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Abstract
The traditional Stokes’ theorem connects the macroscopic circulation 
along a closed boundary to the microscopic circulation across the surface it 
encloses. However, it proves inadequate for addressing complex geometries 
such as helicoidal paths, non-planar flow patterns and dynamic systems 
with open boundaries. We introduce an extension of Stokes’ theorem 
(EST) that provides a robust tool for interdisciplinary research in spiral/
helicoidal dynamics, facilitating the evaluation of rotational forces and 
circulation in both natural and engineered systems with open boundaries. 
We apply EST to model the rotational dynamics of flower petals and the 
helical forces within the stems of Trachelospermum jasminoides, known 
as star jasmine. For the flower, we demonstrate the equivalence between 
the line integral along the petal boundary and the surface integral over the 
enclosed disk, effectively capturing the uniform rotational stress generated 
by tangential forces. EST enables the analysis of external factors such as 
wind or pollinator interactions, while providing valuable insights to deepen 
our understanding of floral mechanics and petal growth patterns. For the 
stem, linking microscopic circulatory forces to macroscopic flow patterns, 
we demonstrate the interaction of torsional and bending stresses caused 
by the helical geometry. This finding has significant implications for 
understanding plant growth biomechanics and structural stability as well 
as for quantifying nutrient and water transport within stems, where spiral 
dynamics play a pivotal role. In summary, EST streamlines the analysis 
of rotational and translational forces in systems governed by spiral and 
helicoidal dynamics, including physical and biological phenomena such as 
phyllotaxis and plant growth. 

Keywords: Helical dynamics; Boundary analysis; Vector field integration; 
Flow topology, Plant growth; Stokes’ theorem; Trachelospermum jasminoides

Introduction
Stokes’ theorem (henceforward ST) is a fundamental principle of vector 

calculus that bridges the macroscopic circulation along a closed boundary 
with the microscopic circulation over the enclosed surface [1,2]. Extending 
the principles of Green’s theorem (GT) which applies to two-dimensional 
regions, ST provides a powerful framework for analyzing flows and 
circulations in three-dimensional spaces, uncovering profound connections 
between the local properties of vector fields and their global behaviour. GT 
and ST are effective tools for solving problems related to physical closed 
systems with clearly defined boundaries such as airflow circulation around 
wings, electromagnetic fields in circuits, surface heat flux, Coriolis-driven 
hemispherical flows, Earth’s deep interior dynamics [3-10]. In biology, 
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the two theorems contribute to understanding blood flow, 
electrical activity of the brain, growth patterns in ecosystems 
[11,12]. Yet, the classical ST is inherently limited to surfaces 
and boundaries that are closed, leaving a significant gap in 
its applicability to open, non-planar geometries. Indeed, 
many natural and engineered systems exhibit spiral or helical 
dynamics where forces and flows do not conform to closed 
loops or planar surfaces but rather are characterized by open, 
three-dimensional trajectories. Examples include the helical 
paths of tornadoes, magnetic vortices and spiral galaxies as 
well as bacterial motility and phyllotaxis of plants [13-15]. 

The novelty of this work lies in extending ST to 
accommodate spiral flows and helicoidal paths. By linking 
macroscopic and microscopic circulation properties, the 
extended theorem simplifies the evaluation of forces in 
systems with open, three-dimensional geometries. We utilize 
EST to analyse two biological scenarios: 1) the rotational 
forces in spiral flower petals and 2) the torsional stresses in 
helical plant stems, both exemplified by Trachelospermum 
jasminoides, commonly known as star jasmine. For the 
flower, EST captures the uniform rotational stresses induced 
by tangential forces acting along a circular boundary. This is 
achieved by demonstrating the equivalence of the line integral 
along the petal boundary and the surface integral over the 
enclosed disk. For the stem, EST quantifies the interaction 
between bending and torsional stresses caused by the helical 
geometry. 

This paper is structured as follows. First, we present the 
mathematical treatment of EST, including its derivation and 
parameterization for helicoidal paths. Next, we validate the 
theorem using the specific example of Trachelospermum 
jasminoides’ flowers and stems. Finally, we discuss the 
broader implications of EST, highlighting its potential to 
unify the study of dynamical systems with open boundaries. 

