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Abstract 

By curing infectious individuals, antibiotic therapy 

must sometimes limit the spread of contagious disease 

among hosts. But suppose that a diseased host stops 

transmitting infection due either to antibiotic cure or 

to non-therapeutic removal (e.g., isolation or 

mortality). An antibiotic`s suppression of within-host 

pathogen growth increases the likelihood of curing a 

single infection and may also reduce the probability 

of non-therapeutic removal. If antibiotic treatment 

relaxes the total rate of infection removal sufficiently 

to extend the average duration of infectiousness, 

between-host transmission can increase. That is, 

under some conditions, curing individuals with 

antibiotics can impact public health negatively (more 

new infections). To explore this counter-intuitive, but 

plausible effect, this paper assumes that a 

deterministic within-host dynamics drives the 

infectious host's time-dependent probability of 

pathogen transmission, as well as the probabilistic 

duration of the infectious period. 

 

 At the within-host scale, the model varies (1) 

inoculum size, (2) bacterial self-regulation, (3) the 

time between infection and initiation of therapy, and 

(4) antibiotic efficacy. At the between-host scale the 

model varies (5) the size of groups randomly 

encountered in the infectious host’s environment. 

 

 Results identify conditions where an antibiotic can 

increase duration of a host`s infectiousness, and 

consequently increase the expected number of new 

infections. At lower antibiotic efficacy, therapy might 

convert a rare, serious bacterial disease into a 

common, but treatable infection. 
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1. Introduction 

Antibiotics are administered routinely to humans, 

agricultural/pet animals, and certain plants [1-3]. 

Most commonly, antibiotic treatment is intended to 

control an individual`s bacterial infection [4]. Beyond 

concerns about the evolution of resistance [5, 6], use 

of antibiotics to treat infection presents challenging 

questions, including optimizing trade-offs between 

antibacterial efficacy and toxicity to the treated host 

[7]. This study asks if antibiotic treatment of an 

infection can have untoward consequences at the 

population scale; the paper models an antibiotic's 

direct impact on within-host pathogen dynamics and 

resulting, indirect effects on between-host 

transmission [8, 9]. 

 

The model assumes that the antibiotic`s suppression 

of within-host bacterial density extends the average 

waiting time for the host`s removal from 

infectiousness via other processes (e.g., physical 

isolation or disease mortality). The paper`s focal 

question asks how varying the age of infection when 

antibiotic treatment begins impacts both the duration 

of disease and the intensity of transmission during the 

host`s infectious period. When removal equates with 

disease mortality, the results identify conditions under 

which an antibiotic may simultaneously increase both 

survival of an infected individual and the expected 

number of secondary infections. 

 

1.1 The infectious period 

Efficacious antibiotics, by definition, reduce within-

host pathogen density [10]; for some infections, 

antibiotics increase host survival. Therapeutic 

recovery of a treated individual may imply a public-

health benefit. If antibiotics shorten the infectious 

period, the count of infections per infection could 

decline [4]. This interpretation follows from SIR 

compartment models, where neither the host-removal 

rate nor the antibiotically-induced recovery rate 

depends explicitly on within-host pathogen density. 

That is, antibiotics are assumed to reduce duration of 

the infectious period and to exert no effect on per-

individual transmission intensity. By extension, 

antibiotics may then reduce pathogen transmission. 

 

However, antibiotic therapy might, in other cases, 

increase the expected length of the infectious period. 

Transitions in host status must often depend on a 

within-host dynamics [8, 11]. As infection progresses, 

the pathogen density's trajectory should drive change 

in the rate of host removal while ill (e.g., isolation), 

the rate of recovery from disease, as well as the rate at 

which infection is transmitted [12, 13]. For many 

human bacterial infections, an individual can still 

transmit the pathogen after beginning antibiotic 

therapy [14]. Common infections remain 

transmissible for a few days to two weeks [15]. 

Although not addressed here, sexually transmitted 

disease may persist within a host for months after 

antibiotic therapy has begun [16]. Therapeutic 

reduction in pathogen density might eventually cure 

the host, while allowing the host to avoid isolation, 

etc. during treatment [17]. The result might be a 

longer period of infectious contacts and, 

consequently, increased secondary infections. 

 

This paper assumes that with or without antibiotic 

treatment, a diseased host`s infectious period may be 

ended by a removal process that depends on within-
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host pathogen density. As a convenience, removal 

includes any event terminating infectious contacts 

with susceptible hosts, prior to the antibiotic curing 

the disease. Social/physical isolation [18] and host 

mortality are dynamically equivalent removals in that 

they end the infectious period. The model assumes 

that an antibiotic, by deterring within-host pathogen 

growth, increases the expected waiting time for 

removal, but an increase in antibiotic efficacy reduces 

the time elapsing until the host is cured. This 

interaction affects the count of secondary infections; 

disease reproduction numbers (before and after 

therapy begins) identify conditions where an 

antibiotic increases the spread of disease. 

 

1.2 Random encounters: susceptible groups 

When infection is rare, random variation in the 

number of contacts between diseased and susceptible 

hosts influences whether the pathogen does or does 

not spread at the population scale [19, 20]. Therefore, 

this paper treats reproduction numbers, i.e., infections 

per infection, as random variables [21]. The 

environment governs social group size, which can 

affect contacts between infectious and susceptible 

hosts, and so impact infection transmission [22-24]. 

The model asks how the number of hosts per 

encounter with an infectious individual (with the 

product of encounter rate and group size fixed) 

impacts the variance in the count of secondary 

infections; specifically, the paper asks how group size 

impacts the probability that a rare infection fails to 

invade a host population [25, 26]. 

 

1.3 Organization 

The model treats within-host pathogen dynamics 

deterministically [2]. Removal from the infectious 

state and between-host transmission are modeled 

probabilistically [27-29]. At the within-host scale, the 

model considers both density-independent and self-

regulated pathogen growth. The host`s removal rate 

and the infection-transmission intensity will depend 

directly on the time-dependent bacterial density. 

Pathogen density increases monotonically from time 

of infection until antibiotic treatment begins, given 

persistence of the host`s infectious state. The 

antibiotic then reduces pathogen density until the host 

is cured or removed prior to completing therapy 

(whichever occurs first). 

 

Counts of secondary infections will require the 

temporal distribution of infectious contacts, since the 

transmission probability depends on the time-

dependent pathogen density [13, 30]. The results 

explore effects of antibiotics and inoculum size [31] 

on length of the infectious period, disease 

reproduction numbers, and pathogen extinction. The 

last two results connect logically; the first addresses 

mean infections per infection, and the second 

concerns the variance in the count of new infections. 

 

2. Within-Host Dynamics: Timing of 

Antibiotic Treatment 

For many bacterial infections of vertebrates, little is 

known about within-host pathogen growth [32]. In the 

laboratory, Pseudomonas aeruginosa readily infects 

Drosophila melanogaster [33]; the pathogen increases 

exponentially until the host dies or antibacterial 

treatment begins [29, 34, 35]. In more complex host-

pathogen systems, resource limitation or physical 

crowding must often decelerate pathogen growth 

within the host, implying self-regulation [36-39]. 

Numerical results below compare ways in which the 

strength of self-regulation interacts with an antibiotic 
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to influence duration of infectiousness, and intensity 

of pathogen transmission. 

 

𝐵𝑡  represents the within-host bacterial density at time 

t; 𝐵0 is the inoculum size. Antibiotic treatment begins 

at time 𝑡𝐴  > 0. Table 1 defines symbols used in this 

paper. 

 

If the pathogen grows exponentially prior to 

treatment, 𝐵𝑡 =  𝐵0 𝑒𝑟𝑡 for ≤  𝑡𝐴 . The intrinsic 

growth rate 𝑟 > 0 is the difference between bacterial 

replication and mortality rates per unit density. The 

latter rate may reflect a nonspecific host immune 

response [40]; the model does not include explicit 

immune dynamics, to focus on effects of antibiotic 

timing and efficacy. Under logistic self-regulation, the 

per-unit growth rate becomes (𝑟 − 𝑐𝐵𝑡) where c 

represents intra-specific competition. For this case, 

the within-host density prior to treatment becomes: 

 

𝐵𝑡 =  𝑟 [𝑐 +  (
𝑟

𝐵0

− 𝑐) 𝑒−𝑟𝑡] ;  𝑡 ≤  𝑡𝐴⁄  

 

Symbols Definitions 

Within-host scale  

𝑡 Time since infection; infection age 

𝐵𝑡  Bacterial density at time t 

𝐵0 Inoculum density 

r Pathogen’s intrinsic rate of increase 

c Pathogen intraspecific competition 

𝛾𝐴
∗ Bacterial mortality due to antibiotic 

𝑡𝐴 Age of infection when antibiotic initiated 

𝜃 Prefactor, pathogen density at time of cure 

𝑡𝐶 Age of infection when host cured 

Individual host scale  

ℎ𝑡 Removal rate of infectious host at time t 

𝜙 Removal rate prefactor 

𝜂 Infection severity parameter 

𝐿𝑡 Pr[Host infectious at time 𝑡 ≤  𝑡𝐶] 

Between-host scale  

𝜆 𝐺⁄  Stochastic contact rate, group size G 

𝜈𝑡 Probability of infection, given contact 

𝜉 Infection susceptibility parameter 

𝑝𝑡  Probability new infection occurs at time t 

𝒫 Time averaged infection probability 

𝑅1 Expected new infections before 𝑡𝐴 

𝑅2 Expected new infections on (𝑡𝐴, 𝑡𝐶) 

𝑅0 𝑅1 + 𝑅2 

 

Table 1: Definitions of model symbols, organized by scale. 

