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Abstract

Importance: Primary open angle glaucoma, an age-
related, retinal neurodegenerative disease of unknown
etiology, is treated by lowering intraocular pressure,
even though elevated intraocular pressure is present in
only about 60% of patients. Since we found that
tolbutamide, which inhibits the opening of ATP-
sensitive potassium channels, modulates aqueous
dynamics with a significant increase in outflow, and

since aquaporin-9 is essential for retinal ganglion cells
Journal of Ophthalmology and Research

survival, gene variants coding for the ATP-sensitive
potassium channels and aquaporin-9 may participate
in the development and progression of glaucoma.
Objective: To identify gene variants involved in ion
and water transport in the trabecular meshwork of
glaucoma donors.
Design: The study is a gene association study; since
gene variants can be somatic or germline, the
following genes KCNJ8, KCNJ11, ABCCS8, and
ABCC9, QP1, AQP4, AQP9, ATP1A1, KCNMA11,
161
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and CLCN3 associated to ATP-sensitive potassium
channels and water transport in the trabecular
meshwork were sequenced from DNA isolated from
trabecular meshwork of glaucoma donors.

Setting: The study is a gene association study carried
out with samples obtained through the Cooperative
Human Tissue Network of which the DNA was
isolated by the technical personnel at the Lions Vision
Gift eye bank and analyzed by Admera Health LLC.
Participants: The only criteria for the ten donors (5
male, 5 females; 70-91 years of age) in the study was
a diagnosis of primary open angle glaucoma and a
consent form signed at their lifetime or by responsible
relatives.

Main Outcomes and Measures: Of several missense
variants, one was found in all 10 and three were found
in nine trabecular meshwork samples. All variants,
whether synonymous or missense, were germline.
Results: The AQP9 missense variant, rs1867380
(Aca/Gca, 279T/A), was found in all 10 trabecular
meshwork samples. Two common missense variants
in the KCNJ11 gene, rs5215 (Gtc/Atc, 337V/I) and
5219 (Aag/Gag, 23K/E), and one missense variant in
the ABCC8 gene, rs757110 (Gcc/Tcc, 1369AYS),
were found in the same nine trabecular meshwork
samples. Several other missense variants were found
in some, but not in the majority of trabecular
meshwork samples.

Conclusions and Relevance: Variants of the KCNJ11
and ABCCS8 genes that code for subunits of ATP-
sensitive potassium channels and a variant of the
AQP9 gene may be implicated in the development of
elevated intraocular pressure and glaucoma.
Understanding how these genes impact the energetics

of the neural retina may provide further insights into

Journal of Ophthalmology and Research

DOI: 10.26502/fjor.2644-00240034

the pathogenic nature of these variants, as well as offer

clues for developing novel therapeutic targets.

Keywords:  Glaucoma; open-angle glaucoma;
tolbutamide; ATP-sensitive potassium channels; ATP-
sensitive potassium channel opener; ATP-sensitive
potassium channel blocker; intraocular pressure;

aqueous humor outflow.

1. Introduction

Glaucoma refers to a group of neurodegenerative
ocular diseases that share a pathology characterized by
retinal ganglion cell (RGC) degeneration [1], and
progressive optic nerve atrophy that gradually lead to
visual field loss and blindness. It is estimated that
globally 65.5 million people are affected by glaucoma
with about 5 million bilaterally blind [2]. Primary open
angle glaucoma (POAG), the most common form of
glaucoma, is associated with the progressive loss of
RGC axons, along with supporting glia and
vasculature, resulting in degeneration of the optic
nerve head and loss of peripheral vision [3]. Advanced
age and elevated intraocular pressure (IOP) are the
main risk factors for the onset and progression of
glaucoma even though lowering IOP in ocular
hypertensive patients with no evidence of glaucoma
reduces the development of glaucoma from 9.5% to
4.4% [4]. Nevertheless, 30-40% of patients with
POAG present IOP values within the normal range [5,
6], indicating that increased IOP is not essential for
neuronal degeneration. Since elevated IOP is the only
modifiable risk factor, the aim of current therapeutic
strategies is to lower 10P and include pharmacological
treatments, surgical procedures, and laser treatment.

