potentially reducing
the risks of both premature and delayed extubation. Patient-
ventilator asynchrony detection algorithms can identify
subtle mismatches between patient effort and ventilator
delivery that may escape clinical observation, enabling timely
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adjustments that improve comfort and potentially reduce
ventilator-induced lung injury. However, these applications
remain limited by heterogeneous labels, varying definitions
of successful weaning, and bedside integration barriers.

Workflow optimization and clinical decision support

Saqib et al. [61] expanded the scope of Al applications
in critical illness, providing a comprehensive assessment
of impacts on workflow efficiency, patient monitoring, and
safety outcomes [61]. Their review demonstrated that Al
implementation in critical care settings can significantly
reduce alarm fatigue through intelligent filtering of
physiological alerts, improve medication dosing accuracy
through predictive pharmacokinetic models, and enhance
communication between healthcare team members through
automated documentation and clinical summaries. These
workflow enhancements have the potential to reduce
cognitive burden on clinicians, allowing more time for direct
patient care and complex decision-making.

The nursing perspective on Al in critical care, as examined
by Porcellato et al. [62], revealed important insights into
the practical implementation challenges and opportunities
[62]. Their systematic review emphasized Al's potential to
optimize nursing workload distribution, enhance patient
risk monitoring, and support clinical decision-making at the
bedside. The integration of Al tools into nursing workflows
requires careful consideration of user interface design, alert
management, and the preservation of critical thinking skills
among healthcare providers. Successful implementation
depends on engaging nurses early in the design process and
ensuring that Al systems complement rather than complicate
existing workflows.

Large language models in critical care

The emergence of large language models (LLMs), a class
of deep learning-based generative Al introduces entirely new
possibilities for Al application in intensive care settings [63].
These sophisticated natural language processing systems
can automate clinical documentation, provide decision
support through analysis of medical literature, facilitate
patient and family communication, and support medical
education through interactive learning platforms. However,
the implementation of LLMs in critical care requires careful
validation to ensure accuracy, reliability, and appropriate
integration with existing workflows. Concerns about
hallucinations, outdated information, and liability must be
addressed before widespread clinical adoption.

Current barriers and future directions

Despite these promising applications, substantial barriers
to routine ICU-scale deployment persist. Prospective
validation in diverse patient populations remains limited,
with most studies conducted in single centers or specific
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patient subgroups. Transportability across different ICU
environments, with varying patient populations, staffing
models, and technical infrastructure, represents a significant
challenge. Model interpretability remains critical for clinical
acceptance, as intensivists require understanding of why
a particular prediction or recommendation was generated.
Governance frameworks that define roles, responsibilities,
and liability for Al-assisted decisions are still evolving.
Moving forward, Al should be deployed as a supervised
clinical tool that augments expertise within regulatory and
ethical frameworks that preserve human judgment, clinical
autonomy, and the irreplaceable value of experienced
intensivists in managing complex, critically ill patients.

Al in Emergency Medicine

Emergency departments (EDs) generate large volumes
of clinical data, yet many high-stakes decisions must be
made within minutes. In major trauma, acute coronary
syndromes, and acute ischemic stroke, small delays can
translate into irreversible organ injury and worse long-term
function. The field’s familiar shorthand—“golden hour,”
“time is brain,” “time is myocardium”—reflects a system
that is highly sensitive to technologies capable of removing
avoidable latency between arrival, diagnostic clarification,
and definitive treatment.

However, ED presentations are frequently undifferentiated,
and diagnostic uncertainty is often greatest at the point where
time pressure is most intense. In this setting, false-positive
outputs risk increasing cognitive load, contributing to alert
fatigue, and prompting unnecessary escalation or intervention.
False-negative outputs can be more consequential still,
because they may suppress urgency when it is most needed
and delay time-critical care. ED-facing Al therefore needs
to be assessed as a clinical intervention embedded in work:
who receives the output, what thresholds trigger action, what
safeguards exist, and how responsibility is assigned when
recommendations are followed—or ignored.

Recent reviews have underscored both the breadth of
development and the fragility of real-world translation.
Farrokhi et al. [64] catalogued AI applications spanning
prehospital care, emergency radiology, triage and patient
classification, diagnostic and interventional support, trauma
and pediatric emergency care, and outcome prediction, while
emphasizing that most published work remains retrospective
and that prospective trials are required to establish true
clinical value [64]. Amiot et al. [65] similarly reviewed
recent advances in Al and emergency medicine, balancing
opportunities and challenges—illustrating how AI holds
promise for improving emergency care while emphasizing
the need for careful attention to explainability, bias, privacy,
and validation across diverse settings [65]. Taken together,
these syntheses point to a practical lesson for emergency
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care: workflow design often determines whether an algorithm
improves timeliness without compromising safety.

