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Abstract 

Ebola viral disease remains a great threat to the 

society due to the limited availability of licensed 

drugs or vaccines. As the pathogen belongs to 

Biosafety Level 4, it is extremely dangerous to 

design a vaccine using conventional techniques. 

Therefore, reverse vaccinology approach is used to 

select the suitable epitopes from the genomic 

sequence of the virus. Using several algorithms, 

specific epitopes were chosen and 3D structures 

were obtained. The HLA alleles vary in different 

population and hence those alleles that commonly 

occur in African and world population were 

selected. Homology models were built for those 

HLA alleles whose 3D structures were unavailable. 

Then selected 20 epitopes were docked with 

selected 8 HLAs and further, selected epitope 

NQDGLICGL was validated by molecular 

dynamics study. 
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Introduction 

Ebola virus (EBOV) belongs to the filovirus family 

and is one among the most pathogenic viruses 
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known. It causes a severe hemorrhagic fever in 

humans and non-human primates having case 

fatality rates up to 90%. Limited availability of 

licensed vaccines or therapeutics to treat Ebola 

viral disease (EBOVD) makes it a very important 

public health pathogen and the contagiousness 

together makes it a Category A bio threat pathogen 

[1]. Infection of humans with filovirus, like Ebola 

virus and Marburg virus are rare, but the resulting 

hemorrhagic fevers cause high rate of mortality [2]. 

Vaccines 

Vaccines produce immunity against a given 

disease-causing pathogen, mostly by inducing the 

production of neutralizing antibodies against the 

exposed epitopes. In 2010, a study reported that 

infectious diseases caused 18.5% of all human 

deaths and 23% of disability adjusted life years 

[3,4]. This paved the way for the development of a 

new method, termed epitope-focused vaccine 

design. The specific epitopes were selected based 

on those recognized by naturally occurring 

antibodies isolated from patients or animal models 

of a certain disease, aiming to generate protective 

antibodies in vaccinated individuals to trigger an 

immune response [5].
 

This reverse-engineering 

approach holds promise for the development of 

vaccines against antigenically diverse viruses [6]. 

 ChAd3-ZEBOV - The chimpanzee 

adenovirus – Chimp adenovirus type 3, is used as a 

vector, to deliver the Ebola genetic material. This 

vector has a DNA fragment insert encoding the 

Ebola virus glycoprotein [7]. 

 rVSV-ZEBOV - The vaccine, uses a 

replication-competent vesicular stomatitis virus as 

a vector. It is genetically modified and express 

surface glycoprotein of the Zaire Ebola species [8]. 

 Ad26-EBOV and MVA-EBOV – A 2-dose 

vaccination approach known as the heterologous 

prime-boost for Ebola has been developed by 

Johnson & Johnson, in association with Bavarian 

Nordic. The two vaccine candidates are Ad26-

EBOV and MVA-EBOV [9]. The Ad26.ZEBOV is 

derived from human adenovirus serotype 26 

(Ad26) which expresses the Ebola virus Mayinga 

variant glycoprotein. Meanwhile, MVA-BN is the 

Modified Vaccinia Virus Ankara - Bavarian Nordic 

(MVA-BN) Filo-vector [10]. 

Reverse vaccinology 

The use of genomic information with the aid of 

computer for the preparation of vaccines without 

the need for culturing microorganism is known as 

reverse vaccinology, pioneered by Dr. Rino 

Rappuoli [11]. Since then, this technique has been 

used for developing several other bacterial 

vaccines. The genome sequences have the 

advantage of providing all the protein antigens that 

the pathogen can express at any time. This 

approach contains the following steps: 

Genome sequences retrieval > Computer analysis > 

In silico prediction of epitope/ antigen > 

Development of candidate vaccine in vitro. 

The high rate of mortality caused by Neisseria 

meningitides led to the development of a new in 

silico technique for vaccine development called 

reverse vaccinology [12]. The conventional ways 

for the production of vaccines against meningitis 

failed because the bacterial and human proteins had 

a high degree of similarity and also the pathogen 

had a hypervariable nature. The in silico analysis of 

the complete genome of Neisseria meningitides 

helps in specifically selecting the genomic 

sequences encoding for surface proteins which can 

act as possible vaccine candidates [13]. 

The traditional way of vaccine development cannot 

be employed for the pathogens that are highly 

infectious and belong to Biosafety Level-4. This 

led to the discovery of a new approach, to design 

an efficient vaccine i.e. reverse vaccinology. The 
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major advantage of reverse vaccinology is that, by 

using bioinformatics techniques a complete 

genomic sequence of a pathogen can be studied and 

specific genes coding for potential epitopes can be 

identified. Preferably for increased antigenicity the 

genes that code for proteins with extracellular 

localization, signal peptides and B-cell epitopes are 

considered [14]. These genes are further screened 

for desirable attributes that would make it a good 

vaccine target. The selected genes are then 

produced synthetically in labs and later screened in 

animal models [15]. 

An ideal vaccine is the one which initiates both 

humoral and cell mediated immunity thus 

eradicating the chances of re infection [16]. 

Vaccine design methods based on T cell epitope 

assist in recognizing immune dominant epitopes of 

the virus whose synthesis leads to the development 

of effective vaccine candidates. Computer based 

prediction methods helps in reducing the number of 

validation experiments to be carried out for finding 

the suitable vaccine candidates [17]. 

Epitope vaccines 

An epitope is an antigenic determinant, which 

helps immune cells in identifying the antigen and 

has an important role in immunity of an organism. 

Immune cells recognize epitopes rather than entire 

antigens [18]. These are seen on the surface of 

organisms and are detected by antibodies. The 

selection of epitopes is a crucial step in 

development of a candidate vaccine. Epitope 

prediction is the fundamental step in designing of 

epitope based vaccines [19]. 