However, in many patients RGCs’ degeneration
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continues in spite of treatments to lower IOP [7]. In
fact, the risk of unilateral blindness in patients with
POAG treated to lower IOP is estimated to be around

27% during a 20-year follow-up [8].

Although research is considerable, the pathological
mechanisms involved in the onset and development of
glaucoma are not understood. Recent research points
to structural, metabolic, and functional glaucoma-
driven changes in both the eye and the brain [9] and
glaucoma deterioration may be already present in the
eye and brain before substantial vision loss is detected
clinically [10,11]. Some of the metabolic changes that
are thought to underlie glaucoma pathology include
calcium dysregulation [12], and alterations in

glutamate and glutamine metabolism [13].

In previous work [14] we found that blockers of
ATP-sensitive potassium (Katp) channels, e.g.,
sulfonylureas, lower IOP whereas drugs that
activate Katp channels elevate IOP in rabbits. Using
tolbutamide as a model sulfonylurea drug, we
established that 0.5% tolbutamide applied topically
to the eye lowered IOP and increased aqueous
outflow. The finding that sulfonylurea drugs
decrease IOP and modulate aqueous dynamics
suggest that Kartp channels in the eye may be
mutated in POAG patients.

Kate channels are hetero-octamers consisting of four
inwardly rectifying K* channel subunits, Kir6.1 or
Kir6.2, and four sulfonylurea receptors subunits,
SUR1 or SUR2 or SUR2A, which belong to the family
of ATP-binding cassette (ABC) transporters [15, 16].

Katp channels, which are inhibited by intracellular
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ATP and activated by ADP, oscillate between open
and closed states that are determined by the ratio of
ATP to ADP. While open-closed state of the Katp
channels is primarily regulated by the level of ATP
and ADP, several other factors appear to have
modulatory effects [17,18].

A report that lactate is significantly elevated in the
aqueous of glaucoma patients [19] indicates that in
the eye energetics may be altered in glaucoma,
especially considering that lactate is the preferred
energy source for neurons [20-23]. The increased
lactate in the aqueous suggests that the astrocyte-
neuron lactate transfer shuttle [24, 25] is not operating
effectively in the retina of glaucoma patients. In the
brain and retina lactate is shuttled from astrocytes to
neurons by a family of lactate/pyruvate
monocarboxylate transporters (MCTs) [26, 27] with
the cooperation of aquaporin-9 [27]. Even though the
specific role of aquaporin-9 in the retina is not known,
it is clear that aquaporin-9 is essential for the survival
and function of RGCs [28-30].

Since POAG is a familial disease, genome-wide
association studies have identified numerous gene
variants associated with POAG, e.g., variants in the
MYOC [31], the CDKN2B [32], the OPTN [33], the
TBK1 [34], the ATXN233 genes, etc. However, there
is no unifying hypothesis on how these gene variants
may affect the metabolic neuronal ecosystem leading

to neurodegeneration.

Since sulfonylureas, which are blockers of Karp
channels, lower IOP by modifying aqueous dynamics

and since aquaporin-9 is essential for deliver lactate to
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RGCs, we investigated whether variants of the Kate
channels and aquaporin-9 genes may contribute to
metabolic alterations that in glaucoma may be
responsible for the neurodegeneration of RGCs.
Specifically, we sequenced the genes that code for the
Katp channels, i.e., the KCNJ 9, KCNJ 11, ABCC8 and
ABCC9, and AQP9 gene that codes for aquaporin-9.
Since age is a main risk factor for POAG, potential
mutations could be somatic arising with age; therefore,
we sequenced the exons of the Katp channel genes,
aquaporin-9 and several other genes from DNA
isolated from the trabecular meshwork tissue (TM)

obtained from donors diagnosed with POAG.