Materials and Methods
This study is grounded in a generalized form of 

Stokes’ theorem, adapted for spiral flows, which facilitates 
the analysis of forces and circulation in systems with 
helicoidal or spiral geometries. We aim to prove that, given 
a continuously differentiable, orientable helicoidal spiral 
vector field, the macroscopic circulation represented by the 
integral of a differential form over its surface equals the 
microscopic circulation represented by the volume integral 
of the curl perpendicular to the surface. The main challenge 
here is in defining the notion of a boundary in case of an open 
helicoidal spiral path, moving beyond the classical case of 
paths evaluable through ST. 

Stokes’ Theorem (ST) from vector calculus relates the 
surface integral of the curl of a vector field over a surface 
S to the line integral of the vector field along the boundary 
curve ∂S of the surface (Figure 1). In its general form, ST 

asserts that

where F is a a continuously differentiable two-dimensional 
vector field, ∂S is the closed boundary curve of the surface S 
that can be bended and stretched, dr is a differential element 
of the curve, dS is the differential element of the surface area, 
and is the curl of the vector field, i.e., a vector operator 
characterizing the infinitesimal circulation of vector fields in 
three-dimensional spaces. 

ST turns line integrals of a form over a boundary into more 
straight-forward double integrals over the bounded region, 
regardless of the position of vector singularities [16]. For ST 
to apply, the normal vector representing the surface must be 
positively oriented (i.e., counterclockwise) with respect to the 
tangent vector representing the orientation of the boundary.

Extended Stokes’ theorem (EST)
Consider a vector field F defined over a region in three-

dimensional space. Let the surface S be a portion of a plane 
or a more general surface that is bounded by a spiral curve 

. The goal is to use EST to evaluate the line integral over 
the spiral path in terms of the surface integral of the curl of 
F (Figure 1).

Let the spiral curve , with , be parameterized 
as

where ,  and describe respectively the radial, 
angular and vertical components of the spiral.

Let’s assume that lies on a flat plane, say the xy-plane, 
so the spiral path can be simplified to

where  increases as the angle t increases.

When the surface S is a surface spanned by the curve , 
S stands for a portion of the plane or surface generated by the 
spiral curve (Figure 1, left).

We are interested in computing the line integral of a 
vector field F along the spiral path (Figure 1, right). By ST, 
this line integral can be transformed into a surface integral 
involving the curl of F

The line integral over the spiral path is:

where ​ is the tangent vector to the spiral path at each 
point t.

https://mathinsight.org/parametrized_surface_normal_vector
https://mathinsight.org/parametrized_curve_orient
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The surface integral involves the curl of F, given by 
, and the surface normal vector associated with S

The normal vector depends on the orientation of 

the surface, while dS is the differential area element of the 
surface.

Upon achieving the extended formulation of ST, we will 
proceed in the next paragraphs with a detailed case study.

 
Figure 1: Diagrams depicting a helicoidal spiral (left) and the behavior of a vector field (right) around the z-axis. The left diagram illustrates 
a helicoidal spiral path, showcasing the interplay of rotational and translational motion along the z-axis. The right diagram represents a vector 
field with circular flow centered around the z-axis.

Simulated case study: analyzing rotational flows in 
stems and flowers

EST enables the analysis of rotational and translational 
forces in complex systems, providing a powerful framework 
for exploring biological and physical dynamics. To illustrate 
the new theorem, we will now explore a concrete example. 
We will consider Trachelospermum jasminoides, commonly 
known as star jasmine, belonging to the family Apocynaceae. 
Like many climbing plants, Trachelospermum jasminoides 
displays a counterclockwise helical movement of its stems 
as it climbs and twines around supports, also referred to as 
circumnutation [17-19] (Figure 2). The flowers also exhibit 
subtle rotational dynamics, although these movements are not 
as pronounced as the helical twisting of the stems [20]. The 
petals of the flowers are arranged in a spiral configuration and 
unfurl in a counterclockwise direction during blooming. 

In our simulation, the dynamics of flower petals are 
modeled using a circular boundary with a radius of 0.05 
m, representing the petals of a flower. Tangential forces 
along this boundary are applied and the resulting rotational 
stresses are analyzed through EST. The stem is modeled as a 
helicoidal path with a radius R=0.05 m and a vertical rise per 
turn of c=0.2 m. To evaluate the counterclockwise rotation of 
the flower and stem using EST, the rotation of the petals can 
be represented by a circular vector field, whereas the helical 
motion of the stem can be modelled using a helical vector 
field. The next step is to parameterize the flower and the stem 
(Figure 2C). 