A useful way to keep this problem clinically grounded
is to organize ED Al by system function—that is, where
in the acute pathway a tool intervenes and which delays it
is meant to remove. Here, ED Al can be framed as three
complementary functions: (1) front-end prioritization, (2)
diagnostic acceleration, and (3) operational optimization.
This structure aligns with how emergency care fails under
strain: mis-prioritization at the front door, bottlenecks in
high-throughput diagnostics, and throughput collapse during
crowding. It also keeps attention on actionable effects—
earlier recognition, earlier escalation, earlier definitive care—
rather than prediction as an end in itself.

Front-end prioritization

Front-end prioritization concerns decisions closest to
entry into emergency care: triage, initial clinician assessment,
and (in some systems) prehospital screening. The unit of
action is the individual patient. The clinical aim is to support
consistent choices about who must be seen first, who can
safely wait, and which time-sensitive pathways should begin
before diagnostic certainty is established. Inputs are typically
limited to data available at triage— vital signs, age, chief
complaint, brief text, and proxies for comorbidity—because
any requirement for delayed testing defeats the purpose.

Two influential studies illustrate how routinely collected
triage data can support meaningful early risk stratification.
Raita et al. [66], using adult ED data from the National
Hospital and Ambulatory Medical Care Survey (NHAMCS,
2007-2015), trained several machine-learning models
using triage-available predictors (demographics, vital signs,
chief complaints, comorbidities) and compared them with
a conventional approach based on Emergency Severity
Index (ESI) level [66]. They evaluated outcomes that map
directly to early prioritization—critical care (ICU admission
or in-hospital death) and hospitalization (admission or
transfer)—and reported better discrimination with machine
learning than the ESI-based reference model (e.g., AUC 0.86
vs 0.74 for critical care in the deep neural network model).
The implication is not that triage should be automated, but
that clinically useful signals exist in early data and can help
identify high-risk patients who may be embedded within
apparently lower-acuity strata.

Levin et al. [67] developed an electronic triage tool
(“e-triage”) based on a random forest model that predicts the
need for critical care, an emergency procedure, and inpatient
hospitalization in parallel, then translates predicted risk into
triage-level designations [67]. In a multisite retrospective
study of 172,726 ED visits, e-triage showed AUC values
ranging from 0.73 to 0.92 and was reported to improve
identification of acute outcomes relative to ESI, particularly
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within ESI level 3—a large, heterogeneous group in many
ED. When matched to the ESI distribution, e-triage identified
more than 10% of ESI level 3 patients as needing up-triage;
those up-triaged patients had higher rates of critical care or
emergency procedure (6.2% vs 1.7%) and hospitalization
(45.4% vs 18.9%). This addresses a common operational
failure mode: when workload rises, heterogeneity within
“middle acuity” categories can obscure time-critical illness
unless reassessment is frequent and systematic.

A central question, however, is whether front-end tools
change timelines and outcomes rather than only improving
retrospective discrimination. A concrete example comes
from a multisite quality improvement study by Hinson et
al. [68] evaluating an Al-informed, outcomes-driven triage
decision support system for adults presenting with chest
pain [68]. At arrival, TriageGO estimates probabilities for
critical care, emergency procedures, and hospital admission
from variables including demographics, arrival mode, vital
signs, chief complaints, and active medical problems, then
recommends an acuity level. Implementation across three
EDs was staggered between 2021 and 2023, and the tool
replaced ESI at those sites. After adjustment, length of stay for
hospitalized patients decreased (by 76.4 minutes), and time
to emergency cardiovascular procedures decreased (by 205.4
minutes; cardiac catheterization by 243.2 minutes), without
observed changes in 30-day mortality or 72-hour ED returns
requiring hospitalization or emergency procedures. Even
allowing for the limitations inherent to quality improvement
designs, this study is valuable because it evaluates a triage
algorithm using endpoints that matter to ED systems: time-to-
procedure, throughput, and proximate safety signals.

Across these examples, the operational lesson is
consistent. Front-end prioritization tools are most defensible
when they do not simply add alerts, but instead tighten the
mapping between early data and predetermined actions
(earlier reassessment, earlier senior review, earlier pathway
activation) while monitoring both over-intervention and
missed deterioration.

Diagnostic acceleration

Diagnostic  acceleration  targets time loss in
high-throughput diagnostic steps where queues, interpretation
delays, and communication friction become rate-limiting.
In many ED pathways, the bottleneck is not ordering or
acquiring a test, but the interval from data availability to
interpretation, notification, and mobilization of the team
capable of definitive treatment. Imaging-driven workflows
are a natural focus because time-critical conditions often
require CT or CT angiography, and because rapid benefit
depends on converting findings into coordinated action.