2. Material and Methods

2.1 Trabecular meshwork tissue

TM tissue was obtained through the Cooperative
Human Tissue Network (CHTN) and isolated by the
technical personnel at the Lions Vision Gift (Portland,
OR, USA) eye bank from 10 donors (5 males, 5
females; 70-91 years of age) that had been diagnosed
with POAG. The isolated TM tissue was stored for
subsequent sequencing in DNA/RNA Shield buffer
(Zymo Research, Irvine, CA, USA).

2.2 Sequencing

TM tissue in DNA/RNA Shield buffer was shipped to
Admera Health LLC (South Plainfield, NJ, USA).
DNA from TM tissue was isolated using the QlAamp
DNA mini kit per the manufacturer protocol (Qiagen,
Germantown, USA). Custom probes were synthesized
by Integrated DNA Technologies (Skokie, IL, USA)
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to target the exons of the following genes: KCNJ8
(codes for the Kir6.1 subunit of Karp channels),
KCNJ11 (codes for the Kir6.2 subunit of Katp
channels), ABCC8 (codes for the SUR1 subunit of
Katp channels), ABCC9 (codes for the SUR2 subunit
of Kare channels) , AQP1, AQP4, AQP9, ATP1Al
(codes for the alpha-1 subunit of Na* /K* ATPase),
KCNMAL1 (codes for the Potassium Calcium-
Activated Channel Subfamily M Alpha 1), and
CLCN3 (codes for Chloride Voltage-Gated Channel
3). Libraries were prepared with starting input of
250 ng of genomic DNA sheared using the Covaris
S220 system (Covaris, Woburn, MA, USA). Libraries
were combined into separate pools and targets were
captured by hybridization using the Integrated DNA
Technologies (Skokie, IL, USA) capture method.
Quality and quantity checks were done on the Tape
Station D1000 High Sensitivity and by the Qubit 2.0
dsDNA HS assay (Life Technologies, Grand Island,
NY, USA). The average library size was
approximately 400 bp. Sequencing was completed on
the Illumina Miseq 300 Cycles to target 500x mean
coverage. Data analysis, including genome alignment,
was performed using the BWA software; variant
discovery for the target regions was performed with
the Genomic Analysis Toolkit (GATK, Broad
Institute, Cambridge, MA, USA).

3. Results
In addition to several intronic and synonymous exonic
variants of the gene sequenced, several germline

missense variants were present (Table 1).
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Table 1: Missense Variants in Trabecular Meshwork Tissue from Primary Open Angle Glaucoma Donors.

DOI: 10.26502/fjor.2644-00240034

Gene Missense Mutations Incidence
Rs Codon Amino acid

ATP1A1 | rs7721730 Atc/Gtc 5801/V 1/10

AQP1 rs2836273 gGt/gAt 165G/D 3/10

KCNJ11 | rs5215 Gtc/Atc 337V/I 9/10
rs1519 Aag/Gag | 23K/E 9/10
rs1800467 Ctg/Gee 270LV 2/10

ABCC8 | rs757110 Gece/Tee 1369A/S 9/10

AQP9 rs1867380 Aca/Geca | 279T/A 10/10
rs1421596 Gtc/Atc 176VI/I 110

Two missense variants, rs5215 and rs5219, of the
KCNJ11 gene, which codes for the Kir6.2 subunit of
the Kate channels, and the missense variant rs757110
of the ABCC8 gene, which codes for the SUR1 subunit
of the Kare channels, were found in 9 of 10 TM
samples, and the AQP9 missense variant rs1867380
was found in all 10 TM samples. No missense variants
were found in ABCC9, KCNJ8, AQP4, ATP1A1, and
CLCNS.

4.Discussion

In the United States with 3 million diagnosed
glaucoma patients, the average cost of treating
glaucoma with pharmaceuticals in 2005 was $623 per
patient per year for those with suspected or early-stage
glaucoma and $2511 per patient per year for patients
with end-stage disease [35]. Despite these numbers,
the pathological mechanism is still not understood;
thus, limiting treatment options to decreasing 10P

pharmacologically or surgically.