1.	 For the flower, a circular boundary in the plane of the 
petals is defined, representing the region of interest for 
macroscopic rotation. 

2.	 For the stem, the helical path is parameterized using 
equations for a helicoidal spiral, where ,  

 and . Here r represents the 
radius, c the rise per turn and t the parameter along the 
path.

Subsequently, the surface S is defined for each component. 

1)	 For the flower, the surface is a disk enclosed by the petals’ 
rotational motion within their plane, 

2)	 whereas for the stem, the surface corresponds to the area 
traced by the helical path (Figure 2C). 

Calculating the forces acting on the flower and stem 
requires applying mechanical principles that account for 
both internal and external forces influencing their dynamics 
[21,22]. For the flower’s petals, the primary force is torque or 
rotational force, while the stem experiences a combination of 
bending forces and axial torsion due to its helical structure. 
We will calculate these forces systematically, step by step, 
starting from the external forces.

External forces acting of the flower petals and the 
stem
1)	 The rotation of the flower petals can be modeled as a torque 
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the polar moment of inertia and θ is the angle of twist over 
the length L.

Assuming G= 108 Pa typical for plant tissue, J = 0.005 m 
(5 mm radius) and θ = 2π (one full turn over L =0.2 m) [25], 
then

and

.
Internal forces acting within the flower petals and 
the stem 

To calculate the forces within the flower petals and the 
stem using EST, we need to evaluate the relationship between 
the macroscopic circulation (observable forces) and the 
microscopic properties (internal forces or stresses derived 
from the curl of the force field). The first step is to model the 
forces using vector fields. 

1)	 Concerning the flower petals, we assume that the external 
forces (e.g., wind or biological forces) act tangentially 
to their circular boundary. Further, we assume that the 
tangential forces induce internal stresses (force per unit 
area) propagating through the petals. Let the force field 
acting on the petals be

where k is the force constant proportional to the external 
pressure and x,y represents positions in the z=0 plane.

Next, we compute the curl of the force field. The curl 
of the force field relates to the internal stresses within the 
petals. For the flower petals, in the z=0 plane, the curl of 

is

This curl is constant in the z-direction, indicating a 
uniform internal rotational stress throughout the petals.

1)	 Concerning the helical stem, it experiences external 
forces such as gravity and biological growth forces 

that induce internal torsion and bending stresses. 

For simplicity, we model the net force field in the stem as: 
where the kz-term accounts for the vertical 

components of the forces. 

Next, we compute the curl of the force field, which 
provides insight into the internal stresses acting within 
the stem. This computation reveals the distribution and 
intensity of these stresses, capturing the complex interplay 
of forces across the helical structure. For the stem the curl of 

 is

induced by external forces such as wind, gravitational 
pull, biological growth forces [23]. Torque  on the 
petals is given by:

Where r is the radial vector from the center of the flower 
to the tip of a petal and F is the tangential force applied to 
the petal. Let’s assume that the radius of the flower is R=5 
cm, while the tangential force from wind or another source is 
F=0.1 N. The magnitude of the torque is

In case of multiple petals (n=5 in Trachelospermum 
jasminoides) experiencing similar forces, the total torque 
becomes

The rotational acceleration of the flower petals is 
related to the torque [24] via

Where I is the moment of inertia of the flower petals about 
the axis of rotation and α is the angular acceleration.

For a flower modeled as a system of point masses at a 
radius R

where m is the mass of a single petal. Assuming m=0.002 
kg (2 grams per petal):

The angular acceleration is:

1)	 The stem experiences forces from bending and torsion, 
influenced by its helical structure. These forces arise from 
gravity, wind and the biological tension exerted during 
growth.

2)	 The weight of the stem induces a bending gravitational 
force. For a stem of length L=20 cm and mass per unit 
length λ=0.01 kg/m:

This force acts vertically downward, generating a bending 
moment at the base of the stem

The helical structure of the stem experiences torsional 
forces due to the winding. The torsional moment is given 
by

Where G is the shear modulus of the stem material, J is 
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This suggests a complex pattern of internal stress within 
the stem, with components distributed across all three spatial 
directions.