Acute ischemic stroke due to large vessel occlusion
(LVO) has become a leading implementation target because
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the workflow has discrete, measurable milestones and clear
time dependence. Martinez-Gutierrez et al. [69] conducted a
cluster randomised stepped-wedge clinical trial across four
comprehensive stroke centers (January 2021 to February
2022) assessing automated CT angiogram interpretation
coupled with secure group messaging [69]. The intervention
produced real-time alerts to clinicians and radiologists
within minutes of CT completion. Among included patients
treated with thrombectomy, implementation was associated
with a reduction in door-to-groin time by 11.2 minutes
(95% CI —18.22 to —4.2) and a reduction in time from CT
initiation to endovascular therapy start by 9.8 minutes (95%
CI —16.9 to —2.6), with no differences in IV thrombolysis
times or hospital length of stay. The mechanism is clinically
intelligible: earlier notification advances team mobilization
and compresses communication delays that often sit between
imaging and procedure.

This example also clarifies what “diagnostic AI” must
include to matter in emergency care. Detection alone is
insufficient if outputs are not routed to the responsible team,
if thresholds are poorly calibrated to local prevalence, or
if the tool disrupts the radiology—ED interface. Reviews
focused on emergency imaging highlight both the
promise of rapid interpretation support and the persistent
implementation challenges—bias, privacy, and the need for
extensive validation across institutions and patient groups.
For diagnostic acceleration, therefore, the key evaluation
endpoints are not limited to sensitivity or AUC, but include
time-to-notification, time-to-team activation, time-to-
definitive intervention, and the downstream consequences of
false alarms (avoidable mobilization) and misses (avoidable
delay).

Operational optimization

Operational optimization addresses system-level delays
driven by congestion, crowding, and downstream capacity
constraints. Even when diagnoses are recognized promptly
and pathways are activated appropriately, definitive care
can be delayed by boarding, bed shortages, imaging queues,
and staffing mismatches. Operational Al tools therefore
focus on forecasting and resource allocation: predicting
near-term arrivals and acuity mix, anticipating bottlenecks,
estimating admission likelihood early enough to trigger bed
management, and supporting staffing or space adjustments
intended to stabilize flow.

Here, the evidence base is expanding, but also uneven.
Farimani et al. [70] systematically reviewed models
predicting ED length of stay and identified substantial
heterogeneity, with common shortcomings in reporting and
methodological quality [70]. Among included studies, only
a minority externally validated models, and several recurrent
issues were noted—predictor selection practices, sample size
considerations, reproducibility, handling of missing data,
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and problematic dichotomization of continuous variables.
These limitations matter because operational predictions are
highly sensitive to local practice patterns (testing thresholds,
admission policies, staffing), and transport poorly across
institutions without careful recalibration and monitoring.

Demand forecasting faces similar challenges. Blanco et
al. [71] reviewed Al-based models for hospital ED demand
forecasting (2019-2025) and found that machine learning
and deep learning methods often outperform classical time
series approaches, particularly when external variables—
weather, air quality, and calendar effects—are incorporated
[71]. Yet the same review noted limited external validation
and relatively infrequent use of interpretability methods, both
of which constrain confident deployment. The consequence
is that operational tools must be treated as part of governance
and planning, not simply as technical add-ons: forecasts
need explicit decision hooks (e.g., staffing triggers, surge
bed activation thresholds) and a process for auditing whether
actions actually reduce waiting, boarding, or time-to-critical
intervention.

Across all three functions, one requirement is constant:
ED AI must be integrated into real work with clear
accountability. Farrokhi et al. [65] emphasized that much
of the field remains retrospective and that prospective trials
are essential to establish value in emergency settings [65].
Function-based framing can help design those evaluations.
Front-end prioritization should be studied using under-triage,
time-to-senior review, time-to-pathway activation, and safety
outcomes that capture over-intervention as well as missed
deterioration. Diagnostic acceleration should be evaluated
with pathway-relevant time endpoints (scan-to-notification,
door-to-procedure) and measures of workflow burden (false
alerts, unnecessary mobilization). Operational optimization
should be judged on avoidable waiting and maintenance of
access for time-critical patients under strain, rather than on
predictive accuracy alone.

Finally, implementation requires continuous surveillance:
performance drift monitoring, auditing of alerts and actions,
and periodic recalibration as case mix, staffing, and processes
change. Without these controls, ED Al is vulnerable to
distribution shift and to subtle harm through misplaced
confidence. Under appropriate governance, however, Al can
contribute to the ED’s core objective: timely definitive care
delivered safely in an environment defined by uncertainty and
constraint.

Al in Palliative Care

Palliative care, traditionally characterized by nuanced
clinical judgment, empathetic communication, and
individualized approaches to complex psychosocial needs,
represents an emerging frontier for machine learning
application. While the integration of technology in this
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humanistic specialty requires careful consideration of ethical
implications and preservation of the therapeutic relationship,
machine learning tools are beginning to demonstrate
significant potential in supporting clinicians and improving
patient outcomes.