The antigenic peptides are recognized by T cells 

only when they are presented by MHC I or II, with 

the help of CD4 and CD8 molecules [20]. T-cell 

responses have a very important role in controlling 

viral infections and hence the availability of larger 

number of T-cell epitope mapping and prediction 

algorithms is a boon to immunologists [21,22]. For 

the development of antibody therapeutics [23] 

peptide based vaccines [23,24] and 

immunodiagnostic tool, it is very important to 

accurately identify the B-cell epitopes because a 

successful peptide-based vaccine must necessarily 

constitute immune dominant epitopes [25]. Many 

databases are available based on the kind of 

epitope, for the large number of epitopes identified 

in the past 20 years. The databases like MHCPEP, 

SYFPEITHI [26], FIMM [27], MHCBN [28] and 

EPIMHC [29] are T cell oriented while Bcipep [30] 

and Epitome [31] are B cell oriented. AntiJen [32] 

is a database constituting both T cell and B cell 

epitopes. 

Materials and Methodology 

 T cell epitope prediction 

VaxiJen 2.0- VaxiJen is a server for alignment-

independent prediction of protective antigens. It 

allows antigen classification solely based on the 

physicochemical properties of proteins which is a 

new alignment free approach. It is based on auto 

cross covariance (ACC) transformation of protein 

sequences into uniform vectors of principal amino 

acid properties. The threshold for prediction of 

viral antigens was set at 0.4 in this server [33]. 

NetCTL 1.2- NetCTL 1.2 is a server used to 

predict the CTL epitopes in protein sequences. It 

integrates the methods of prediction of peptide 

MHC class I binding, proteasomal C terminal 

cleavage and TAP transport efficiency. It facilitates 

the predictions of CTL epitopes restricted to 12 

MHC class I supertypes namely A1, A2, A3, A24, 

A26, B7, B8, B27, B39, B44, B58 and B62. MHC 

class I binding and proteasomal cleavage is based 

on artificial neural networks. TAP transport 

efficiency is predicted using the weight matrix 

method. The output derived from the neural 

network predicting MHC/peptide binding is a log 

transformed value related to the IC50 values in nM 
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units. In this server, scores from all the three 

individual prediction methods are integrated as a 

weighted sum with a relative weight on 

peptide/MHC binding of 1 [34]. 

CTLPred- The identification of peptides that can 

stimulate cytotoxic T lymphocytes (CTLs) is one of 

the major challenges in the design of subunit 

vaccines. The server employs machine learning 

techniques Support Vector Machine and Artificial 

Neural Network to develop a CTL epitope 

prediction method. An ANN (Artificial Neural 

Network) based method has been developed for the 

classification of the large dataset of CTL epitopes 

(1137) and non-epitopes (1134). 

SYFPETHI- The increasing number of motifs 

necessitated the setting up of a database which 

facilitated the search for peptides and allowed 

the prediction of T-cell epitopes. The prediction is 

solely depended on the published motifs (pool 

sequencing, natural ligands) and it takes into 

consideration the amino acids in the anchor and 

auxiliary anchor positions, as well as other frequent 

amino acids. The score is calculated as per the 

following rules: the amino acids of the given 

peptide are given a specific value depending on 

whether they are anchor, auxiliary anchor or 

preferred residue. 10 points are set for ideal 

anchors, 6-8 points for unusual anchors, 4-6 points 

for auxiliary anchors and 1-4 points for preferred 

anchors. Negative values between -1 and -3 are set 

for amino acids that are regarded as having a 

negative effect on the binding ability [35]. 

IEDB analysis resource t-cell epitope prediction 

tool- This tool enables the prediction of IC50 

values for peptides binding to specific MHC 

molecules. It will take in an amino acid sequence, 

or set of sequences and determine the ability of 

each subsequence to bind to a specific MHC class I 

molecule. The underlying principles behind this 

tool are Artificial Neural Network, ARB matrix 

application, Stabilized Matrix Based Method, 

NetMHCcons and PickPocket method. 

T-cell epitope processing score prediction- This 

tool predicts the epitope candidates on the basis of 

the processing of peptides in the cell. It combines 

prediction algorithms of proteasomal processing, 

TAP transport and MHC binding to produce an 

overall score for each peptide's intrinsic potential of 

being a potential T cell epitope. 

IEDB analysis resource tool immunogenicity 

predictor- This tool uses amino acid properties and 

their position within the peptide in order to predict 

the immunogenicity of a peptide MHC (pMHC) 

complex. 

AllerTOP v.2 server- The server works on the 

basis of auto cross covariance (ACC) 

transformation of protein sequences into uniform 

equal-length vectors. ACC is a method for protein 

sequence mining used for quantitative structure-

activity relationship (QSAR) studies of peptides 

with different lengths. The principal properties of 

the amino acids are indicated by five E descriptors 

used to describe amino acid hydrophobicity, 

molecular size, helix-forming propensity, relative 

abundance of amino acids and β-strand forming 

propensity. The proteins are classified by k-nearest 

neighbor algorithm (kNN,k=1) and it is based on 

training set which contains 2427 known allergens 

from different species and 2427 non-allergens [36]. 

Epitope prediction 

The EBOV glycoprotein sequences available in the 

UniProtKB database were retrieved. The 

incomplete sequences were filtered out and only 

complete sequences were submitted to Maestro for 

conservancy analysis. These sequences of ZEBOV 

GP were found to have more than 90% sequence 

similarity and hence highly conserved. The 



Arch Microbiol Immunology 2021; 5 (1): 182-206 10.26502/ami.93650057 

Archives of Microbiology & Immunology Vol. 5 No. 1 – March 2021  186 

ZEBOV GP of the 1976 outbreak, Mayinga strain 

was selected for further studies due to the 

availability of its crystal structure. 

Figure 1: Conservancy of glycoprotein sequences 

The VaxiJen server predicted the antigenicity score 

of the glycoprotein as 0.4929 which marked it as a 

probable antigen. NetCTL 1.2, SYFPETHI and 

CTLPred servers were used to predict the T-cell 

epitope and the epitopes in common were selected. 