 

where 𝐵0  <  𝑟 𝑐⁄ ; the inoculum should be smaller 

than the ``carrying capacity.'' For the same (𝐵0, 𝑟), the 

self-regulated density, of course, never exceeds the 

exponentially growing density between time of 

infection and initiation of antibiotic therapy. For both 

growth assumptions, 𝐵𝑡𝐴
 represents the within-host 

density at initiation of therapy. 
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Most antibiotics increase bacterial mortality [10, 41], 

though some impede replication [37]. When a 

bacterial population is treated with an efficacious 

antibiotic, bacterial density (at least initially) declines 

exponentially [42-44]. Hence, I assume that a 

bactericidal antibiotic induces exponential decay of 

𝐵𝑡 . 

 

2.1 Host states 

The host becomes infectious at time 𝑡 = 0, and 

remains infectious until either removed or cured by 

the antibiotic (see Section 2.3). No secondary 

infections occur after removal or therapeutic cure, 

whichever occurs first. Hence, transmission can occur 

during antibiotic therapy, prior to cure. If the host 

remains infectious at time t, both the probability of 

disease transmission (given encounter with a 

susceptible) and the removal rate depend explicitly on 

within-host density 𝐵𝑡 . 

 

2.2 Antibiotic concentration and efficacy 

Assumptions concerning antibiotic efficacy follow 

Austin et al. [37]. Given that the host remains 

infectious at 𝑡 >  𝑡𝐴, the total loss rate per unit 

bacterial density is 𝜇 +  𝛾(𝐴𝑡), where 𝐴𝑡 is plasma 

concentration of antibiotic, and 𝛾 maps 𝐴𝑡 to bacterial 

mortality per unit density. 

 

Assume that the antibiotic is `dripped' at rate 𝐷𝐴. 

Plasma antibiotic concentration decays through both 

metabolism and excretion; let 𝑘𝐴 represent the total 

decay rate. Then, 𝑑𝐴𝑑 𝑑𝑡⁄ =  𝐷𝐴 − 𝑘𝐴𝑡, so that 

𝐴𝑡 =  (𝐷𝐴 𝑘⁄ ) (1 −  𝑒−𝑘𝑡), for 𝑡 >  𝑡𝐴. Antibiotic 

concentration generally approaches equilibrium faster 

than the dynamics of bacterial growth or decline [37]. 

Then a quasi-steady state assumption implies the 

equilibrium plasma concentration of the antibiotic is 

𝐴∗ =  𝐷𝐴 𝑘⁄ . 

 

Bacterial mortality increases in a decelerating manner 

as antibiotic concentration increases [41, 45]. Using a 

standard formulation [7]: 

 

𝛾(𝐴𝑡) =  𝛾𝑚𝑎𝑥  𝐴𝑡 (𝑎1/2 + 𝐴𝑡);  𝑡 >  𝑡𝐴⁄  (1) 

 

where 𝛾(𝐴𝑡) =  𝛾𝑚𝑎𝑥 2⁄  when 𝐴𝑡 =  𝑎1/2. Applying 

the quasi-steady state assumption, let 𝛾𝐴
∗ =  𝛾(𝐴∗). 

Since the antibiotic is efficacious, 𝛾𝐴∗  > 𝑟.  

 

2.3 Antibiotic treatment duration 

Antibiotic therapy begins at time 𝑡𝐴. During 

treatment, within-host pathogen density declines as 

𝑑𝐵𝑡 𝑑𝑡⁄ =  − (𝛾𝐴∗ − 𝑟) 𝐵𝑡. Then: 

 

𝐵𝑡 =  𝐵𝑡𝐴
 𝑒𝑥𝑝[−(𝛾𝐴

∗ − 𝑟) (𝑡 − 𝑡𝐴)];  𝑡 >  𝑡𝐴;  𝛾𝐴
∗ > 𝑟    (2) 

 

where only 𝐵𝑡𝐴
 depends on the presence/absence of 

self-regulation. For the exponential case 𝐵𝑡 =

 𝐵0 𝑒𝑥𝑝[𝑟𝑡 − 𝛾𝐴
∗ (𝑡 − 𝑡𝐴)] after treatment begins. For 

self-regulated pathogen growth:  

 

𝐵𝑡 =  [
𝑟 𝑒𝛾𝐴

∗ 𝑡𝐴

𝑐𝑒𝑟𝑡𝐴 +  (
𝑟

𝐵0 
− 𝑐)

] 𝑒− (𝛾𝐴
∗ −𝑟)𝑡  (3) 

 

Given that the host is not otherwise removed, 

antibiotic treatment continues until the host is cured at 

time 𝑡𝐶  >  𝑡𝐴. A `cure' means that the within-host 

pathogen density has declined sufficiently that the 

host no longer can transmit the pathogen; a cure need 

not imply complete clearance of infection. No host 

remains infectiousness beyond 𝑡𝐶. In terms of 

pathogen density, 𝐵(𝑡𝑐) =  𝐵0 𝜃⁄ , where 𝜃 ≥ 1. 

Hence infectiousness terminated by therapy always 
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occurs at a within-host density less than (no greater 

than) the density where the host may first transmit the 

pathogen. For exponential pathogen growth, we have: 

 

𝐵0 𝜃⁄ =  𝐵0 𝑒𝑥𝑝[𝑟𝑡𝐶 −  𝛾𝐴
∗ (𝑡𝐶 −  𝑡𝐴)]  ⇒  𝑡𝐶 =  

𝛾𝐴
∗ 𝑡𝐴 + 𝑙𝑛𝜃

𝛾𝐴
∗ − 𝑟

 >  𝑡𝐴 (4) 

 

If the cure requires only that 𝐵𝑡  return to the inoculum 

size, then 𝜃 = 1, and 𝑡𝐶 =  𝛾𝐴
∗ 𝑡𝐴/(𝛾𝐴

∗  − 𝑟). Instead of 

defining cure via therapy as a density proportional to 

𝐵0, suppose that the host is cured if the within-host 

density declines to 𝐵(𝑡 >  𝑡𝐴) =  𝐵̃  ≤  𝐵0 . Let 

𝜃̃ =  𝐵̃ 𝐵0⁄ . The associated maximal age of infection 

is 𝑡̃ =  (𝛾𝐴
∗ 𝑡𝐴 − 𝑙𝑛 𝜃) (𝛾𝐴

∗ − 𝑟)⁄ . 𝑡̃ depends on 𝛾𝐴
∗, 𝑡𝐴, 

and 𝑟 as 𝑡𝐶 does, and numerical differences will be 

small unless 𝐵0 and 𝐵̃ differ greatly. 

 

If pathogen growth self-regulates and 𝐵(𝑡𝐶) =

 𝐵0 𝜃,⁄  the host is cured at: 

 

𝑡𝐶 =  
𝛾𝐴

∗ 𝑡𝐴 + 𝑙𝑛𝜃

𝛾𝐴
∗ − 𝑟

− 𝑙𝑛 [1 + 
𝐵0

𝑟 𝑐⁄
 (𝑒𝑟𝑡𝐴 − 1)] (𝛾𝐴

∗ − 𝑟)−1 (5) 

 

𝐵(𝑡𝐴) is smaller under self-regulated growth than 

under density independent growth; the antibiotic cures 

the host faster under self-regulation. Numerical results 

below let 𝜃 = 1, implying a symmetry between the 

within-host state at initial infectiousness (𝐵0  >

0; 𝐵̇  > 0) and the state at 𝑡𝐶 (𝐵𝑡𝐶
= 𝐵0;  𝐵̇  < 0). 

 

3. Duration of Infectious State 

Removal includes any event, other than antibiotic 

cure, that ends the host's infectious period. Removal 

occurs probabilistically and the rate of removal 

depends on pathogen density. Noting that removal by 

mortality becomes more likely with the severity of 

``pathogen burden'' [46], the model assumes that the 

removal rate at any time 𝑡 strictly increases with 

pathogen density 𝐵𝑡 . 