Visualization and statistics
Diagrams of the flower petals and stem are created to 

illustrate their geometry, boundary dynamics, and associated 
vector fields. The Matplotlib library is employed to generate 
detailed plots, including the circular boundary and tangential 
forces acting on the flower petals, the curl of the vector field 
over various surfaces, and the helicoidal path and vector field 
representation for the stem. 

1)	 For the flower petals, the torque arising from tangential 
forces induces a counterclockwise rotation, with the total 
torque  and the angular acceleration 
measured as α=1000 rad/s2. The internal stresses in the 
petals are uniform with a value of 2k and are directly 
proportional to the external forces acting on them. This 
proportionality explains the rotational equilibrium 
observed in the petals.

2)	 For the stem, the primary forces include a gravitational 
bending moment  and a torsional moment 
T=3.08 Nm due to a helical twist. The internal stresses in 
the stem vary in all three dimensions because of its helical 
geometry. Among these stresses, torsion, proportional to 
kc​, predominates, whereas bending stresses, proportional 
to kR​, have a secondary but still notable influence.

We can now apply EST to relate macroscopic and 
microscopic circulation. The surface integral of the curl of the 
vector field is computed over the surfaces, relating the surface 
integrals to the line integrals along the boundaries. For the 
flower petals, the counterclockwise macroscopic rotation is 
calculated by integrating along the circular path in the plane. 
For the stem, the integral is evaluated over the helical surface.

1)	 Concerning the flower petals, the boundary of the flower 
is a circle of radius R. The macroscopic circulation (line 
integral along the petal boundary) is

Using the curl, the surface integral is

Both results match, confirming that the inner stresses in 
the petals are proportional to 2k.

In sum, the numerical values for the macroscopic 
(surface) flows and microscopic (internal) flows in the 
flower, as governed by EST, are as follows. For the flower, 
the surface flow (evaluated as a surface integral) is 0.157N\
ppm, while the internal flow (evaluated as a line integral) 
is also 0.157N\ppm. The flower petals exhibit a simple and 
symmetric geometry, where forces act tangentially along a 
circular boundary in the z=0 plane. The petals lie on a flat, 
two-dimensional surface characterized by a constant curl of 
the force field , signifying that the internal 
forces are uniformly distributed. This uniform distribution 
creates a direct and proportional relationship between the 
macroscopic flow (line integral along the circular boundary) 
and the microscopic flow (surface integral over the disk). The 
symmetry of the geometry ensures that every contribution to 
the line integral is exactly matched by the surface integral. 
Consequently, the uniform geometry and constant curl lead to 
a perfect agreement between the surface flow and the internal 

 
Figure 2: Trachelospermum jasminoides. The flower petals (Figure 
2A) and the stem (Figure 2B) display a counterclockwise path. 
Figure 2C illustrates the geometry of the boundaries, the associated 
vector fields and the internal flows within the flower petals and the 
stem.

To ensure statistical validation, numerical accuracy is 
achieved through high-resolution parameterization, with 
the parameter t sampled at 1,000 points per cycle. The 
consistency between line integrals and surface integrals 
is carefully evaluated to confirm the applicability of the 
extended theorem to the analyzed geometries. 

In the sequel, the surface integral of the curl of the vector 
field will be computed over these surfaces using the extended 
Stokes’ theorem (EST).

Results
As stated above, both the flower and the stem experience 

external and internal mechanical forces that influence their 
motion and structural behavior:
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flow, consistent with EST.