The IC50 values were found using IEDB Analysis 

Resource T-cell Epitope Prediction Tool for the 

selected epitopes and those epitopes which had less 

than 200nM value were considered for further 

analysis. The processing scores were calculated 

using T-Cell Epitope Processing Score Prediction 

and 0 was considered the cut off. The epitopes 

having scores greater than 0 were screened. Using 

IEDB Analysis Resource Tool conservancy 

analysis were done and the epitopes more than 90% 

conserved were selected. IEDB AR Tool was used 

for immunogenicity prediction and the Population 

Coverage Tool for analysis of population coverage. 

The HLA alleles were selected by using the 

dbMHC data and IMGT/HLA database. Different 

sets of HLA alleles were given for African 

population and world population. The population 

coverage for North, West, East, South and Central 

African population was found to be 99.84 when the 

population as a whole was selected and 66.37 when 

each population were selected individually. In case 

of world population 99.99 and 65.91 were the 

values obtained. 
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a   b 

Figure 2: (a) Population coverage of the epitope against selected HLA alleles in World population, (b) 

Population coverage of the selected epitope against selected HLA alleles in West African population 

Allergenicity of the epitopes were predicted using 

AllerTop v2.0 and non-allergenic epitopes were 

further processed. Using Pymol the epitopes were 

visualized and the PDB resolved portion was 

isolated. RTFSILNRK, FQRTFSIPL, 

RTSFFLWVI, STHNTPVYK, RTFSIPLGV, 

FAFHKEGAF, GYYSTTIRY, VIALFCICK, 

NQDGLICGL, AEGVVAFLI, GTNETEYLF, 

FFLWVIILF, TTIGEWAFW, FAEGVVAFL, 

YYSTTIRYQ, TSFFLWVII, SFFLWVIIL, 

FLWVIILFQ, YEAGEWAEN and TFAEGVVAF 

are the epitopes whose structures were elucidated. 

These were submitted to docking study. The 

sequence of the epitopes present in the unresolved 

region of PDB structure were submitted to PEPstr 

server. 

 Allele Preparation 

Homology modeling 

Knowledge of the three-dimensional structure is 

necessary for rational drug design, studying effect 

of various parts of protein on substrate/inhibitor 

binding etc. The sequences of Human HLA-

A*23:01, HLA-A*30:02, HLA-B*15:03 and HLA-

Cw*07:02 were retrieved. The alignments were 

done with HLA-A*24:02(PDB ID: 3I6L), HLA-

A*03:01 (PDB ID: 2XPG) and HLA-B*15:01 

(PDB ID: 1XR8) respectively, using Modeler 9.14. 

Multiple template alignment was carried out for 

HLA- Cw*07:02 using HLA-Cw*04:01 (PDB ID: 

1QQD), HLA- Cw*03:04 (PDB ID: 1EFX) and 

HLA-C*08:01 (PDB ID: 4NT6). Comparative 

modeling was then performed using MODELLER 

9.15 and PyMol. Analysis of models were 

performed using UCLA‘s SAVES server. 

Homology modeling consists of following steps:- 

Template selection > Target-Template alignment 

(BLAST) > 3D structure Modeling (MODELLER 

9.15 and Pymol) > Model validation (RMSD, 

Ramachandran plot, Rampage and Errat plot) > 

Model refinement 

Template selection 

The commonly occurring HLA alleles in humans 

with main focus on the African population were 

selected and sequences were retrieved from 

UniProtKB database. The PDB structures of 4 

HLA alleles were not found in PDB namely HLA-

A*23:01, HLA-A*30:02, HLA-B*15:03 and HLA-

Cw*07:02 and they were subjected to homology 

modeling. Their sequences were subjected to 

sequence similarity search using BLAST against 

Protein Data Bank. As a result, many hits were 

obtained and the ones having better 

identity/similarity were selected. HLA-

A*24:02(PDB ID: 3I6L), HLA-A*03:01 (PDB ID: 

2XPG), HLA-B*15:01 (PDB ID: 1XR8) and HLA-

C*08:01 (PDB ID: 4NT6). It was found that the 

HLA had a heterodimer crystal structure. The 

percentage identity were found to be 99%, 97%, 

99% and 94% respectively. 
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Target-Template alignment 

The homology models of the HLAs were built by 

using the alignment shown below. Stars indicate 

identical amino acids while colon for similar amino 

acids and single dot for nearly similar ones.

a b

c d

Figure 3: (a) HLA-A*23:01 alignment with 3I6L, (b) HLA-A*30:02 alignment with 2XPG, (c) HLA-B*15:03 

alignment with 1XR8, (d) HLA-Cw*07:02 alignment with 4NT6, 1EFX and 1QQD 

3D structure modelling 

Homology modeling was performed as follows 

The sequences of Human HLA-A*23:01, HLA-

A*30:02, HLA-B*15:03 and HLA-Cw*07:02 were 

retrieved. The alignments were done with HLA-

A*24:02 (PDB ID: 3I6L), HLA-A*03:01 (PDB ID: 

2XPG) and HLA-B*15:01 (PDB ID: 1XR8) 

respectively, using Modeler 9.14. Multiple 

template alignment was carried out for HLA- 

Cw*07:02 using HLA-Cw*04:01 (PDB ID:1QQD), 

HLA- Cw*03:04 (PDB ID: 1EFX) and HLA-

C*08:01 (PDB ID: 4NT6). Comparative modeling 

was then performed using MODELLER 9.15 and 

PyMol. Analysis of models were performed using 

UCLA‘s SAVES server. 

Model validation was done using Ramachandran 

plot and Errat plot. 

 Computational details 

Molecular docking 

BioLuminate is one of the widely used peptide 

docking programs and it uses a series of 

hierarchical filters to search for possible locations 

in the active site region of the receptor. The 

properties of a receptor/active site region is 
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represented by a grid possessing different set of 

fields that provide progressively more accurate 

scoring of the ligand pose. It uses a Glide score 

(Gscore) and MMGBSA score for predicting 

binding affinity and rank ordering of ligands in the 

database screening [37]. 