Prognostic modeling and identification of needs

Wilson et al. [72] conducted a landmark randomized
clinical trial examining the effect of a machine learning-
based decision support tool on palliative care referral patterns
in hospitalized patients [72]. Their study demonstrated that
the ML-driven system, which analyzed multiple data points
including diagnosis, prognosis, functional status, symptoms,
and healthcare utilization patterns, resulted in a statistically
significant increase in appropriate referrals, earlier
intervention, and improved patient and family satisfaction.
This proactive approach addresses the longstanding challenge
of delayed palliative care referrals, ensuring that patients
receive symptom management and goal-concordant care
earlier in their disease trajectory.

Quantitative comparison of machine learning
models with traditional prognostic indices

Traditional prognostic tools in palliative care, such as the
Palliative Prognostic Index (PPI) and Palliative Performance
Scale (PPS), have demonstrated moderate discriminative
ability for survival prediction. Stone et al. [73] reported that
for 3-week survival prediction, PPS alone achieved an area
under the receiver operating characteristic curve (AUROC)
of approximately 0.71, while a simplified PPI incorporating
PPS components achieved an AUROC of 0.87 [73]. For
6-week survival prediction, PPS demonstrated an AUROC
of approximately 0.69, compared to 0.73 for simplified PP
While these tools provide valuable clinical guidance, their
reliance on single-time-point assessments limits their ability
to capture disease trajectory dynamics.

Machine learning approaches that integrate longitudinal
data demonstrate superior prognostic accuracy. Huang et
al. [74] developed models incorporating actigraphy data
(objective physical activity monitoring) alongside traditional
clinical variables [74]. In their prospective validation,
baseline Karnofsky Performance Status (KPS) achieved
an AUROC of 0.833, while PPI demonstrated an AUROC
of 0.615. Actigraphy data alone substantially improved
discrimination to 0.893, and the combination of actigraphy
with clinical variables achieved an AUROC of 0.924.
This substantial improvement reflects machine learning's
capacity to model temporal dynamics and complex nonlinear
interactions that static indices cannot capture. Such enhanced
accuracy enables earlier and more confident advance care
planning discussions, ensuring that interventions align with
patients' values and goals. However, the communication of
ML-generated prognostic information requires sensitivity and
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skill, ensuring that predictions are presented as ranges with
appropriate uncertainty quantification and used to empower
rather than distress patients.

Symptom management and communication support

The bibliometric analysis conducted by Pan et al. [75]
revealed emerging research hotspots and trends in machine
learning applications for palliative care [75]. Key areas of
development include symptom assessment and management
systems that continuously monitor patient-reported symptoms
and recommend personalized interventions. Deep learning
algorithms analyzing voice biomarkers or facial expressions
can detect pain or distress in patients unable to communicate
verbally, enabling more effective symptom control.

Depression and psychological distress detection

Depression represents one of the most prevalent and
undertreated symptoms in palliative care populations, yet
physical frailty, fatigue, and disease burden may limit
patients' ability to articulate emotional suffering. Deep
learning-based analysis of facial expressions, gaze behavior,
head movements, and Facial Action Coding System (FACS)
features has emerged as a promising approach for detecting
and monitoring depressive states.

Studies using video-recorded clinical interviews have
demonstrated that deep learning models trained on facial
and behavioral features can discriminate between depressed
and non-depressed individuals with high accuracy. Facial
expression analysis using long short-term memory (LSTM)
neural networks has achieved classification accuracy of
approximately 91.7% and F1-scores of 88.9% in detecting
depressive states [76]. Multimodal approaches integrating
facial analysis with voice biomarkers and linguistic
patterns show even greater potential, with some systems
demonstrating sensitivity and specificity exceeding 80%
for major depressive disorder detection [77]. Patient Health
Questionnaire (PHQ) score prediction using machine
learning has achieved mean absolute errors of approximately
3.7 points, enabling continuous monitoring without repeated
questionnaire administration [78].

Clinical implementation of these technologies requires
careful consideration of contextual factors that may affect
model performance, including cultural differences in
emotional expression, effects of sedation or delirium, and
fatigue-related changes in facial appearance. These systems
should complement rather than replace clinical assessment,
serving as screening tools that prompt comprehensive
evaluation when concerning patterns are detected.

Large language models in

communication

palliative care

Large language models represent a distinct application
domain, offering support for clinical communication and
patient education. These systems can help clinicians prepare
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for difficult conversations by generating empathetic language
frameworks for breaking bad news, simulating patient
interactions for communication skills training, and creating
personalized educational materials that explain complex
medical concepts in accessible language tailored to individual
health literacy levels. Furthermore, Al-driven bereavement
support platforms can provide personalized resources and
follow-up for grieving families, extending the continuum of
care beyond the patient's death.