 

The model takes removal as the first event of a 

nonhomogeneous Poisson process; ℎ𝑡 is the 

instantaneous rate of removal at time 𝑡 [47]. 𝐿𝑡 is the 

probability that the host, infected at time 0, remains 

infectious at time 𝑡 ≤  𝑡𝐶 . Prior to initiation of 

therapy: 

 

𝐿𝑡  ≡  𝑒𝑥𝑝 [− ∫ ℎ𝜏

𝑡

0

 𝑑𝜏] ;  𝑡 ≤  𝑡𝐴 (6)  

 

and (1 −  𝐿𝑡) is the probability the host has been 

removed before time 𝑡. ℎ𝑡 is the stochastic removal 

rate at time 𝑡; assume ℎ𝑡 =  𝜙𝐵𝑡
𝜂

; 𝜙, 𝜂 > 0. The 

parameter 𝜙 scales bacterial density to the timescale 

of removal. Removal is more/less likely as bacterial 

density increases/decreases. For 𝑡 ≤  𝑡𝐴, ℎ𝑡 has the 

form of the Gompertz model for age-dependent 

mortality among adult humans [48]. ℎ𝑡 saturates 

(𝜂 < 1), increases linearly (𝜂 = 1), or accelerates 

(𝜂 >  1) with increasing pathogen density, depending 

on the host-pathogen combination. 

 

Suppose the pathogen grows exponentially before 

time 𝑡𝐴. Then the host remains infectious prior to 

antibiotic treatment with probability: 

 

𝐿𝑡 = 𝑒𝑥𝑝 [− 𝜙𝐵0
𝜂

 ∫ 𝑒𝜂𝑟𝜏 𝑑𝜏
𝑡

0
] =  𝑒𝑥𝑝 [

𝜙𝐵0
𝜂

𝜂𝑟
] 𝑒𝑥𝑝 [

𝜙𝐵𝑡
𝜂

𝜂𝑟
] ;⁄  𝑡 ≤  𝑡𝐴   (7) 

 

Simplifying: 

 

𝐿𝑡 = 𝑒𝑥𝑝 [− 
𝜙

𝜂𝑟
 (𝐵𝑡

𝜂
− 𝐵0

𝜂
)] ;  𝑡 ≤  𝑡𝐴    (8) 
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𝐿(𝑡 = 0) = 1, and persistence of infection declines as 

𝑡 increases. For logistic pathogen growth prior to 

treatment, we have: 

 

𝐿𝑡 = 𝑒𝑥𝑝 [− 𝜙𝑟𝜂  ∫
𝑑𝜏

[𝑐 + (
𝑟

𝐵0
− 𝑐) 𝑒𝑟𝜏]

𝜂

𝑡

0

]   (9) 

 

For given (𝐵0, 𝑟) the self-regulated density at 

𝑡 ∈  (0,  𝑡𝐴) must be lower than the unregulated 

density. Consequently, 𝐿𝑡 under exponential growth 

cannot exceed the corresponding probability when 

pathogen growth self-regulates; pathogen self-

regulation increases the chance that the host survives 

until antibiotic treatment begins. 

 

3.1 Antibiotic therapy: removal vs cure 

During antibiotic treatment, a host has instantaneous 

removal rate: 

 

ℎ𝑡 =  𝜙𝐵𝑡𝐴

𝜂
 𝑒−𝜂(𝛾𝐴

∗ −𝑟)(𝑡−𝑡𝐴);  𝑡 >  𝑡𝐴   (10) 

 

where, again, only 𝐵𝑡𝐴
 depends on the 

presence/absence of self-regulation. The probability 

that the host remains infectious at time 𝑡, where 

𝑡𝐴  < 𝑡 <  𝑡𝐶 , is the probability of entering treatment 

in the infectious state, 𝐿𝑡𝐴
, times the probability of 

avoiding removal from 𝑡𝐴 to 𝑡 (given the state at 𝑡𝐴). 

Using Eq (10), the probability that the host remains 

infectious during treatment is: 

 

𝐿𝑡 =  𝐿𝑡𝐴
 𝑒𝑥𝑝 [− 𝜙𝐵𝑡𝐴

𝜂
 ∫ 𝑒−𝜂(𝛾𝐴

∗ −𝑟)(𝜏−𝑡𝐴) 𝑑𝜏
𝑡

𝑡𝐴

] ;  𝑡 >  𝑡𝑎   (11) 

 

where 𝐵𝑡𝐴
 and, consequently, 𝐿𝑡𝑎

 depend on 

presence/absence of self-regulation. 

 

Using Eq (2), we have the probability that 

infectiousness persists to time 𝑡 during therapy, for 

either presence or absence of self-regulation prior to 

therapy: 

 

𝐿𝑡 =  𝐿𝑡𝐴
 𝑒𝑥𝑝 [

𝜙𝐵𝑡
𝜂

𝜂(𝛾𝐴
∗ − 𝑟)

] 𝑒𝑥𝑝 [
𝜙𝐵𝑡𝐴

𝜂

𝜂(𝛾𝐴
∗ − 𝑟)

]⁄  

= 𝐿𝑡𝐴
 𝑒𝑥𝑝 [− 

𝜙

𝜂(𝛾𝐴
∗ − 𝑟)

 (𝐵𝑡𝐴

𝜂
− 𝐵𝑡

𝜂
)] ;  𝑡 >  𝑡𝐴 (12)  

 

where 𝐵𝑡𝐴
 >  𝐵𝑡 , and 𝐿𝑡𝐴

 is given by either Eq (8) or 

Eq (9), as appropriate. 

 

The infectiousness-survival probabilities 𝐿𝑡 collect 

consequences of model assumptions. Delaying 

initiation of therapy (i.e., increasing 𝑡𝐴) increases 𝐵𝑡𝐴
 

and hence decreases 𝐿𝑡𝐴
, the probability that 

infectiousness persists until treatment begins. 

Rephrased, delaying the antibiotic increases the 

chance that the host is removed (and so stops 

transmitting infection) before therapy begins. Since 

𝐵𝑡𝐴
 increases with 𝑡𝐴, the time required for the 

antibiotic to cure the host (𝑡𝐶 −  𝑡𝐴) must increase 

with 𝑡𝐴.  

 

Furthermore, since increasing 𝑡𝐴 decreases 𝐿𝑡𝐴
 and 

increases (𝑡𝐶 −  𝑡𝐴), then 𝜕𝐿𝑡𝐶
𝜕𝑡𝐴  < 0;⁄  the 

probability that the remains infectious until cured 

decreases with delayed initiation of treatment. These 

effects always hold for exponential growth; they hold 

for logistic growth when 𝐵𝑡𝐴
<  𝑟 𝑐⁄ , the carrying 

capacity. 

 

Increasing bacterial self-regulation moderates, but 

does not reverse, these effects of 𝑡𝐴. For 𝑟 𝑐⁄  large 

enough, pathogen density 𝐵𝑡𝐴
 declines as 𝑐 increases. 

Then 𝐿𝑡𝐴
 must increase, and time needed for 
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therapeutic cure (𝑡𝐶 −  𝑡𝐴) must decrease. Hence 

𝜕𝐿𝑡𝐶
𝜕𝑐 ≥ 0⁄ ; increasing the strength of self-

regulation in pathogen growth never decreases the 

probability that the host is cured therapeutically. 

 

The model's simple within-host dynamics allows the 

rate of removal and (its complement) persistence of 

the infectious state to depend clearly and explicitly on 

within-host pathogen density. The dynamics of 

infection transmission, and so any public-health 

implications, will also depend on within-host 

pathogen density [49]. 

 

4. Transmission 

The focal infective contacts susceptible hosts as 

groups. Each group has the same size G; often G = 1. 

Contacts occur as a Poisson process, with constant 

probabilistic rate 𝜆 𝐺⁄ , so that the expected number of 

individuals contacted in any period does not depend 

on susceptible-host group size. Contact rate is also 

independent of time and pathogen state 𝐵𝑡 . 

 

A contact implies G independent Bernoulli trials, and 

the number of new infections, per contact, follows a 

binomial probability function with parameters G and 

𝑝𝑡 . 𝑝𝑡  is the conditional probability that any 

susceptible host j acquires the infection, given contact 

at time t. The model writes 𝑝𝑡  as a product: 𝑝𝑡 =

 𝐿𝑡  𝜈𝑡. 𝐿𝑡 weighs ``births'' of new infections upon 

contact [49, 50]. 𝜈𝑡 is the conditional probability that 

any susceptible host j is infected at time t given that 

the focal host remains infectious, and contact occurs. 

Both 𝐿𝑡 and 𝜈𝑡 depend on within-host density 𝐵𝑡 . 