Peptide docking consists of the following steps: 

Protein preparation – The macromolecules were 

processed, refined and minimized with the Protein 

Preparation Wizard at pH 7.0. Water molecules 

with less than 3 H bonds to non-waters were 

removed. Other parameters were set default. 

OPLS_2005 force field was used throughout 

docking. 

Ligand preparation – The 20 epitopes were 

subjected to peptide capping and minimized after 

adding hydrogen. Epik and Confgen were used for 

generating conformers of ligands. 

Peptide docking was performed for twenty ligands 

against eight macromolecules with BioLuminate. 

The grid box was generated surrounding selected 

residues. The size of grid box was 20Ǻ in all three 

dimensions.

Table 1: Protein with surrounding residues in the grid box 

Protein Residues 

HLA-B*53:01 

(PDB ID:1A1M) 

Asp 114, Tyr 159, Trp 147, Asn 77, Tyr 171, Asn 77, Tyr 171, Tyr7, Arg 62, Tyr 74, Tyr 84, 

Ile 80, Lys 146, Tyr 99, Arg 97, Asn 63, Tyr 59, Tyr 123, Tyr 59, Ile 66, Phe 67, Tyr 9, Asn 70, 

Met 5 

HLA-B*51:01 

(PDB ID:1E27) 

Tyr 159, Tyr 9, Asn 70, Thr 73, Tyr 7, Asn 77, Trp 147, Tyr 84, Thr 143, Trp 95, Trp 167, Tyr 

59, Arg 62, Asn 63, Ile 66, Phe 67, Tyr 99, Tyr 74, Tyr 116, Glu 152, Lys 146, Ala 81, Tyr 123, 

Tyr 116, Glu 76 

HLA-B*35:01 

(PDB ID:3LKN) 

Tyr 84, Leu 81, Tyr 123, Thr 143, Lys 146, Asn 80, Ser 77, Trp 147, Thr 73, Thr 69, Gln 55, 

Tyr 99, Tyr 159, Tyr 7, Tyr 171, Tyr 59, Ser 116, Asn 70, Leu 156, Ile 66, Asn63, Phe 67, Leu 

163, Arg 62, Phe 33 

HLA-A*02:01 

(PDB ID:3MRE) 

Tyr 171, Tyr 59, Tyr 7, Glu 63, Tyr 99, Thr 99, Trp 147, Tyr 84, Lys 146, Thr 143, Tyr 123, 

Trp 167, Met 5, Leu 81, Val 76, Asp 77, Thr 80, Val 152, Gln 155, Leu 156, Arg 97, His 70 

HLA-A*30:02 

Trp 84, Pro 81, Tyr 123, Asp 143, Asp 146, Arg 80, Glu 77, Tyr 147, Ala 73, Met 69, Ser 116, 

Ser 95, Glu 70, Ala 163, Ser 33, Arg 99, Ala 159, Trp 171, Arg 59, Gln 179, Leu 184, Arg 194, 

Gly 50, Thr 104, Tyr 108, Gln 120 

HLA-A*23:01 

His 138, Arg 30, Ala 141, Gln 179, Ala 182, Thr 187, Gly 191, Trp 84, Pro 81, Phe 123, Asp 

143, Asp 146, Gly 80, Glu 77, Tyr 147, Ser 95, Ser 156, Ala 163, Ser 33, Arg 155, Arg 99, Ala 

159, Trp 171, Arg 59 

HLA-B*15:03 
Trp 84, Pro 81, Tyr 123, Asp 143, Asp 146, Gly 80, Glu 77, Tyr 147, Ala 73, Ser 116, Thr 95, 

Ala 70, Ala 163, Tyr 33, Tyr 51, Arg 181, Val 189, Arg 194, Val 49, Arg 99, Trp 171, Arg 59 

HLA-Cw*07:02 

Trp 84, Pro 81, Ser 123, Asp 143, Asp 146, Gly 80, Glu 77, Tyr 147, Ala 73, Gly 69, Ser 116, 

Ala 95, Glu 70, Ser 156, Ala 163, Asp 33, Arg 99, Arg 155, Ala 159, Leu 171, Arg 59, Tyr 195, 

Thr 187, Leu 102, Gln 179 

Peptide docking box dimensions were set 

automatically based on peptide ligand set. Default 

parameters were used. Number of poses to return 

for each independent docking run was set to 1 for 

all macromolecules except HLA-B*51:01, for 

which it was 10. Scoring method used was MM-
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GBSA which is more accurate than Glide score 

which is faster. 

The Glide score or docking score is an estimate of 

the binding affinity, but it is only accurate to a few 

kcal/mol. Its use is limited to distinguishing actives 

from inactives. MMGBSA allows receptor 

flexibility and is based on molecular mechanics 

applications. It is more accurate than Glide score 

and is usually set as criteria in peptide docking. 

Molecular dynamics 

Molecular dynamics was carried out in Desmond 

package of Maestro 9.7. As HLAs are membrane 

proteins, DPPC membrane model was set up at 

residues between 136 and 176 of protein chain for 

HLA-B*53:01 and between 196 and 166 of protein 

chain for HLA-Cw*07:02. TIP3P water was the 

solvent model used with orthorhombic boundary of 

size 10X10X10 Ǻ. Salt concentration used was 

0.15M with positive ion Na
+
 and negative ion Cl

-
. 

Surface tension was 4000 barǺ. Box size 

calculation method was opted as buffer. Other 

default parameters were chosen. OPLS_2005 force 

field was used. 

Simulation was carried out for 10ns. NPT ensemble 

class was used with temperature 300K and pressure 

1.01325 bar. The model system was relaxed before 

simulation. 