Ethical considerations and future outlook

The implementation of machine learning and Al
technologies in palliative care requires rigorous attention
to ethical considerations, including patient autonomy,
data privacy protection, algorithmic transparency, cultural
sensitivity in emotional expression interpretation, and the
preservation of human connection in end-of-life care. There
is a risk that reliance on algorithmic predictions could
inadvertently lead to the "medicalization" of dying, introduce
bias in resource allocation decisions, or create pressure for
prognostic certainty that is incompatible with the inherent
uncertainty of end-of-life trajectories.

Success depends on designing systems that augment
rather than replace human judgment and empathy, ensuring
that technology enhances rather than diminishes the
therapeutic relationship between patients, families, and
healthcare providers. Machine learning models should be
presented as decision support tools that provide additional
information to inform clinical judgment, not as definitive
answers that dictate care decisions. Future research must
focus on prospective validation in diverse cultural contexts,
assessment of impact on patient-reported outcomes and
quality of life, and ensuring alignment with the core values
of palliative medicine: relieving suffering, honoring patient
autonomy, and supporting dignity throughout the dying
process.

Al in Pain Management

The management of chronic pain remains one of the
most complex challenges in contemporary medicine,
requiring integration of biological, psychological, and social
dimensions. Al offers an increasingly powerful means of
addressing this complexity by analyzing multimodal data,
revealing hidden patterns, and generating individualized
predictions that extend beyond the scope of conventional
clinical reasoning. Recent advances in machine learning, deep
learning, and natural language processing have positioned
Al as a transformative tool in pain medicine, capable of
enhancing assessment accuracy, guiding treatment decisions,
and improving long-term outcomes.

Zhang et al. [79] conducted a comprehensive scoping
review encompassing thirty studies that explored Al-based
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interventions for pain assessment and management [79].
Their analysis demonstrated that algorithms using facial
recognition, thermography, data mining, and natural language
processing could identify pain with remarkable precision,
even in non-verbal or cognitively impaired patients. Deep
learning approaches analyzing facial expressions achieved
diagnostic accuracies exceeding 90%, while text-based
classifiers reliably detected pain documentation within
electronic health records. Other models integrated imaging
and clinical data to predict postoperative or chronic pain
trajectories, such as the development of persistent pain
following breast surgery or microvascular decompression.
Mobile-health applications that applied adaptive algorithms
to deliver behavioral feedback improved self-management
and functional outcomes among individuals with chronic
back pain.

Complementary evidence is provided by Lo Bianco
et al. [80], who examined the educational and communicative
potential of generative Al in chronic opioid therapy [80]. In
their cross-model assessment, large language models such
as GPT-4 produced highly reliable and comprehensible
responses to common patient inquiries about long-term opioid
use, including addiction risk, tapering, and management of
adverse effects. The study underscored that Al can serve as a
valuable adjunct to patient education by offering accessible,
empathetic, and evidence-based explanations. However, it
also cautioned that technical accuracy and contextual nuance
diminish when Al systems address complex pharmacological
or individualized topics, reinforcing the necessity of clinical
oversight and ongoing model refinement.

Synthesizing evidence from both studies, Al currently
contributes to six interrelated domains of pain management:
chronic pain phenotyping; personalized treatment
recommendation; opioid risk assessment; real-time pain
monitoring; predictive modeling of treatment response; and
integrated care coordination. Despite encouraging results,
implementation remains limited by the subjective nature of
pain reporting, heterogeneity of datasets, and ethical concerns
about privacy, transparency, and algorithmic bias. Most
current models are trained on small, homogeneous samples,
restricting generalizability.

Al in Traditional and East Asian Medicine

The convergence of artificial intelligence (AI) and
traditional FEast Asian medicine (TEAM) represents
a remarkable synthesis of empirical wisdom and
computational innovation. By translating the qualitative
insights of traditional practices into quantifiable, data-driven
frameworks, Al provides new means to modernize diagnostic
systems, validate pharmacological mechanisms, and design
personalized interventions that bridge ancient and modern
paradigms (Figure 2).

Lietal. [81] demonstrated how Al has transformed multi-
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Figure 2: Al Applica7ons in Tradi7onal and East Asian Medicine.

metabolite—multi-target modeling in herbal pharmacology
[81]. Traditional Chinese Medicine (TCM) relies on the
synergistic interaction of multiple active compounds, yet
such complexity historically limited mechanistic elucidation.
Through multi-omics integration, deep learning, and cross-
modal data fusion, Al now enables predictive modeling of
compound—target networks, identification of synergistic
bioactive components, and simulation of pharmacokinetic
trajectories. These  approaches surpass traditional
reductionist methods, offering a systems-level understanding
of polypharmacology while preserving TCM’s holistic
framework.