 

Given an encounter, the transmission probability 𝜈𝑡 

assumes a dose-response relationship [30, 51]. 

Following a preferred model [52], 𝜈𝑡 = 1 −

𝑒𝑥𝑝[−𝜉𝐵𝑡], where 𝜉 is the susceptibility parameter. 

Then 𝑝𝑡 =  𝐿𝑡  (1 − 𝑒−𝜉𝐵𝑡). 𝜈𝑡 decelerates with 𝐵𝑡 

since infection of a single host saturates with 

propagule number [20, 53, 54]. Note that 

𝜕𝜈𝑡 𝜕𝐵𝑡  > 0⁄  and 𝜕ℎ𝑡 𝜕𝐵𝑡  > 0⁄ . An increase in 

transmission probability, due to greater within-host 

pathogen density, is countered by a greater removal 

rate. 

 

4.1 New-infection probabilities: before and during 

treatment 

New infections occur randomly, both before and after 

treatment begins. To clarify effects of varying the 

timing of therapy, let 𝑅1 represent the expected 

number of new infections on (0, 𝑡𝐴]; let 𝑅2 be the 

expected number of new infections on (𝑡𝐴, 𝑡𝐶]. For 

simplicity, refer to these respective time intervals as 

the first and second period. 𝑅0 is the expected total 

number of new infections per infection; 𝑅0 =  𝑅1 +

 𝑅2. 

 

Suppose that N such encounters with the infectious 

host occur on some time interval (𝑡𝑥, 𝑡𝑦). By the 

Poisson’s memoryless property, the times of the 

encounters (as unordered random variables) are 

distributed uniformly and independently over (𝑡𝑥, 𝑡𝑦) 

[55]. Uniformity identifies the time averaging for the 

conditional infection probability 𝑝𝑡 . For the first 

period, the unconditional probability of infection at 

contact is 𝒫1: 

 

𝒫1 =  
1

𝑡𝐴

 ∫ 𝐿𝜏(1 −  𝑒−𝜉𝐵𝜏) 𝑑𝜏   (13)
𝑡𝐴

0

 

 

Eq (13) applies to both exponential and self-regulated 

growth. For the former case, we have: 
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𝒫1 =  (𝑒𝑥𝑝 [
𝜙𝐵0

𝜂𝑟
] 𝑡𝐴⁄ ) 

 ×  (∫ 𝑒𝑥𝑝 [− 
𝜙𝐵𝜏

𝜂

𝜂𝑟
]  𝑑𝜏 − ∫ 𝑒𝑥𝑝 [− 

𝜙𝐵𝜏
𝜂

𝜂𝑟
− 𝜉𝐵𝜏 ]  𝑑𝜏

𝑡𝐴

0

𝑡𝐴

0
)   (14) 

 

For the second period, averaging uniformly yields 𝒫2, 

the infection probability after treatment begins. 𝒫2 has 

the form as Eq (13), with averaging over (𝑡𝐶 −  𝑡𝐴). 

For both exponential and logistic within-host growth, 

we obtain: 

 

𝒫2 =  (
𝐿𝑡𝐴

𝑡𝐶 − 𝑡𝐴

𝑒𝑥𝑝 [
𝜙𝐵𝑡𝐴

𝜂

𝜂(𝛾𝐴
∗ − 𝑟)

]⁄ ) 

 ×  (∫ 𝑒𝑥𝑝 [
𝜙𝐵𝜏

𝜂

𝜂(𝛾𝐴
∗ −𝑟)

]  𝑑𝜏 − ∫ 𝑒𝑥𝑝 [
𝜙𝐵𝜏

𝜂

𝜂(𝛾𝐴
∗ −𝑟)

−  𝜉𝐵𝜏]  𝑑𝜏
𝑡𝐶

𝑡𝐴

𝑡𝐶

𝑡𝐴
)   (15) 

 

where 𝐿𝑡𝐴
 is given above (and depends on the 

presence/absence of self-regulation), and 𝐵𝜏 is given 

by Eq (2). 𝒫1 and 𝒫2 collect effects of within-host 

density, modulated by antibiotic treatment, on 

between-host transmission of infection. Since the 

within-host dynamics affects both persistence of the 

infectious state and the probability of transmitting 

infection upon contact, the strength of self-regulation 

should impact the number of secondary infections per 

infection. 

 

4.2 𝑹𝟎 

For each of the two periods, the number of infections 

sums a random number of random variables. Each 

element of the sum is a binomial variable with 

expectation 𝐺𝒫𝑧  and variance 𝐺𝒫𝑧(1 − 𝒫𝑧); 𝑧 = 1, 2. 

The number of encounters with susceptible hosts is a 

Poisson variable with expectation during the first 

period (𝜆 𝐺⁄ ) 𝑡𝐴, and expectation during the second 

period (𝜆 𝐺⁄ ) (𝑡𝐶 −  𝑡𝐴). 

 

Let 𝑋1 be the random count of new infections during 

the first period, and 𝑋2 be the second-period count. 

From the time of infection until antibiotic treatment 

begins, 𝑅1 = 𝐸[𝑋1] =  𝜆𝒫1𝑡𝐴 and 𝑉[𝑋1] =

 𝑅1[1 +  𝒫1(𝐺 − 1)]. For the second period, 𝑅2 =

𝐸[𝑋2] =  𝜆𝒫2(𝑡𝐶 − 𝑡𝐴), and the variance of 𝑋2 is 

𝑅2[1 + 𝒫2(𝐺 − 1)]. 

 

By construction, the expected number of infections 

both before and after antibiotic treatment begins does 

not depend on group size G. But each variance of the 

number of new infections increases with group size. 

Finally, the total number of new infections per 

infection has expectation 𝑅0 = 𝐸[𝑋1 + 𝑋2] =

 𝜆[𝒫1𝑡𝐴 +  𝒫2(𝑡𝐶 −  𝑡𝐴)]. The variance of the total 

number of new infections is 𝑉[𝑋1 +  𝑋2] =  𝑅0 +

 (𝐺 − 1)[𝒫1𝑅1 +  𝒫2𝑅2]. 

 

Since group size affects only the variance of the 

reproduction numbers, any increase G can increase 

𝑃𝑟[𝑋1 +  𝑋2 = 0], the probability of no new 

infections, even though 𝑅0  > 1. No new infections 

requires that each 𝑋𝑧 = 0; 𝑧 = 1, 2. The probability of 

no pathogen transmission at a single encounter is 

(1 −  𝒫𝑧)𝐺, since outcomes for each susceptible are 

mutually independent. Given N encounters in period 

z, the conditional probability of no new infections 

during that period is 𝑃𝑟{𝑋𝑧 = 0|𝑁} =  [(1 −  𝒫𝑧)𝐺]𝑁. 

Unconditionally: 

 

𝑃𝑟[𝑋𝑧 = 0] =  ∑[(1 − 𝒫𝑧)𝐺]𝑁 𝑃𝑟[𝑁] (16)

∞

𝑁=0

 

 

Since (1 −  𝒫𝑧)𝐺  < 1, 𝑃𝑟[𝑋𝑧 = 0] is given by the 

probability generating function for N, evaluated at 

(1 −  𝒫𝑧)𝐺. From above, N is Poisson with parameter 

(𝜆 𝐺⁄ ) 𝑡𝐴 during the first period, and: 
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𝑃𝑟[𝑋1 = 0] = 𝑒𝑥𝑝[(𝜆 𝐺⁄ ) 𝑡𝐴 ([1 − 𝒫1]𝐺 − 1)] (17) 

 

For the second period, 𝑃𝑟[𝑋2 = 0] =  𝑒𝑥𝑝[(𝜆 𝐺⁄ )(𝑡𝐶 −

 𝑡𝐴) ([1 − 𝒫2]𝐺 − 1)]. Each probability of no infection 

increases as G increases. The chance of no new 

infections is, of course, the product of the independent 

probabilities. 

 

5. Numerical Results 

Figures (1) and (2) show results motivating this paper. 

Consider first how 𝑅0 varies with 𝑡𝐴, at different 

levels of self-regulation. If antibiotic therapy begins 

immediately after the host becomes infectious 

(𝑡𝐴  < 2 in Figure 1c) then 𝑅0 < 1 in both the 

presence and absence of self-regulation; the disease 

will likely fail to invade a susceptible population. But 

antibiotics are seldom administered at the onset of 

infectiousness [3, 39]. A relatively small delay in 𝑡𝐴 

allows the infection to spread. That is, reasonably 

rapid initiation of antibiotic treatment allows 𝑅0 > 1, 

for both self-regulated and unregulated growth before 

𝑡𝐴. As 𝑡𝐴 continues to increase, only strong self-

regulation produces further, though quickly 

decelerating, increase in 𝑅0. More interestingly, for 

both exponential growth and weak self-regulation, 

delaying therapy sufficiently leaves 𝑅0 < 1 again, 

inhibiting the spread of infection. For the exponential 

example, results for larger 𝑡𝐴 equate essentially to no 

antibiotic therapy: (𝐿𝑡𝐴
→ 0; 𝑅2 = 0). 