1)	 Concerning the helical stem, the boundary of the stem is 
parameterized as a helicoidal spiral

The macroscopic circulation (line integral along the 
helical path) is

For one turn

Using the curl, the surface integral is approximated by the 
ribbon spanned by the helix

The surface area of the ribbon is

Thus

In sum, the numerical values for the macroscopic 
(surface) flows and microscopic (internal) flows in the stem, 
as governed by EST, are as follows. For the stem, the surface 
flow (evaluated as a surface integral) is 2.513N\ppm, while 
the internal flow (evaluated as a line integral) is 8.053N\ppm. 
Unlike the flower, the values for surface flow and internal flow 
differ significantly. This is due to the stem’s more complex 
geometry, which features a three-dimensional helicoidal 
structure with a helical boundary and a ribbon-like surface. 
Unlike the constant curl observed in the flower, the curl of 
the force field in the stem varies in all three 
dimensions. This non-uniform curl introduces additional 
contributions to the surface integral that are not directly 
proportional to the line integral along the helical path. The 
helicoidal surface spanned by the path is not planar. Its area 
depends on the radius of the helix and the rise per turn (c), 
which increases the surface integral significantly compared to 
the simpler circular geometry of the flower. The line integral 
along the helical path includes contributions from the vertical 
rise (z-component), which are absent in the flat geometry 
of the flower. These vertical components add substantially 
to the internal flow, making it larger than the surface flow. 
Forces and circulation in the stem are not confined to a two-
dimensional plane, rather display three-dimensional dynamics 
that capture complex interactions such as bending, twisting 
and torsional effects, further contributing to the discrepancy 
between the surface and internal flows. Therefore, the stem's 

intricate geometry and three-dimensional dynamics lead to a 
disparity between surface and internal flows, reflecting the 
additional factors at play in its structural behavior.

In conclusion, 

1)	 flowers have a circular, symmetric geometry that ensures 
uniform force distribution and curl. This results in surface 
and internal flows being equal, as the entire flow field is 
captured in a flat, two-dimensional setup. 

2)	 In contrast, the stem's helicoidal geometry introduces non-
uniform force distributions and additional components 
such as vertical contributions and a larger surface area. 
These factors create a larger internal flow compared to 
the surface flow, as the line integral accounts for three-
dimensional effects that the surface integral does not fully 
capture.

These differences highlight the impact of geometry and 
force distribution on the interplay between macroscopic 
circulation and microscopic forces, showcasing the utility 
of the extended Stokes’ theorem in analysing forces and 
circulation in systems exhibiting spiral dynamics.

Conclusion
Classical theorems such as Green’s Theorem (GT) and 

Stokes’ Theorem (ST) have been pivotal in linking local 
properties of vector fields to their global behavior. GT 
applies just to two-dimensional regions and closed curves, 
while ST extends to three-dimensional spaces requiring 
closed surfaces or boundaries for its application [1,2]. These 
theorems, focused on closed-loop circulations, have proven 
instrumental in analyzing flows and circulations in systems 
where boundaries are well-defined, such as steady-state 
circulations in airflow around wings or electromagnetic 
field behavior in closed circuits [4,5]. However, their 
utility diminishes when applied to open, three-dimensional 
trajectories like the helicoidal spirals which are frequently 
encountered in natural and engineered systems.

We suggest a generalization of ST to establish a 
mathematical framework connecting the line integral along a 
helicoidal spiral path to the surface integral of the curl of the 
vector field over a bounded region. By redefining the boundary 
concept for helicoidal paths, this framework provides a 
new tool for analyzing macroscopic and microscopic flow 
dynamics in complex systems. The EST formulation provides 
novel insights into the interplay between rotational and 
translational motions, allowing for a deeper understanding of 
spiral flows in a variety of physical and biological systems. A 
key advantage of the extended formulation lies in its ability 
to model a wide range of systems where spiral or helical 
dynamics are dominant. For instance, the novel framework 
enables the analysis of DNA supercoiling, bacterial flagella, 
biomechanical patterns such as the phyllotaxis of plants 
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Figure 3: Application of the extended Stoke’s theorem to flowers (Figures 3A-B) and stems (Figures 3C-D) of Trachelospermum jasminoides. 
Figure 3A. Diagram illustrating the flower rotation and the curl of vector field. The red circle represents the boundary of the flower petals 
modeled as a planar region in the z=0 plane. The purple arrows visualize the curl of the vector field, representing the microscopic circulation 
that contributes to the macroscopic rotation of the flower petals. Figure 3B. Diagram illustrating the forces acting on the flower. The circular 
boundary (blue) represents the edge of the flower petals. Tangential forces (red arrows) act along the edges of the petals, showcasing the 
influence of external or internal factors. The calculated curl of the vector field is constant at ∇×F=2k (annotated in purple) in the z-direction, 
indicating uniform rotational stresses throughout the petal boundary. Figure 3C. Diagram illustrating the helicoidal spiral of the stem and the 
vector field. The blue curve depicts the helicoidal path of the stem, while the green arrows represent a circular vector field around the z-axis, 
illustrating the rotational and translational flow and its interaction with the spiral geometry. Figure 3D. Diagram illustrating the forces acting 
on the stem. The helical path (blue curve) represents the stem’s geometry. The torsional forces (green arrows), resulting from a combination 
of bending and twisting actions, act along the helical structure contributing to internal stress distribution. The curl vector field displays non-
uniform rotational stresses with components ∇×F=(k,k,2k).
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[15,26] intracardiac spiral flows observed in cardiac cycles 
[27] as well as magnetic vortices in superconductors [14] and 
rotational dynamics of spiral galaxies [13], where classical 
methods fail to capture the intricacies of rotational and 
translational dynamics [28-34].