Results 

Homology modeling 

Model validation 

Ramachandran plot- The Ramachandran plot 

displays the psi and phi backbone conformational 

angles for each residue in a protein. In a 

Ramachandran plot, the core or allowed regions are 

the areas in the plot that show the preferred regions 

for psi/phi angle pairs for residues in a protein. If 

the determination of protein structure is reliable, 

most pairs will be in the favored regions of the plot 

and only a few will be in disallowed regions. The 

Ramachandran plot analysis was done by 

RAMPAGE server. 
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Figure 4: Ramachandran plot analysis of HLA-A*23:01, HLA-A*30:02, HLA-B*15:03 and HLA-Cw*07:02 by 

Rampage server 

Errat plot- The Errat plots of HLAs are illustrated below. The overall quality factor and RMSD of homology 

models are shown which further increases the confidence of accepting the homology models. 

a b
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c d

Figure 5: Errat plots of (a) HLA-A*23:01, (b) HLA-A*30:02, (c) HLA-B*15:03, (d) HLA-Cw*07:02 

Table 2: Validation of homology models 

3D Structures 
Favoured 

Region 

Allowed 

Region 
Outlier Region Errat Score RMSD 

Temp: 1XR8 369 (97.6%) 7 (1.9%) 2 (0.5%) 94.429 

0.769 

Query: HLA-

B*15:03 
353 (98.1%) 7 (1.9%) 0 (0.0%) 80.690 

Temp: 2XPG 362 (96.5%) 13 (3.5%) 0 (0.0%) 90.196 

0.746 Query: HLA-

A*30:02 
356 (98.1%) 7 (1.9%) 0 (0.0%) 83.904 

Temp: 3I6L 533 (97.4%) 13 (2.4%) 1 (0.2%) 93.220 

0.444 Query: HLA-

A*23:01 
355 (97.8%) 8 (2.2%) 0 (0.0%) 76.632 

Temp: 4NT6 533 (97.4%) 13 (2.4%) 1 (0.2%) 87.989 

0.566 Query: HLA-

Cw*07:02 
353 (97.0%) 10 (2.7%) 1 (0.3%) 65.563 

After multiple template modeling 

Temp: 

4NT6 

1QQD 

1EFX 

533 (97.4%) 

344 (91.7%) 

640 (83.0%) 

13 (2.4%) 

25 (6.7%) 

100 (13.0%) 

1 (0.2%) 

6 (1.6%) 

31 (4.0%) 

87.989 

84.270 

79.545 

0.696 

0.8 

0.530 

Query: HLA-

Cw*07:02 
264 (97.4%) 7 (2.6%) 0 (0.0%) 87.5 
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The RMSD values were calculated using Chimera. In the above analysis the Errat plot score of HLA-Cw*07:02 

was not satisfactory, initially. Further model refinement was carried out. The homology model was built by 

multiple template modeling using 3 different templates. 

Figure 6: The structure of HLA-Cw* 07:02 before and after multiple template modeling 

Molecular docking 

Docking Validation 

The docking procedure was validated by first 

removing the co-crystallized epitope available in 

the PDB structure and redocking it with the same. 

Docking validation was done using the co 

crystallized ligand LPPVVAKEI against the HLA-

B*51:01 protein. In both cases the peptides bound 

in the same pose with the HLA and were very 

much similar conformationally when 

superimposed. 

The interactions shown in the PDB structure are: 

H bonds – Tyr 159, Tyr 9, Asn 70 (2 H bonds), 

Thr 73, Trp 147, Thr 143, Tyr 84, Asn 77, Lys 146 

Pi cation –Trp 167 

Figure 7: The redocked epitope binds in the same pose with the HLA-B*51:01 
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Table 3: Docking validation results 

Ligand 
MMGBSA DG 

binding score 
Docking score 

Interactions 

LPPVVAKEI -158.68 -11.59 

H bonds – Asn 70 (2 H bonds), Tyr 9, Arg 

62, Glu 152 (2 H bonds), Thr 143, Lys 146, 

Glu 76 

Salt bridge – Lys 146 

(6 similar interactions) 

LPPVVAKEI -120.54 -13.83 

H bonds – Tyr 159, Asn 70 (2 H bonds), Tyr 

9, Thr 73, Tyr 84, Lys 146 (2 H bonds), 

Trp147 

Salt bridge – Lys 146 

(10 similar interactions) 

Based on the above results, the peptide docking 

program of BioLuminate could be validated. The 

number of interactions which were similar to the co 

crystallized ligand was maximum in the second 

case. It has MMGBSA DG binding score -120.54 

and therefore this score was taken as a criteria to 

screen the ligands for all the proteins. 

Docking results 

 HLA-B*51:01(PDB ID: 1E27) –Following 

this the 20 ligands were docked against HLA-

B*51:01. The top 6 epitopes were selected based 

on MMGBSA DG binding score, number of 

interactions with protein that are similar to the 

experimentally obtained interactions, pose and 

docking score. 100 conformers were generated for 

each ligand. The interactions shown in the PDB 

structure are: 

H bonds – Tyr 159, Tyr 9, Asn 70 (2 H bonds), 

Thr 73, Trp 147, Thr 143, Tyr 84, Asn 77, Lys 146 

Pi cation –Trp 167 

Salt bridge – Lys 146 
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Table 4: Best binding scores of different epitopes with HLA-B*51:01 

Ligands 
MMGBSA DG 

binding score 
Docking score Interactions 

FQRTFSIPL -152.04 -15.78 

H bonds – Tyr 9, Asn 70 (2 H bonds), Tyr 

159, Tyr 99, Tyr 116, Glu 152 (2 H bonds), 

Trp 147, Asn 77,Tyr 84, Lys 146 

RTFSIPLGV -145.75 -12.07 

H bonds – Tyr 159, Tyr 9, Asn 70 (2 H 

bonds), Trp 147, Thr 73, Glu 152 (2 H bonds) 

π-π interaction –Thr 73 

TSFFLWVII -132.11 -10.36 

H bonds – Tyr 9, Lys 146, Tyr 159, Thr 73, 

Asn 70 (2 H bonds) 