 

 In this case relatively early initiation of antibiotic 

therapy increases the probability the host will be 

cured (Figure. 1f) but allows the disease to advance 

among hosts (𝑅0 > 1). But no antibiotic therapy (or 

𝑡𝐴 delayed sufficiently) prevents initial spread of 

infection (𝑅0 < 1).Why does increasing the time 

elapsing between infection and initial treatment (or no 

treatment) sometimes reduce the chance that disease 

will spread? Why does relaxed pathogen self-

regulation increase this effect? A small 𝑡𝐴 implies a 

low 𝐵𝑡𝐴
; early treatment maintains a reduced within-

host density and a consequently reduced removal rate 

for (𝑡 >  𝑡𝐴). 

 

 The host's chance of being cured, rather than first 

being removed, increases when treatment begins 

relatively soon after infection. That is, therapy begun 

at low 𝑡𝐴 more likely cures the host, but (on average) 

leaves the host infectious longer. The latter effect 

maximizes 𝑅0 at a lower 𝑡𝐴 in both the exponential 

and weakly self-regulated examples. 

 

Earlier initiation of treatment must reduce 𝑅1. For 

exponential and weakly self-regulated pathogen 

growth, the spread of infection among hosts, for low 

𝑡𝐴, is due more to transmission during antibiotic 

treatment; 𝑅0 and 𝑅2 reach their respective maxima at 

nearly the same 𝑡𝐴 value. For any t, 𝑡𝐴  < 𝑡 <  𝑡𝐶 , the 

reduction in the infection probability 𝜈𝑡 due to the 

antibiotic's regulation of within-host pathogen density 

is more than compensated by the increase in 𝐿𝑡, the 

probability that the host remains infectious. The focal 

point is that 𝑅0 < 1 with no antibiotic therapy, though 

𝑅0 can exceed 1 with therapy 

 

. When removal and therapeutic cure without removal 

depend differently on the within-host dynamics, this 

non-obvious effect of 𝑡𝐴 can occur. 
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Figure 1: Antibiotic therapy can sometimes promote infection transmission. Each plot: solid line is exponential, 

dashed line is weak self-regulation (𝑐 =  10−6), dotted line is stronger self-regulation (𝑐 =  10−5). (a) 𝑅1 expected 

infections before 𝑡𝐴. (b) 𝑅2 expected infections after antibiotic started. (c) 𝑅0 total expected infections per infection. 

(d) Time required for treatment curing the host. (e) Probability host begins antibiotic therapy. (f) Probability host is 

cured before removal. 𝐵0 =  104, 𝑟 = 0.3, 𝜙 =  10−5, 𝛾𝐴
∗ = 0.35, 𝜂 =  𝜃 = 1.0, 𝜆 = 0.2, 𝜉 = 1.0. 

 

Stronger self-regulation reduces 𝐵𝑡𝐴
 and so lowers the 

removal rate for 𝑡 >  𝑡𝐴.The host is then more likely 

to remain infectious until cured. The example with 

strong self-regulation reduces the time-dependent 

removal rate enough that 𝑅0 increases monotonically 

with increasing 𝑡𝐴. 

 

Consider the exponential case and suppose that 

avoiding removal through the antibiotic treatment 

implies surviving disease; the host is either removed 

by mortality or cured by the antibiotic. Then, the 

infected host obviously benefits from therapy. But 

there can be a cost at the among-host scale as the 

infection spreads. A rare (𝑅0 < 1), but virulent 

infection in the absence of antibiotics can become a 

common (𝑅0 > 1), through treatable disease when 

antibiotic therapy begins soon after initial infection. 

 

Figure 2 verifies how increasing susceptible-host 

group size increases the probability of no secondary 

infections, despite independence of 𝑅0 and group size. 

Larger groups increase the variance in the total count 

of infections per infection. 

 

 As a result, the probability of no new infections 

(pathogen ``extinction'') increases strongly with G. 

Even for the 𝑡𝐴 levels maximizing 𝑅0 in Figure 1, 

sufficiently large group size (under both exponential 

and weakly self-regulated growth) assures that 

pathogen extinction is more likely than is spread of 

infection. 
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Figure 2: Susceptible group size and disease-extinction probability. Each plot: 𝐺 = 1 (solid line), 𝐺 = 4 (dashed 

line), 𝐺 = 10 (dotted line). Left column: Exponential pathogen growth. Right column: logistic growth (𝑐 =  10−5). 

Variance in the count of infections per infection increases when groups are larger but encountered less often. 

Probability of no secondary infections per infection (``extinction'') increases as group size increases. 

 

5.1 Inoculum size, antibiotic efficacy, and 𝑹𝟎 

The preceding numerical results varied 𝑡𝐴, and held 

both inoculum size 𝐵0 and antibiotic efficacy 

(𝛾𝐴
∗ − 𝑟) constant. 

 

 Variation in inoculum size can impact within-host 

pathogen growth [56-58] and infectiousness [31, 51, 

59]. Of course, increasing (𝛾𝐴
∗ − 𝑟) should increase 

the likelihood of curing, rather than removing, the 

host. 

 

Figure 3 varies the inoculum 𝐵0 and antibiotic 

mortality 𝛾𝐴
∗. Dependent quantities are 𝑅0 and the 

probability that a host remains infectious until cured 

(𝐿𝑡𝐶
); results were calculated for a smaller and larger 

𝑡𝐴. 

 

 For these parameter values, 𝑅0 reaches a maximum at 

low antibiotic efficacy and small inoculum; the 

pattern holds for both exponential pathogen growth 

(subplot a) and stronger self-regulation [subplot (e)]. 

Subplots (a) and (e) show results for 𝑡𝐴 = 4; the 

surfaces have the same shape for both smaller and 

larger 𝑡𝐴 levels. 
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Figure 3: Effects of varying 𝐵0 and 𝛾𝐴
∗. (a) 𝑅0 for 𝑡𝐴 = 4 (smaller 𝑡𝐴); 𝐵𝑡  exponential. 𝑅0 declines monotonically as 

inoculum size 𝐵0 increases; 𝑅0 also declines as antibiotic efficacy increases. (b) Δ𝑅0 is 𝑅0 for smaller 𝑡𝐴 minus 𝑅0 

for 𝑡𝐴 = 8 (larger 𝑡𝐴), exponential growth. For medium and larger 𝐵0, combined with lower antibiotic efficacy, 

earlier treatment generates more secondary infections. (c) Probability treated host is cured, smaller 𝑡𝐴. (d) 

Probability host cured, larger 𝑡𝐴. (e) 𝑅0 for 𝑡𝐴 = 4; 𝐵𝑡  logistic. (f) Δ𝑅0 is 𝑅0 for smaller minus 𝑅0 for larger 𝑡𝐴; 𝐵𝑡  

logistic. All plots: 𝑟 = 0.3, 𝜙 =  10−6, 𝜂 =  𝜃 = 1.0, 𝜉 = 0.7, and 𝜆 = 0.4. Plots e and f: 𝑐 =  10−5, stronger self-

regulation. 

 

Why does 𝑅0 decline as inoculum size increases? Any 

increase in 𝐵0 increases 𝐵𝑡  for all 𝑡 ≤  𝑡𝐶. The 

removal rate ℎ𝑡 increases as a result, and the expected 

duration of infectiousness must consequently decline. 

For these parameters, where susceptibility 𝜉 is 

comparatively large, any increase in the transmission 

probability 𝜈𝑡 with 𝐵𝑡  does not compensate for the 

reduction in duration of infectiousness. Hence, by 

increasing the likelihood of early removal, a larger 

inoculum can decrease the expected number of 

secondary infections. Increasing antibiotic efficacy 

decreases not only 𝑅0, but also the sensitivity of 𝑅0 to 

variation in inoculum size. 

 

Subplots (c) and (d) of Figure 3 verify, for 

exponential growth, that the chance of the host 
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remaining infectious until cured (i.e., avoiding 

removal) declines as 𝐵0 increases. Note the clear 

quantitative differences between the two 𝐿𝑡𝐶
-surfaces. 

For any (𝐵0, 𝛾𝐴
∗)-combination, the host's probability of 

remaining infectious is greater for low 𝑡𝐴 (subplot c) 

than for high 𝑡𝐴 (subplot d). If removal equates with 

mortality, so that 𝐿𝑡𝐶
 becomes the host`s survival 

probability, the host should ‘prefer' earlier therapy. 