Zhou et al. [82] expanded this technological foundation
to industrial modernization of the TCM sector [82]. They
emphasized AI’s role in standardization, quality assurance,
and manufacturing optimization, addressing long-standing
issues such as variability in raw materials and lack of
reproducible extraction standards. Machine learning and
computer vision tools enable automated quality grading,
adulterant detection, and real-time process control, thereby
aligning TCM production with international pharmaceutical
norms.

The application of Al to acupuncture represents another
frontier where computational precision meets clinical
heritage. Wang et al. [83] described Al-directed acupuncture,
in which data-mining algorithms such as the Apriori
association rule reveal effective acupoint combinations for
complex diseases, transforming empirical prescriptions into
statistically validated treatment patterns [83]. Computer-
vision systems record and analyze needle manipulation
techniques, preserving expert craftsmanship and enhancing
reproducibility in education. Furthermore, machine-learning
models predicting treatment response can guide patient
selection and optimize therapy parameters. Complementing
these mechanistic and clinical perspectives, Zhou et al.
[82] conducted a bibliometric analysis quantifying the
global evolution of Al-acupuncture research, identifying
exponential growth and dominant methodologies like deep
learning [82].
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Song et al. [84] assessed Al empowering TCM through
extensive bibliometric analysis spanning 2004-2023,
revealing exponential research growth particularly after 2019,
with the United States and China as leading contributors
and Harvard University as the most prolific institution
[84]. Machine learning and deep learning emerged as
dominant methodologies, reflecting the field's transition from
traditional knowledge-driven to data-intensive computational
approaches. Key application domains include Al-integrated
TCM databases (TCMBank, ETCM v2.0, BATMAN-TCM
2.0) enabling target discovery and herb-drug interaction
screening; ensemble learning and AlphaFold-based structure
prediction for TCM compound activity; constitutional
analysis and personalized diagnosis; pulse diagnosis
automation; tongue diagnosis using computer vision; and
meridian mapping with acupoint localization. Challenges
include data heterogeneity, inconsistent curation standards,
limited model interpretability, and the need for cross-
disciplinary collaboration to align computational outputs
with TEAM principles.

The integration of Al into TEAM holds particular
relevance for anesthesiology and perioperative care.
Traditional herbal formulations used in East Asian
populations may interact with anesthetic agents, influence
coagulation status, or affect perioperative hemodynamics. Al-
driven herb-drug interaction databases can alert clinicians to
potential risks during preoperative assessment. Additionally,
Al-enhanced constitutional analysis and pulse diagnosis
may complement Western risk stratification by capturing
patient-specific vulnerabilities not readily apparent through
conventional assessment. Pain management represents
another intersection, where acupuncture guided by Al-
derived acupoint selection algorithms could offer adjunctive
analgesia in the perioperative period, potentially reducing
opioid requirements. However, clinical integration requires
rigorous validation of these tools in diverse populations and
healthcare settings, ensuring that they augment rather than
complicate existing perioperative care pathways.

Current Limitations and Challenges

Despite the promising applications of AI across
anesthesia, critical care, emergency medicine, palliative
care, pain management, and traditional medicine, significant
limitations constrain widespread clinical implementation.
These challenges span technical, methodological, regulatory,
and ethical domains, requiring coordinated efforts across
multiple stakeholders to address (Figure 3).

Lack of prospective validation and external
validation

The majority of Al models in medical literature are
developed and validated using retrospective data from single
institutions. While retrospective studies can demonstrate
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proof-of-concept and identify promising approaches,
they are inherently limited by selection bias, missing
data, and the inability to assess real-world clinical impact.
External validation—testing models on data from different
hospitals, patient populations, and healthcare systems—
remains uncommon, yet it is essential for demonstrating
generalizability. Models that perform excellently in
development cohorts often show significant performance
degradation when applied to external datasets due to
differences in patient demographics, disease severity, clinical
workflows, and data collection practices. Prospective
validation studies, particularly randomized controlled trials
that compare Al-assisted care with standard practice, are
necessary to establish clinical utility and cost-effectiveness
before widespread adoption.
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Figure 3: Challenges and Solu7ons for Clinical Al Implementation.

Model interpretability and explainability

Many high-performing Al models, particularly deep neural
networks, function as "black boxes" that provide predictions
without transparent explanations of their reasoning. While
techniques such as attention mechanisms, saliency maps, and
SHAP (SHapley Additive exPlanations) values offer some
insight into model decision-making, they often fall short
of the level of explanation required for clinical acceptance
and regulatory approval. Clinicians need to understand not
only what a model predicts but why it made that prediction,
particularly when recommendations diverge from clinical
judgment or when outcomes are adverse. Explainable Al
(XAI) remains an active research area, with ongoing efforts
to develop models that balance predictive performance with
interpretability.