π-π interaction – Tyr 159 

Pi cation interaction –Arg 62 

STHNTPVYK -126.12 -10.48 

H bonds – Glu 152, Tyr 116, Tyr 159, Tyr 7, 

Tyr 9, Asn 70 (2 H bonds) 

π-π interaction – Tyr 159 

π-cation interaction – Tyr 159 

VIALFCICK -123.61 -10.74 
H bonds – Tyr 9, Asn 70 (2 H bond), Tyr 159, 

Trp 147, Lys 146 (2-H bonds), Glu 152 

 HLA-B*53:01 (PDB ID: 1A1M) 

The interactions shown in the PDB structure before docking includes the following: 

H bonds – Asp 114, Tyr 99, Asn 63, Tyr 7, Tyr 171, Arg 62, Asn 77 (2 H bonds), Thr 143, Tyr 84, Trp 147, 

Lys 146 

π-π interactions –Arg 97, Tyr 99 

Salt bridge – Lys146 

Table 5: Best binding scores of different epitopes with HLA-B*53:01 

Ligand 
MMGBSA DG 

binding score 

Docking 

score 
Interactions 

NQDGLICGL -124.28 -10.94 

H bonds – Tyr 159, Arg 62, Lys 146, Trp 147, 

Asn 77(3H bonds), Glu 76, Thr 143 

Salt bridge – Lys 146 

RTFSIPLGV -120.93 -11.60 
H bonds - Tyr 7, Lys 146, Arg 62, Thr 73, Asn 

70, Trp 147, Asn 77, Glu 76 (2 H bonds) 

FLWVIILFQ -135.89 -9.01 

H bonds – Tyr 84, Thr 143, Trp 147, Lys 146, 

Tyr 99 (2 H bonds), Arg 62, Gln 155 

π-π interaction – Arg 62 
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RTSFFLWVI -122.25 -10.64 

H bonds -Lys 146, Asn 70, Asn 77, Glu 76, Trp 

147 

π-π interaction – Arg 97, Tyr 159, Tyr 99 

GYYSTTIRY -114.73 -12.04 

H bonds - Leu 163, Arg 62, Asn 70 (2 H bonds), 

Tyr 74, Asn 77, Arg 97, Trp 147 (2 H bonds), 

Glu 76 

π-π interaction – Tyr 74, Trp 147, Arg 97 

 HLA-B*35:01 (PDB ID: 3LKN) 

The interactions shown in the PDB structure before docking includes the following: 

H bonds – Ser 77, Asn 80, Lys 146, Thr 143, Tyr 84, Trp 147 (2 H bonds), Gln 155, Tyr 159, Tyr 99, Tyr 171, 

Tyr 7 

Table 6: Best binding scores of different epitopes with HLA-B*35:01 

Ligands 
MMGBSA DG 

binding score 

Docking 

score 
Interactions 

NQDGLICGL -105.65 -13.33 
H bonds - Tyr 99, Tyr 84, Thr 143, Glu 76, Asn 

80 (3 H bonds), Lys 146 (3 H bonds) 

STHNTPVYK -126.82 -10.11 

H bonds – Tyr 99, Tyr 7, Tyr 171, Arg 97, Ser 

77, Asn 70 (2 H bonds), Tyr 9, Lys 146 (2 H 

bonds), Asn 80 (2 H bonds), Glu 76 (2 H bonds) 

RTFSIPLGV -122.59 -8.92 

H bonds – Glu 76, Lys 146, Thr 73, Tyr 9, Asn 

70, Tyr 99, Gln 155 

π-π interaction – Arg 97 

YYSTTIRYQ -139.17 -10.46 

H bonds – Gln 155, Arg 62, Tyr 171, Tyr 7, Tyr 

99, Arg 97, Lys 146, Ser 77 

π-cation interaction – Lys 146 

RTSFFLWVI -127.69 -11.42 

H bonds – Lys 146, Asn 80, Glu 76, Trp 147, 

Asn 70 (2 H bonds), Arg 97, Tyr 9, Tyr 159, Arg 

62 

 HLA-A*02:01 (PDB ID: 3MRE) 

The interactions shown in the PDB structure before docking includes the following: 

H bonds – Trp 147, Lys 146, Tyr 84, Thr 143, Asp 77, Tyr 99, Lys 66, Glu 63, Tyr 171, Tyr 7 

π-cation interaction – Trp 167 

Salt bridge – Lys 146, Glu 63 
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Table 7: Best binding scores of different epitopes with HLA-A*02:01 

Ligands 
MMGBSA DG 

binding score 

Docking 

score 
Interactions 

RTSFFLWVI -112.60 -10.55 

H bonds - Lys 146, Tyr 116 (2 H bonds), Asp 

77, Thr 73 (2 H bonds), Arg 65, Arg 97, Glu 58 

π-π interaction – Lys 66 

π-cation interaction – Trp 167 

VIALFCICK 
-109.69 -9.146 

H bonds – Lys 146, Lys 146, Arg 97, Tyr99, Tyr 

171, Thr 73 

π-π interaction – Trp 147 

Salt bridge – Glu 63 

π-cation interaction – Trp 167 

GYYSTTIRY -93.18 -9.05 

H bonds – Lys 146, Tyr 84, Thr 143, Asp 77, 

Trp 147, Thr 73, Tyr7 (2 H bonds), Trp 167, Thr 

163, Arg 65 

π-π interaction – Trp 147 

π-cation interaction – Trp 167, Lys 66 

Salt bridge – Glu 63 

FLWVIILFQ -101.15 -8.30 

H bonds – Lys 146, Tyr 84,Asp 77, Trp 147, 

Lys 66, Trp 167 

π-π interaction – Arg 65, HID 70 

π-cation interaction – Arg 65 

RTFSIPLGV -105.91 -7.803 

H bonds - Lys 146, Trp 147, Glu 58, 

Thrb73,Tyr 116 (2 H bonds), Arg 97, Arg 65 (2 

H bonds), Asp 77 

 HLA-A*30:02 

Table 8: Best binding scores of different epitopes with HLA-A*30:02 

Ligands 
MMGBSA DG binding 

score 

Docking 

score 
Interactions 

FLWVIILFQ -109.60 -8.52 

H bonds – Thr 167, Tyr 108, Lys 170, Trp 

171, Asn 90, Gln 86 

π-π interaction – Trp 191, Tyr 183 

AEGVVAFLI 
-100.73 

-10.48 

H bonds – Trp 171, Asp 101 (2 H bond) 