 

Subplot (b) in Figure 3 shows the difference between 

𝑅0 values for two 𝑡𝐴 levels; Δ𝑅0 is the difference 

between 𝑅0 values of a lesser and greater 𝑡𝐴 level. For 

greater antibiotic efficacy (𝛾𝐴
∗  ≥ 0.5), Δ𝑅0  ≤ 0. A 

stronger antibiotic allows earlier start of therapy to 

decrease the expected number of secondary 

infections, despite extending the duration of infection 

(by reducing the removal rate). 

 

However, for lesser antibiotic efficacy (𝛾𝐴
∗  ≤ 0.4), 

Δ𝑅0  ≥ 0 for sufficiently large 𝐵0. Earlier treatment 

still increases duration of the infective state (i.e., 𝐿𝑡𝐶
 

increases), and now also increases 𝑅0. When small 

inoculum size is combined with lower antibiotic 

efficacy, the infected host benefits most, in terms of 

the chance of being cured, from earlier therapy (low 

𝑡𝐴). 

 

 But the consequence is accelerated spread of 

infection at the among-host scale, since Δ𝑅0  > 0. 

Sufficiently strong self-regulation of within-host 

growth can eliminate this effect (subplot f), since host 

survival until cured is, overall, much less sensitive to 

variation in 𝑡𝐴. 

 

5.2 Group size, 𝑹𝟎 and pathogen `extinction' 

Figure 4 shows, for exponential pathogen growth, 

how varying 𝑅0 and susceptible-group size G affects 

the probability that the focal host transmits no 

secondary infections. 𝑅0 was varied by varying 𝐵0. 

Given G, pathogen-extinction probability never 

increases, and sometimes declines, as 𝑅0 increases. 

The decline is greatest when susceptible hosts are 

encountered as solitaries, i.e., when the infection-

number variance is minimal. Given 𝑅0, the chance of 

pathogen extinction increases strictly monotonically 

as G increases. Each plot in Figure 4 includes regions 

where, for sufficiently large group size, 𝑅0 > 1 but 

pathogen extinction is more likely than not. 

 

6. Discussion 

This paper assumes that any increase in within-host 

pathogen density makes removal/mortality due to 

infection more probable. Antibiotic therapy reduces 

pathogen density and so lowers the instantaneous 

removal rate. Removal and therapeutic recovery via 

antibiotics interact through their separate functional 

relationships with pathogen density, and this 

interaction governs both duration of infectiousness 

and disease-transmission probabilities during the 

infectious period. Model results show that antibiotic 

therapy may sometimes benefit the individual treated 

while imposing costs (additional disease) at the 

public-health scale [60]. 

 

 

 



J Environ Sci Public Health 2021;5 (2):251-272          DOI: 10.26502/jesph.96120128 

    

 

Journal of Environmental Science and Public Health    265 

 

 

 

Figure 4: Probability of no new infections. Each plot shows the probability of no new infection both before and 

after antibiotic therapy begins. Chance of extinction shown as function of 𝑅0 and group size G; note directions of 

axes. 𝑅0 varied by increasing inoculum size 𝐵0 form 103 to 2 ×  104. Top row: 𝛾𝐴
∗ =  0.35. Bottom row: 𝛾𝐴

∗ =  0.7. 

Left column: 𝑡𝐴 = 4 (lower 𝑡𝐴). Right column: 𝑡𝐴 = 8 (greater). Pathogen extinction less likely as 𝑅0 increases; 

extinction always more likely as group size G increases. Increase in extinction due to larger group size increases at 

greater 𝑅0. Each plot shows a substantial region where 𝑅0  > 1, but probability of pathogen extinction exceeds 0.5. 

All plots: 𝑟 = 0.3, 𝜙 =  10−5.5, 𝜂 =  𝜃 = 1.0, 𝜉 = 0.5, 𝜆 = 0.1. 

 

The model was motivated by two observations. First, 

adults and children routinely take antibiotics (often 

accompanied by fever-reducing medicine) for upper 

respiratory infections, and then return to work or 

school as soon as symptoms begin to subside. 

Sometimes these presentees [61] remain infectious 

after beginning antibiotic treatment, and they transmit 

the associated pathogen [15]. Removal (remaining 

home while infectious) would diminish transmission, 

though at some inconvenience to the focal infective. 

A survey conducted within the last decade suggests 

that each week nearly 3 ×  106 employees in the U.S. 

go to work sick [62], fearing lost wages or loss of 

employment [17]. Tension between pursuit of income 

and measures intended to curb the spread of infectious 

disease has become common during pandemic [63]. 

 

The second observation concerns self-medication in 

chimpanzees (Pan troglodytes). Chimpanzees 

consume a diverse plant diet, and at times select 

plants with antiparasitic properties [64]. When 

infested by intestinal nematodes, a chimpanzee will 

withdraw from its social group, and while isolated 

will eat plants with chemical and/or physical 

characteristics that usually reduce its parasite load 

[18, 65]. As symptoms moderate, the still-parasitized 

individual can return to the group [66] where its 

presence may promote transmission of the parasite. 
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Plausibly, self-medication increases survival of the 

first chimpanzee, and indirectly increases the 

parasitism within the group. The next several 

subsections suggest a few questions about the way 

antibiotics may impact linkage between within-host 

pathogen growth and among-host transmission. 

 

6.1 Bacteria 

Genetic resistance to antibiotics, whether arising de 

novo or acquired via plasmids, challenges control of 

bacterial disease [4, 6, 67, 68]. Phenotypic tolerance 

presents related, intriguing questions [44]. Some 

genetically homogeneous bacterial populations 

consist of two phenotypes; one grows faster and 

exhibits antibiotic sensitivity, while the other grows 

more slowly and can persist after exposure to an 

antibiotic [43]. Phenotypes are not fixed; individual 

lineages may transition between the two forms [39]. 

An antibiotic's effect on densities of the two forms 

might easily extend the duration of infectiousness, but 

the probability of transmission, given contact, might 

decline as the frequency of the persistent type 

increases. 

 

6.2 Antibiotic administration 

If an antibiotic is delivered periodically as a pulse, 

rather than dripped, the therapeutically induced 

mortality of the pathogen can depend on time since 

the previous administration [44]. Complexity of the 

impact on the within-host dynamics could then 

depend on the difference between the antibiotic's 

decay rate and the pathogen's rate of decline. Some 

authors refer to an ``inoculum effect,'' suggesting that 

antibiotic efficacy can vary inversely with bacterial 

density. That is, the per unit density bacterial 

mortality effected by a given antibiotic concentration 

declines as bacterial density increases [10]. 

This paper asks if variation in the time elapsing 

between initial infectiousness and the start of 

antibiotic therapy could affect outcomes at the 

individual and population scale. Hence, 𝑡𝐴 was treated 

as an independent variable [68]. Extending the model 

could treat the time therapy begins as a positive 

random variable. Since 𝑅0 depends nonlinearly on 𝑡𝐴, 

randomization of the delay to treatment should 

produce new qualitative predictions. In some 

applications 𝑡𝐴 might be a symptom-driven function 

of within-host density [7, 39]. Faster within-host 

growth, given inoculum size, would presumably 

induce earlier treatment. In this case, the 

presence/absence of pathogen self-regulation might 

prove important at both the within-host and between-

host scales [60]. 

 

6.3 Infected host 

This paper neglects immune responses so that the 

duration of treatment, given cure by the antibiotic, 

depends explicitly on the antibiotic's efficacy and the 

age of infection when treatment begins. Incorporating 

both a constitutive and inducible immune response 

should be straightforward. The constitutive response 

imposes a constant, density-independent mortality 

rate on the pathogen. This response (common to 

vertebrates and invertebrates) is innately fixed; its 

effect can be inferred by varying this paper's pathogen 

growth rate r. Induced immune responses impose 

density-dependent regulation of pathogen growth; 

pathogen and induced densities are sometimes 

coupled as a resource-consumer interaction [40]. 

The timing of antibiotic therapy might be modulated 

so that the current infection might be eliminated just 

slowly enough to prompt a lasting immunological 

memory, a ‘vaccination’ against future exposure to 
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the same pathogen [69]. Antibiotic dosing might be 

optimized similarly [68]. 

 

6.4 Transmission 

This paper assumes a constant (probabilistic) rate of 

infectious contact with susceptible hosts. The number 

of contacts available may be limited, so that each 

transmission event depletes the local-susceptible pool. 

Regular networks capture this effect for spatially 

detailed transmission [54], and networks with a 

random number of links per host do the same when 

social preferences drive transmission [20]. For these 

cases, contact structure of the susceptible population 

can affect both 𝑅0 and the likelihood of pathogen 

extinction when rare [28]. 