Data quality and availability

Al model performance is fundamentally dependent on the
quality, completeness, and representativeness of training data.
Electronic health records, the primary data source for many
medical Al applications, contain numerous quality issues
including missing values, inconsistent coding practices,
temporal misalignment, and documentation variability across
providers. Laboratory values may be missing-not-at-random,
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introducing bias when models impute or exclude these
cases. Physiological waveforms from monitoring devices are
susceptible to artifact, sensor malfunction, and calibration
drift. Furthermore, available datasets often underrepresent
certain demographic groups, socioeconomic strata, and
geographic regions, raising concerns about algorithmic bias
and health equity. The development of large, diverse, high-
quality datasets with standardized formats and annotation
remains a critical priority.

Algorithmic bias and health equity

Al models can perpetuate and amplify existing
healthcare disparities if training data reflect historical
biases in access to care, diagnostic practices, or treatment
decisions. For example, models trained predominantly on
data from academic medical centers may perform poorly
in community hospitals or resource-limited settings. Race-
based corrections in clinical algorithms have been criticized
for reinforcing inequities; Al models that learn from such
data may inadvertently incorporate these biases. Ensuring
fairness requires deliberate attention to dataset composition,
evaluation of model performance across demographic
subgroups, and ongoing monitoring after deployment to
detect and mitigate disparate impacts. The development of
fairness-aware ML algorithms that explicitly optimize for
equitable performance across protected groups represents an
important research direction.

Regulatory and approval pathways

Al-based medical devices are regulated as Software as a
Medical Device (SaMD) by agencies such as the U.S. Food
and Drug Administration (FDA) and the European Medicines
Agency (EMA). However, regulatory frameworks designed
for traditional medical devices may not adequately address
the unique characteristics of Al systems, including their
ability to learn and evolve over time, their dependence on
data infrastructure, and their potential for performance drift.
The FDA has proposed a framework for regulating adaptive
Al but implementation details remain under development.
Clear regulatory pathways that balance innovation with
patient safety, define requirements for validation and post-
market surveillance, and establish standards for algorithm
transparency are essential for responsible Al deployment.

Clinical integration and workflow challenges

Successful Al implementation requires more than
technical performance; it demands thoughtful integration
into clinical workflows that enhances rather than disrupts care
delivery. Poorly designed interfaces, excessive alerts, and
lack of integration with electronic health record systems can
lead to alert fatigue and user frustration, ultimately causing
clinicians to ignore or override Al recommendations. The
"human-in-the-loop" principle, ensuring that Al serves as
a decision support tool rather than an autonomous agent, is
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critical for maintaining clinical judgment and accountability.
Implementation science research examining barriers and
facilitators of AI adoption, user experience design, and
change management strategies will be essential for translating
promising technologies into routine clinical practice.

Future Directions and Research Priorities

(Figure 4)

Advancing Al applications in healthcare requires
coordinated efforts across multiple domains. Key research
priorities include:

Development of explainable AI models

Future Al systems must provide transparent, interpretable
explanations for their predictions and recommendations.
Research should focus on developing inherently interpretable
model architectures, improving post-hoc explanation
techniques, and establishing standards for what constitutes
adequate explanation in clinical contexts. Hybrid
approaches that combine interpretable models with deep
learning components may offer optimal trade-offs between
performance and explainability.

Prospective validation and implementation research

Randomized controlled trials comparing Al-assisted
care with standard practice are essential for demonstrating
clinical utility. Beyond efficacy trials, implementation
science research examining real-world adoption barriers,
user acceptance, workflow integration, and long-term
sustainability will inform successful deployment strategies.
Pragmatic trial designs that allow for model updates and
adaptation during the study period may better reflect real-
world conditions than traditional RCT designs.

Regulatory and Ethical Considerations

The deployment of Al in healthcare raises complex
regulatory and ethical questions that must be addressed
through thoughtful policy development, stakeholder
engagement, and ongoing dialogue.

Regulatory frameworks for adaptive Al

Traditional regulatory pathways assume that medical
devices remain static after approval. Al systems that
continuously learn and adapt challenge this assumption,
requiring new frameworks that allow for iterative
improvement while maintaining safety and efficacy standards.
The FDA's proposed approach for predetermined change
control plans (PCCPs) represents one model, allowing
manufacturers to specify in advance how algorithms may be
modified and under what conditions re-review is required.
However, implementation details, including thresholds for
acceptable performance drift and requirements for post-
market surveillance, remain under development.
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Figure 4: Hierarchical Framework of Al Integration Across Medical
Specialties.