Current drugs lower IOP but visual field loss continues

[36], albeit at a lower rate, and many drugsare associated
Journal of Ophthalmology and Research

with significant side effects [37]. Since POAG often
is not recognized by the patient until there is
treatment cannot be
prevent RGC

significant vision loss,
implemented too early to
degeneration. Being able to identify patients before
any RGC degeneration has occurred would allow
treatment to begin before vision loss and pave the

way for novel treatments.

The variants rs5215, rs5219 and rs757110 have
been shown to be a risk for Type 2 diabetes (T2D)
and heart disease [38-41] by increasing the
hydrolysis of MgATP to MgADP [42, 43], which
allows the Katp channel to remain open.

Since the rs5215 and rs5219 KCNJ11 variants are
mild gain-of-function mutations, the cellular effects
have been difficult to define; for the rs5215 variant
(23K/E), studies have shown a significant reduction
of sensitivity to ATP (wild-type Kate half-maximal
inhibition = 71.0 £ 4.5 pymol/L ATP; 23K/E Katp half
maximal inhibition = pmol/L 120.0 + 5.2 pmol/L

ATP) as well as an increase in open probability and
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reduced sulfonylurea sensitivity [44, 45]. The increase
in the open probability of the channel increases the

efflux of K* into the extracellular space.

In considering the effect of the increased requirement
of ATP to maintain the variant Karp channels in the
normal open-closed oscillatory state, it is essential
to consider the bioenergetics of the cell, the spatial
distribution of mitochondria [46], the subcellular
compartmentation of glycolytic and ATP-producing
enzymes [47, 48], and the diffusion of ATP to cell-
membrane compartments [49] limited by distance
and impediment by the cellular cytoskeleton [45,
49]. The normal function of Karp channels is
dependent on submembrane generated and not cellular
bulk ATP as well as local factors such as availability
of phosphocreatine [50-52]. The critical role of
phosphocreatine for local modulation of Karp
channels has been documented by Abrahams et al.
[53] who showed that deletion of cytosolic creatine
kinase, which transfers a phosphate to ADP to
generate ATP, triggers channel opening in the

presence of bulk ATP in cardiomyocytes.

4.1 Hypothesis. 23K/E and/or 337V/l Katp and/or
1369 A/S SUR variants; aquaporin-9 normal

In the aged TM the increased levels of ATP required
to maintain the variant channel closed are not available
resulting in increased efflux of K*, which leads to
redistribution of ions, i.e. increased Na*, ClI-, and water
influx into the cell and cellular swelling; the increased
extracellular K* is equilibrated by a decrease in water
outflow to maintain extracellular osmolarity, which
increases I0OP without any significant harmful effects

since the continuous inflow of fluid from the ciliary
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body and fluid outflow, even though restricted,
prevents the development of a toxic milieu. In the
retina, a tissue of high energy requirements, the high
levels of lactate shuttled from glial cells to RGCs will
generate enough ATP to normalize the open-closed
state of the Katp variants while excess extracellular K*
is redistributed by spatial buffering [54, 55].

4.2 Kir6.2 23K/E and/or 337V/l and/or 1369 A/S
SUR variants; aquaporin-9 279T/A variant
Assumption

The aquaporin variant rs1867380 does not transport
lactate as efficiently as normal aquaporin-9. The lack
of sufficient ATP in the aged TM results in elevated
IOP and cell swelling. However, for the neural retina,
which depends on lactate for its energy needs
[9,21,22], there are grave consequences since
aquaporin-9 is essential to transport lactate from
astrocytes to neurons [27-29] in concert with
monocarboxylate transporters [27], which is converted

to pyruvate to produce ATP [24].