 

Contact avoidance may sometimes be more important 

than contact depletion [12]. If susceptible hosts 

recognize correlates of infectiousness, they can avoid 

individuals or locations where transmission is likely 

[70]. If antibiotics extend the period of infectiousness 

and reduce symptom severity, correlates of 

infectiousness might be more difficult to detect. 

 

7. Conclusion 

The results indicate several interrelated predictions, 

summarized here. 

 The expected count of secondary infections 

is often a single-peaked function of the time 

since infection when therapy begins. But 

sufficiently strong pathogen self-regulation 

can imply that 𝑅0 increases montonically 

with time elapsing until therapy begins. 

 Less efficacious antibiotics may increase the 

expected count of secondary infections 

beyond the level anticipated without 

antibiotic intervention. 

 Strong pathogen self-regulation increases the 

probability that the host remains infectious 

until therapeutically cured, and decreases the 

time elapsing between initiation of treatment 

and cure. 

 Treatment with a less efficacious antibiotic 

soon after infection can increase the 

probability of curing the disease, but also can 

increase the expected count of secondary 

infections. However, early treatment with a 

strong antibiotic can both increase the 

likelihood of curing the disease and reduce 

the count of secondary infections. Antibiotics 

may almost always benefit the individual 

treated, but the consequence for public health 

may not be so uniform. 

 If hosts are moderately to highly susceptible 

to infection, duration of the infectious state 

and the expected count of secondary 

infections decline as inoculum size increases. 

 When susceptible hosts are grouped, and 

larger groups are encountered less 

frequently, the social structuring increases 

the variance of the secondary infection count 

and, consequently, increases the probability 

of no new infection. 

 

Note that the predictions do not depend on whether 

removal equates with isolation (usually faster) or host 

mortality (usually slower). 

 

Acknowledgements 

Thanks to I-N Wang for both discussing bacteria-

antibiotic interactions. Several readers offered careful, 

insightful comments on the model’s assumptions. 

 

 



J Environ Sci Public Health 2021;5 (2):251-272          DOI: 10.26502/jesph.96120128 

    

 

Journal of Environmental Science and Public Health    268 

 

 

References  

1. McManus PS, Stockwell VO, Sundin GW, et 

al. Antibiotic use in plant agriculture. Annual 

Review of Phytopathology 40 (2002): 443-

465.  

2. D`Agata EMC, Dupont-Rouzeyrol M, Magal 

P, et al. The impact of different antibiotic 

regimens on the emergence of antimicrobial-

resistant bacteria. PLoS ONE 3 (2008): 

e4036.  

3. Gualerzi CO, Brandt L, Fabbretti A, et al. 

Antibiotics: targets, mechanisms, and 

resistance. Weinhein, Germany: Wiley-VCH 

Verlag (2013).  

4. Levin BR, Baquero F, Johnsen PJ. A model-

guided analysis and perspective on the 

evolution and epidemiology of antibiotic 

resistance and its future. Current Opinions in 

Microbiology 19 (2014): 83-89.  

5. Read AF, Day T, Huijben S. The evolution 

of drug resistance and the curious orthodoxy 

of aggressive chemotherapy. Proceedings 

National Academy of Science USA 108 

(2011): 10871-10877.  

6. Lopatkin AJ, Meredith HR, Srimani JK, et 

al. Persistence and reversal of plasmid-

mediated antibiotic resistance. Nature 

Communications 8 (2017): 1689-1699.  

7. Geli P, Laxminarayan R, Dunne M, et al. 

One-size-fits-all? optimizing treatment 

duration for bacterial infections. PLoS ONE 

1 (2012): e29838.  

8. Mideo N, Alizon S, Day T. Linking within- 

and between-host dynamics in the 

evolutionary epidemiology of infectious 

diseases. Trends in Ecology and Evolution 

23 (2008): 511-517.  

9. Childs LM, El Moustaid F, Gajewski Z, et al. 

Linked within-host and between-host models 

and data for infectious diseases: a systematic 

review. Peer Journal 7 (2019): e7057. 

10. Levin BR, Udekwu KI. Population dynamics 

of antibiotic treatment: a mathematical 

model and hypotheses for time-kill and 

continuous-culture experiments.  

Antimicrobial Agents and Chemotherapy 54 

(2010) 3414-3426.  

11. Gilchrist MA, Sasaki A. Modeling host-

parasite coevolution: a nested approach 

based on mechanistic models. J of 

Theoretical Biology 218 (2002): 289-308. 

12. Reluga TC. Game theory of social distancing 

in response to an epidemic. PLoS 

Computational Biology 6 (2010): e1000793.  

13. VanderWaal KL, Ezenwa VO. Heterogeneity 

in pathogen transmission: mechanisms and 

methodology. Functional Ecology 30 (2016): 

1607-1622.  

14. Moon M-S. Essential basic bacteriology in 

managing musculoarticuloskeletal infection: 

Bacterial anatomy, their behavior, host 

phagocytic activity, immune system, 

nutrition, and antibiotics. Asian Spine 

Journal 13 (2019): 343-356.  

15. Siegel JD, Rhinehart E, Jackson M, et al. 

Guideline for isolation precautions: 

preventing transmission of infectious agents 

in healthcare settings (2007). 

16. Falk L, Enger M, Jense JS. Time to 

eradication of Mycoplasma genitalium after 

antibiotic treatment in men and women. J of 

Antimicrobials and Chemotherapy 70 

(2015): 3134-3140.  



J Environ Sci Public Health 2021;5 (2):251-272          DOI: 10.26502/jesph.96120128 

    

 

Journal of Environmental Science and Public Health    269 

 

 

17. deRigne L, Stoddard P, Quinn L. Workers 

without paid sick leave less likely to take 

time off for illness or injury compared to 

those with sick leave. Health Affairs 35 

(2016): 520-527.  

18. Huffman MA, Gotoh S, Turner LA, et al. 

Seasonal trends in intestinal nematode 

infection and medicinal plant use among 

chimpanzees in the Mahale Mountains, 

Tanzania. Primates 38 (1997):111-125. 

19. Bailey NTJ. The elements of stochastic 

processes. New York: John Wiley and Sons 

(1964). 

20. van Baalen, M. Contact networks and the 

evolution of virulence. In: Dieckmann U, 

Metz JAJ, Sabelis MW, et al. Adaptive 

dynamics of infectious diseases: in pursuit of 

virulence management. Cambridge, UK: 

Cambridge University Press (2002): 85-103. 

21. Antia R, Regoes RR, Koella JC, et al. The 

role of evolution in the emergence of 

infectious diseases. Nature 426 (2003): 658-

661.  

22. Brown CR, Komar N, Quick SB, et al. 

Arbovirus infection increases with group 

size. Proceedings Royal Society of London, 

Series B 268 (2001): 1833-1849.  

23. Turner J, Bowers RG, Clancy O, et al. A 

network model of E. coli O157 transmission 

within a typical UK dairy herd: the effect of 

heterogeneity and clustering on the 

prevalence of infection. J of Theoretical 

Biology 254 (2008): 45-54.  

24. Caraco T, Cizauskas CA, Wang I-N. 

Environmentally transmitted parasites: Host-

jumping in a heterogeneous environment. J 

of Theoretical Biology 42 (2016): 33-42.  

25. Caraco T, Yousefi A, Wang I-N. Host-

jumping, demographic stochasticity and 

extinction: lytic viruses. Evolutionary 

Ecology Research 16 (2014): 551-568. 

26. Lahodny G, Gautam R, Ivanek R. Estimating 

the probability of an extinction event or 

major outbreak for an environmentally 

transmitted infectious disease. J of Biological 

Dynamics (S1) 9 (2015): 128-155. 

27. Whittle P. The outcome of a stochastic 

epidemic: a note on Bailey`s paper. 

Biometrika 42 (1955): 116-122. 

28. Caillaud D, Craft ME, Meyers LA. 

Epidemiological effects of group size 

variation in social species. J of the Royal 

Society Interface 10 (2013): 20130206.  

29. Lindberg HM, McKean KA, Caraco T, et al. 

Within-host dynamics and random duration 

of pathogen infection: implications for 

between-host transmission. J of Theoretical 

Biology 446 (2018): 137-148. 

30. Strachan NJC, Doyle MP, Kasuga F, et al. 

Dose response modelling of Escherichia coli 

O157 incorporating data from foodborne and 

environmental outbreaks. International 

Journal of Food Microbiology 103 (2005): 

35-47.  

31. Steinmeyer SH, Wilke CO, Pepin KM. 

Methods of modelling viral disease dynamics 

across the within- and between-host scales: 

the impact of viral dose on host population 

immunity. Philosophical Transactions Royal 

Society Series B 65 (2010): 1931-1941.  