Liability and accountability

When Al systems contribute to medical decisions,
questions of liability arise: Who is responsible when an Al-
assisted decision results in patient harm—the clinician who
relied on the recommendation, the institution that deployed
the system, or the developer who created the algorithm?
Legal frameworks must evolve to address these questions
while preserving incentives for innovation and ensuring that
patients have recourse in cases of injury. The concept of "Al
as a medical device" provides one framework, but additional
clarity is needed regarding the standard of care for Al-assisted
decision-making.

Data privacy and security

Al systems require large datasets for training and
validation, raising concerns about patient privacy and data
security. While regulations such as HIPAA in the United
States and GDPR in Europe provide frameworks for protecting
health information, the use of data for Al development—
particularly when data is shared across institutions or with
commercial entities—requires careful attention to consent,
de-identification, and data governance. Federated learning and
differential privacy techniques offer promising approaches to
enable collaborative model development while protecting
individual privacy.

Informed consent and patient autonomy

Patients have the right to know when AI systems
are involved in their care and to understand how these
systems may influence clinical decisions. Informed consent
processes should disclose Al involvement, explain its role
in decision-making, and ensure that patients can opt out
if they choose. The level of detail required for adequate
disclosure—ranging from general notification of Al use to
detailed explanations of specific algorithms—remains an
area of active ethical debate.
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Equity and access

As Al technologies become integral to high-quality care,
ensuring equitable access becomes an ethical imperative. Al
systems that require expensive infrastructure, specialized
training, or proprietary data may exacerbate existing
disparities between well-resourced and under-resourced
healthcare settings. Policy interventions, including open-
source models, infrastructure support for safety-net
hospitals, and training programs for diverse healthcare
workforces, will be necessary to prevent Al from widening
the equity gap.

Clinical Implementation Strategies

Successful translation of AI from research to clinical
practice requires deliberate implementation strategies that
address technical, organizational, and human factors.

Stakeholder engagement

Early and ongoing engagement with clinicians, nurses,
patients, administrators, and IT personnel is essential for
understanding needs, addressing concerns, and building
support for Al adoption. Co-design approaches that involve
end-users throughout the development process can ensure
that systems align with clinical workflows and address real-
world needs.

Pilot testing and iterative refinement

Deploying Al systems initially in controlled pilot
settings allows for identification and resolution of technical
issues, workflow disruptions, and usability problems before
widespread rollout. Iterative refinement based on user
feedback and performance monitoring can improve system
design and increase user acceptance.

Training and education

Clinicians require training not only in how to use Al
systems but also in understanding their capabilities and
limitations, interpreting predictions, and maintaining
critical thinking skills. Medical education curricula should
incorporate Al literacy, including basic concepts in machine
learning, interpretation of algorithmic outputs, and ethical
considerations in Al-assisted decision-making.

Continuous monitoring and quality improvement

Post-deployment monitoring is essential for detecting
performance drift, identifying unintended consequences,
and ensuring ongoing safety and effectiveness. Quality
improvement frameworks should incorporate Al performance
metrics, user satisfaction assessments, and patient outcome
measures. Mechanisms for rapid response when problems
are detected—including the ability to temporarily disable
systems while issues are addressed—should be established
before deployment.
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Conclusion

Artificial intelligence represents a transformative
technology with significant potential to enhance healthcare
delivery across anesthesiology, critical care, emergency
medicine, palliative care, pain management, and traditional
medicine. Current applications demonstrate Al's capacity to
process vast amounts of data, identify subtle patterns, predict
clinical outcomes, and support complex decision-making.
From real-time intraoperative monitoring to personalized
pain management and modernization of traditional medical
practices, Al is expanding the boundaries of what is clinically
possible.

However, realizing this potential requires addressing
fundamental challenges in validation, interpretability, data
quality, algorithmic bias, and clinical integration. The path
forward demandsrigorous prospective studies thatdemonstrate
not only technical performance but also meaningful
improvements in patient outcomes. Regulatory frameworks
must evolve to accommodate the unique characteristics of
Al systems while maintaining high standards for safety and
efficacy. Ethical considerations—including equity, privacy,
consent, and accountability—must be integrated into every
stage of Al development and deployment.

Most importantly, the successful integration of Al
into healthcare depends on maintaining the essential
human elements of medicine: clinical judgment, empathy,
compassion, critical thinking, and the therapeutic relationship
between patients and providers. Al should augment rather
than replace these irreplaceable human capabilities,
serving as a tool that enhances clinicians' ability to provide
personalized, evidence-based, compassionate care. The
future of Al in medicine lies not in autonomous systems that
operate independently of human oversight but in thoughtfully
designed collaborative frameworks that combine the pattern
recognition and computational power of Al with the wisdom,
ethical judgment, and human connection that define excellent
clinical care.
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