The reduced lactate in RGCs results in reduced ATP,
open Karp channels, and increased efflux of K*. Under
normal physiological conditions glutamate, which is
the predominant neurotransmitter in the mammalian
central nervous system, is released in the synaptic cleft
and transported into astrocytes [56] where it is
converted to glutamine. The transport of one
glutamate is accompanied by the uptake of three Na*
and one H* and by the release in the extracellular space
of one K* molecule, which is then redistributed by
astrocytes [55] since sustained exposure to elevated
extracellular K* causes hyperexcitability and

significant neuronal death [57]. In fact, even a minor
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increase of extracellular potassium of 3 mEg/L

decreases glutamate uptake by 40% [58].

The lack of lactate transport by aquaporin-9 limits the
energy supply to RGCs, elevates extracellular K*,
lactate and glutamate [59] creating a neurotoxic
environment of elevated K*, glutamate [59-62],
activation of the NLRP3 inflammasome cascade by
the elevated K* [63, 64], and edema [65]. In young
individuals carrying the aquaporin variant 279T/A,
glucose oxidation provides sufficient energy (ATP)
for RGC function; however, with age the ability of
neurons to utilize glucose as the energy source is lost,
as it has been shown in brain [66], requiring the
transport of lactose from astrocytes to meet the
energetic needs of retinal neurons. The outcome of the
KCNJ11, ABCC8 and AQP9 variants would be

glaucoma and elevated I10OP.

4.3 Normal Katp; aquaporin-9 279T/A variant

With normal Kate channels, the TM is not affected and
the 10P will be in the normal range. However, the
aquaporin-9 variant would have its effect on the retina.
The decreased levels of ATP in neurons would result
in open Kate channels, K* and glutamate accumulation
in the extracellular milieu as detailed above. The
outcome would be normal I0P with RGC

neurodegeneration, i.e., normal tension glaucoma.

4.4 Why Sulfonylureas treatment for Glaucoma

We have shown that tolbutamide, a first-generation
sulfonylurea, lowers IOP in human glaucoma subjects,
and increases aqueous formation and outflow via the
trabecular meshwork-Schlemm’s canal with an

approximately 200% higher outflow than formation
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[14]. Assuming that the hypothesis that high IOP and
neurodegeneration result from KCNJ11, ABCC8 and
AQP9 variants, sulfonylureas would block Karp
channels, prevent K* efflux, increase glutamate
uptake, mitigate neurotoxicity [67, 68], reduce
hydroxyl formation [69, 70] inhibit activation of the
NLRP3 inflammasome [70], and reduce edema [71,
72].

4.5 Limitations

The authors are cognizant of the limitations of the
study. The data on gene variants was obtained from
TM tissue from glaucoma donors; however, we have
IOP data from only one donor and we do not have a
complete medical history for all donors. We have
based our hypothesis on the results of the exonic
sequence of several genes from 10 donors and even
though 2 variants we found in 9/10 donors and one in
10/10 donors, it is possible that sequence analysis of a
large population may show different results. It is also
important to note that aquaporin-9 is not well studied;
the AQP9 rs1867380 variant has been reported only in
two publications that implicate it in the level of fetal
hemoglobin in sickle cell disease [73,74]. For the
hypothesis presented here, we have assumed that the
AQP9 variant is not as effective as shuttling lactose to

RGCs, which remains to be proven.

5. Conclusions

We have presented a hypothesis for the development
of glaucoma based on the effect of sulfonylureas on
the 10P of rabbits, on the effect of tolbutamide on
human glaucoma patients [14], and on the presence of
KCNJ11, ABCC8 and AQP9 gene variants in the TM

of donors diagnosed with glaucoma. Limitations aside,

167



J Ophthalmol Res 2021; 4 (2): 161-173

the hypothesis can be platform for studies to prove,
disprove or modify the hypothesis. If the AQP9 variant
is responsible for the development of glaucoma, it can
be used to design a genetic test to identify patient at-
risk of glaucoma, institute treatment early while
forgoing treatment of ocular hypertensive patients that
do not have the AQP9 variant, and design gene

therapeutic strategies.
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