32. Haugen MS, Hertz FB, Charbon G, et al. 

Growth rate of Escherichia coli during 

human urinary tract infection: implications 

for antibiotic effect. Antibiotics 8 (2019): 92. 



J Environ Sci Public Health 2021;5 (2):251-272          DOI: 10.26502/jesph.96120128 

    

 

Journal of Environmental Science and Public Health    270 

 

 

33. Mulcahy H, Sibley CD, Surette MG, et al. 

Drosophila melanogaster as an animal 

model for the study of Pseudomonas 

aeruginosa biofilm infections in vivo. PLoS 

Pathogens 7 (2011): e1002299. 

34. D`Argenio DA, Gallagher LS, Berg CA, et 

al. Drosophila as a model host for 

Pseudomonas aeruginosa infection. J of 

Bacteriology 183 (2001): 1466-1471. 

35. Heo Y-J, Lee Y-R, Jung H-H, et al. 

Antibacterial efficacy of phages against 

Pseudomonas aeruginosa infections in mice 

and Drosophila melanogaster. Antimicrobial 

Agents and Chemotherapy 53 (2009): 2469-

2474. 

36. Ebert D, Weiser WW. Optimal killing for 

obligate killers: the evolution of life histories 

and virulence of semelparous parasites. 

Proceedings Royal Society Series B 264 

(1997): 985-991. 

37. Austin DJ, White NJ, Anderson RM. The 

dynamics of drug action on the within-host 

population growth of infectious agents: 

melding pharmacokinetics with pathogen 

population dynamics. J of Theoretical 

Biology 194 (1998): 313-339. 

38. O`Loughlin CT, Miller LC, Siryaporn A, et 

al. A quorum-sensing blocks Pseudomonas 

aeruginosa virulence and biofilm formation. 

Proceedings National Academy of Science 

USA 110 (2013): 17981-17986. 

39. Ankomah P, Levin BR. Exploring the 

collaboration: antibiotics and the immune 

response in the treatment of acute, self-

limiting infections. Proceedings National 

Academy of Science USA 111 (2014): 8331-

8338. 

40. Pilyugin SS, Antia R. Modeling immune 

responses with handling time. Bulletin of 

Mathematical Biology 62 (2000): 869-890.  

41. Regoes RR, Wiuff C, Zappala RM, et al. 

Pharmacodynamic functions: a 

multiparameter approach to the design of 

antibiotic treatment regimens. Antimicrobial 

Agents and Chemotherapy 48 (2004): 3670-

3676.  

42. Tuomanen E, Cozens R, Tosch W, et al. The 

rate of killing of Escherichia coli by -

lactam antibiotics is strictly proportional to 

the rate of bacterial growth. J of General 

Microbiology 132 (1986): 1297-1304. 

43. Balaban NQ, Marrin J, Chalt R, et al. 

Bacterial persistence as a phenotypic switch. 

Science 305 (2004): 1622-1625.  

44. Wiuff C, Zappala RM, Regoes RR, et al. 

Phenotypic tolerance: antibiotic enrichment 

of noninherited resistance in bacterial 

populations. Antimicrobial Agents and 

Chemotherapy 49 (2005): 1483-1494.  

45. Mueller M, de la Peña A, Derendorf H. 

Issues in pharmacokinetics and 

pharmacodynamics of anti-infective agents: 

kill curves versus MIC. Antimicrobial 

Agents and Chemotherapy 48 (2004): 369-

377.  

46. Medzhitov R, Schneider DS, Soares MP. 

Disease tolerance as a defense strategy. 

Science 335 (2012): 936-941.  

47. Bury KV. Statistical models in applied 

science. New York: John Wiley and Sons 

(1975). 

48. Missov TI, Lenart A. Gompertz-Makeham 

life expectancies: expressions and 



J Environ Sci Public Health 2021;5 (2):251-272          DOI: 10.26502/jesph.96120128 

    

 

Journal of Environmental Science and Public Health    271 

 

 

applications. Theoretical Population Biology 

90 (2013): 29-35.  

49. Ganusov VV, Antia R. Trade-offs and the 

evolution of virulence of microparasites: do 

details matter? Theoretical Population 

Biology 64 (2003): 211-220.  

50. Day T, Alizon S, Mideo N. Bridging scales 

in the evolution of infectious disease life 

histories: theory. Evolution 65 (2011): 3448-

3461.  

51. Kaitala V, Roukolainen L, Holt RD, et al. 

Population dynamics, invasion, and 

biological control of environmentally 

growing opportunistic pathogens. In: Hurst 

CJ, editor. Modeling the transmission and 

prevention of infectious disease: advances in 

environmental microbiology 4. New York: 

Springer Intl Publications AG (2017): 213-

244. 

52. Tenuis PFM, van der Heijden OG, van der 

Giessen JWB, et al. The dose-response 

relation in human volunteers for gastro-

intestinal pathogens. Bilthoven, The 

Netherlands: National Institute of Public 

Health and the Environment (1996). 

53. Keeling MJ, Grenfell BT. Effect of 

variability in infection period on the 

persistence and spatial spread of infectious 

diseases. Mathematical Biosciences 147 

(1998): 207-226.  

54. Caraco T, Glavanakov S, Li S, et al. 

Spatially structured superinfection and the 

evolution of disease virulence. Theoretical 

Population Biology 69 (2006): 367-384.  

55. Ross SM. Stochastic processes. New York: 

John Wiley and Sons (1983). 

56. Schmid-Hempel P, Frank SA. Pathogenesis, 

virulence, and infective dose. PLoS 

Pathogens 3 (2007): e147. 

57. White SM, Burden JP, Maini PK, et al. 

Modelling the within-host growth of viral 

infections in insects. J of Theoretical Biology 

312 (2012): 34-43. 

58. Gama JA, Abby SS, Vieira-Silva S, et al. 

Immune subversion and quorum-sensing 

shape the variation in infectious dose among 

bacterial pathogens. PLoS Pathogens 8 

(2012): e1002503. 

59. Chu C-M, Poon LLM, Cheng VCC, et al. 

Initial viral load and the outcomes of SARS. 

Canadian Medical Association Journal 171 

(2004): 1349-1352.  

60. Scire J, Hozé N, Uecker H. Aggressive or 

moderate drug therapy for infectious 

diseases? Trade-offs between different 

treatment goals at the individual and 

population levels. PLoS Computational 

Biology 15 (2019): e1007223. 

61. Kivimaki M, Head J, Ferrie JE, et al. 

Working while ill as a risk factor for serious 

coronary events: the Whitehall II study. 

American Journal of Public Health 95 

(2005): 98-102.  

62. Susser P, Ziebarth HR. Profiling the U.S. 

sick leave landscape: presenteeism among 

females. Health Services Res 51 (2016)0: 

2305-2317.  

63. Maxouris C, Chavez N. Florida will be like a 

house on fire in weeks with loose 

coronavirus restrictions, infectious disease 

expert says. CNN Health (2020). 

64. Ahoua ARC, Konan AG, Bonfoh B, et al. 

Antimicrobial potential of 27 plants 



J Environ Sci Public Health 2021;5 (2):251-272          DOI: 10.26502/jesph.96120128 

    

 

Journal of Environmental Science and Public Health    272 

 

 

consumed by chimpanzees (Pan troglodytes 

verus Blumenbach) in Ivory Coast. BMC 

Complem Alternative Medicine 15 (2015): 

383.  

65. Pebsworth P, Krief S, Huffman MA. The 

role of diet in self-medication among 

chimpanzees in the Sonso and Kanyawara 

comunities, Uganda. In: Newton-Fisher NE, 

Norman H, Reynolds W, Paterson JD, 

editors. Primates of western Uganda. New 

York: Springer (2006): 105-133. 

66. Huffman MA, Page JE, Sukhdeo MVK, et al. 

Leaf-swallowing by chimpanzees: a 

behavioral adaptation for the control of 

strongyle nematode infections. Inter Journal 

of Primatology 17 (1996): 475-503. 

67. Drlica K. The mutant selection window and 

antimicrobial resistance. J Antimicrobial 

Chemotherapy 52 (2003): 11-17. 

68. Gjini E, Brito PH. Integrating antimicrobial 

therapy with host immunity to fight drug-

resistant infections: classical vs adaptive 

treatment. PLoS Computational Biology 12 

(2016): e1004857. 

69. Stromberg SP, Antia R. Vaccination by 

delayed treatment of infection. Vaccine 29 

(2011): 9624-9631. 

70. Caraco T, Turner WC. Pathogen 

transmission at stage-structured infectious 

patches: killers and vaccinators. J of 

Theoretical Biology 436 (2018): 51-63. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    This article is an open access article distributed under the terms and conditions of the 

      Creative Commons Attribution (CC-BY) license 4.0 

 

http://creativecommons.org/licenses/by/4.0/