Lys 170 (2 H bonds), Gln 179, Glu 87

π-π interaction – Tyr 123, Tyr 183 

Salt bridge – Lys 170 

FQRTFSIPL -81.60 -8.99 

H bonds – Arg 89, Glu 87, Gln 179, Thr 

187, Asp 101 

π-π interaction – Tyr 183 

TFAEGVVAL -73.03 -8.44 H bonds – Asp 101, Lys 170, Tyr 123, Tyr 
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183, Glu 87, Trp 176, Trp 171

π-cation interaction – Lys 170 

SFFLWVIIL -62.58 
-9.449 

H bonds – Thr 104, Lys 170, Asn90,Gln 

86,Trp 191 

π-π interaction – Trp 176 

 HLA-A*23:01 

Table 9: Best binding scores of different epitopes with HLA-A*23:01 

Ligands 
MMGBSA DG 

binding score 
Docking score Interactions 

RTSFFLWVI -96.97 -6.51 H bonds – Thr 187, Asp 190 (2 H bonds), 

Gln 179, Thr 97 

FQRTFSIPL -96.34 -10.51 

H bonds – Glu 86 (4 H bonds), Lys 90 (2 H 

bonds), Tyr 195, Tyr 183, Lys 170 

Salt bridge – Glu 86 

FFLWVIILF -92.53 -8.81 H bonds – Thr 97, Thr 187, Tyr 195 

RTFSIPLGV -89.16 -6.45 H bonds – Asp 190, Tyr 195, Trp 171 

YYSTTIRYQ -84.59 -9.88 

H bonds – Glu 87 (2 H bonds), Thr 187, 

Gln 179, Asn 101,Lys90 

 HLA-B*15:03 

Table 10: Best binding scores of different epitopes with HLA-B*15:03 

Ligands 
MMGBSA DG binding 

score 

Docking 

score 
Interactions 

RTSFFLWVI -101.69 -6.89 

H bonds –Trp 180, Ser 101, Trp 191, Glu 82 

(2 H bonds) 

π-π interaction – Trp 180 (2 bonds), Tyr 183 

TTIGEWAFW -81.22 -8.08 
H bonds – Lys 170, Glu 82, Ser 101, Glu 

176, Trp 171, Thr 97, Gln 89 

FQRTFSIPL -105.38 -7.16 
H bonds – Arg 86, Glu 176 (2 H bonds), Gln 

179 (2 H bonds), Trp 171, Lys 170 

GYYSTTIRY -105.33 -7.72 

H bonds – Gln 179, Glu 176 (2 H bonds), 

Asn 94, Tyr 23, Tyr 108, Thr 167 

π-π interaction –Trp 171 

Salt bridge – Glu 176 

RTFSIPLGV 
-89.77 -5.95 

H bonds – Glu 82,Arg 86, Glu 176, Ser 101 

π-cation interaction – Tyr 98, Arg 121 
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 HLA-Cw*07:02 

Table 11: Best binding scores of different epitopes with HLA-Cw*07:02 

Ligands 
MMGBSA DG 

binding score 

Docking 

score 
Interactions 

RTFSIPLGV -130.20 -8.10 

H bonds – Asp 33 (2 H bonds), Arg 121, Gln 94 

(4 H bonds), Asn 104, Lys 90, Glu 87 

Salt bridge – Asp 33 

FQRTFSIPL -127.58 -10.55 

H bonds – Asn 104, Asp 138, Gln 94, Asp 33 (2 

H bonds), Arg 93, Arg 121 

π-π interaction – Arg 86 

π-cation interaction – Arg 86 

FAFHKEGAF -120.91 -8.41 

H bonds – Asp 98, Gln 179, Tyr 31, Glu 87, Lys 

90, Gln 94 

π-π interaction –Tyr 31, Tyr 183 

π-cation interaction – Arg 121, Arg 93 

FLWVIILFQ -118.97 -11.64 

H bonds – Tyr 31, Glu 87, Gln 94 (2 H bonds), 

Tyr 108, Lys 90, Lys 170 

π-π interaction – Tyr 91 

π-cation interaction – Lys 170 

YYSTTIRYQ -109.45 -11.50 

H bonds – Glu 87, Tyr 31, Asp 138, Asp 33, Gln 

179 (2 H bonds), Arg 93 (2 H bonds), Tyr 108, 

Thr 167, Asp 98, Lys 90 

π-π interaction – Tyr 91, Tyr 183 

Apart from the above epitopes, TFAEGVVAF, 

NQDGLICGL, GYYSTTIRY, VIALFCICK, 

STHNTPVYK and GTNETEYLF were also found 

to have good pose, interaction and good score when 

docked against HLA-Cw*07:02. The cut off for 

MMGBSA DG binding score was considered as -

120 and hence these epitopes were screened off. 

In docking analysis, some common H bond 

interactions were found, mainly with Tyr 9, Asn 

70, Lys 146, Tyr 159, Trp 147 and Asn 77 for 

different HLA proteins. Salt bridge was found in 

many cases with Lys 146. The common 

interactions were found to be less in case of 

proteins that were modeled. The peptides were 

capped with N-methyl amide and acetyl groups. 

The residues in bold indicates the bond with these 

caps. From the analysis it can be concluded that 

FQRTFSIPL, RTFSIPLGV, NQDGLICGL, 

STHNTPVYK, FLWVIILFQ, VIALFCICK and 

RTSFFLWVI can be possible epitopes that can 

trigger a T cell immune response in humans. 

Molecular dynamics was carried out to validate 

docking results. 
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Figure 8: Best docked pose of RTFSIPLGV with HLA-B*51:01and NQDGLICGL with HLA-B*53:01 

Molecular dynamics 

A 5 ns simulation of the docked complex structure of HLA-B*53:01 with ligand NQDGLICGL was performed 

to obtain a dynamical picture of the conformational changes that occur in aqueous solutions. The simulation was 

further extended to 10ns under the same conditions. The RMSDs of the trajectory of protein and ligand is 

depicted below. 

Figure 9: RMSD of the ligand NQDGLICGL with HLA-B*53:01 for initial 5ns and final 5ns 

The RMSD showed that initially there was a greater fluctuation but after 7ns, the simulation converges. It 

indicates that the simulation has almost equilibrated throughout 10ns. 

RMSD of the PDB structure 1A1M (HLA-B*53:01) with co crystallized ligand TPYDINMQML was carried 

out for 10ns. The RMSD showed an equilibrated simulation as depicted below. 
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a b

Figure 10: (a) RMSD of the co crystallized ligand with HLA-B*53:01 for 10ns, (b) RMSD of the RTFSIPLGV 

(ligand) with HLA-Cw*07:02 for 10ns 

Further, the RMSD of ligand (RTFSIPLGV) with 

HLA-Cw*07:02 was analyzed and the graph 

obtained is shown below. The RMSD was found to 

be highly fluctuating, hence the result was not 

found to be satisfactory in this case. 

Protein RMSF 

The Root Mean Square Fluctuation (RMSF) is 

useful for characterizing local changes along the 

protein chain. Protein residues that interact with the 

ligand are marked with green-colored vertical bars. 

In this plot, peaks indicate areas of the protein that 

fluctuate the most during the simulation. It is 

observed that the tails (N- and C-terminal) fluctuate 

more than any other part of the protein. Secondary 

structure elements like alpha helices and beta 

strands are usually more rigid than the unstructured 

part of the protein, and thus fluctuate less than the 

loop regions. The RMSF is correlated with the 

PDB B factor. Due to the difference between the 

RMSF and B factor definitions, one-to-one 

correspondence should not be expected. However, 

the simulation results should parallel the 

crystallographic data as shown below. 

Figure 11: Protein RMSF of NQDGLICGL with HLA-B*53:01 
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Figure 12: Protein ligand contacts of the docked structure (NQDGLICGL) with HLA-B*53:01 and protein 

ligand contacts of the PDB structure 

Protein interactions with the ligand can be 

monitored throughout the simulation. These 

interactions can be categorized by type and 

summarized, as shown in the plot above. Protein-

ligand interactions (or 'contacts') are categorized 

into four types: hydrogen bonds, hydrophobic (π-

cation and π-π interaction), ionic and water bridges. 

The value 0.5 indicates 50% of the simulation time 

the specific interaction was maintained. In the 

above graph Asn 77 shows approximately 3.0 

interactions fraction, as it makes 3 H bond with the 

ligand residues. Tyr 7, Tyr 99, Trp 147, Asn 70, 

Tyr 159 and Gln 155 are other residues. 

The Arg 62 residue of the PDB structure forms 

about 4 H bonds with the co crystallized ligand. In 

the docked structure even though this residue is not 

making any significant interactions, the ligand 

makes good contacts with other important residues 

of the protein. 

Figure 13: 2D and 3D interactions showed by the co crystallized ligand with HLA-B*53:01after 10ns 

simulation 
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Figure 14: 2D and 3D interactions showed by the NQDGLICGL with HLA-B*53:01after 10ns simulation 

Conclusion 

Development of effective therapeutics for Ebola 

virus remains a high priority in the present 

scenario. This study is based on epitope focused 

vaccine design against Ebola virus. The study 

focused mainly on T-cell epitopes as the algorithms 

for identifying B-cell epitopes are not highly 

reliable. Different individuals respond to a disease 

differently and this is based on the HLA alleles 

present in them, which differs in each person. 

The major task was to find the suitable epitopes. It 

involved screening through different online servers. 

At this stage, it was necessary to specify HLA 

alleles as epitope-HLA interaction differs with 

different alleles. 

Eight HLA alleles were selected, based on its 

occurrence in African and World population. HLA-

B*53:01, HLA-B*51:01, HLA-B*35:01, HLA-

A*02:01 are those alleles whose PDB structures 

were available and HLA-A*30:02, HLA-A*23:01, 

HLA-B*15:03 and HLA-Cw*07:02 needed to be 

modeled using Modeler 9.14. 

The selected top 20 epitopes were docked with 

each HLA and FQRTFSIPL, RTFSIPLGV, 

NQDGLICGL, STHNTPVYK, FLWVIILFQ, 

VIALFCICK and RTSFFLWVI were found to 

have good pose, interaction and high MMGBSA 

binding score. Hence, they can be considered as 

suitable vaccine candidates. Further, molecular 

dynamics studies were carried out using Desmond, 

for the docked complex HLA-B*53:01-

NQDGLICGL. The interactions found were 

satisfactory and the complex was equilibrated 

during the simulation through 10ns. So, it can be a 

suitable vaccine candidate. At the same time the 

interactions between HLA-Cw*07:02 and 

RTFSIPLGV was found to be lesser stable. As seen 

in the history of reverse vaccinology, multiple 

epitope based vaccines show improved results. The 

addition of certain adjuvants also increase the 

efficacy of vaccines. The interactions may be 

increased by any of these methods. Further invitro 

studies are needed. Finally, it can be concluded that 

FQRTFSIPL, RTFSIPLGV, NQDGLICGL, 

STHNTPVYK, FLWVIILFQ, VIALFCICK and 

RTSFFLWVI are promising epitope vaccine 

candidates. 
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