In this paper, EST is applied to two case studies related 
with Trachelospermum jasminoides, namely the forces acting 
on flower petals and the helical stress distribution within 
plant stems. 

1)	 For the flower petals, the circular geometry allows for 
a straightforward application EST, since the tangential 
forces acting along the petal boundary produce a uniform 
curl which is proportional to the rotational stresses. The 
equivalence between the line integral along the petal 
boundary and the surface integral of the curl over the 
enclosed disk validates EST’s effectiveness for two-
dimensional spiral systems. The uniform rotational 
stresses observed in the petals align well with the 
mathematical predictions of EST. This provides insights 
into how forces are distributed within the boundary of the 
flower, potentially aiding in the study of floral mechanics 
and growth patterns. EST suggests that microscopic 
forces acting at the level of the petals contribute to the 
macroscopic rotational motion observed at the flower’s 
boundary. This could be applied to study the impact of 
environmental factors like wind on plant structures and to 
investigate the mechanical interactions between flowers 
and pollinators during the pollination process. Still, EST 
effectively simplifies complex calculations by converting 
a line integral along the flower’s boundary into a surface 
integral over the petal region. This transformation 
minimizes computational effort while preserving 
accuracy.

2)	 In the case of the stem, although the helical geometry 
of the stem presents a significant challenge for classical 
mathematical tools, EST effectively simplifies the 
intricate interplay of forces involved. The torsional and 
bending forces are captured through the curl of the vector 
field, which has components in all three dimensions. 
The equivalence of the surface integral over the helical 
ribbon region and the line integral along the helical path 
demonstrates the robustness of EST in handling three-
dimensional geometries with open boundaries. The EST 
capability to connect macroscopic flow patterns with 
microscopic circulatory forces may have significant 
implications for understanding the biomechanics of plant 
growth and structural stability. This relationship can also 
provide valuable insights for studies on nutrient and water 
transport within stems, as these processes often involve 
spiral dynamics. 

Certain assumptions and limitations are inherent in 
our analysis. EST assumes that the involved vector fields 
and surfaces are continuously differentiable. In real-world 

biological systems, irregularities and discontinuities in the 
geometry or force distribution may reduce the accuracy 
of the analysis. The flower petals are modeled as a perfect 
circle and the stem as a regular helix. While this simplifies 
the mathematical analysis of forces in idealized systems, 
real-world systems often deviate from these idealized shapes. 
The analysis of irregular geometries or highly dynamic 
boundaries may still require significant computational effort, 
particularly for numerical integration of complex surface 
and line integrals. The tangential and torsional forces are 
assumed to be uniform across the boundaries. In reality, 
biological and environmental forces such as wind, gravity 
and growth pressures are often spatially and temporally 
variable. Additionally, secondary effects such as shear forces 
or anisotropic material properties are not incorporated, 
which could limit the applicability of the results to certain 
systems. Future work could extend the framework to handle 
more irregular and biologically realistic geometries, such as 
asymmetrical petals or non-uniform stem shapes. The analysis 
of time-varying forces and boundaries, such as those caused 
by growth or environmental changes, could provide deeper 
insights into real dynamics. Integrating the extended theorem 
with experimental data would help validate the theoretical 
predictions and refine the mathematical models. 

In conclusion, the proposed extension to Stokes’ Theorem 
integrates helicoidal paths into circulation analysis, bridging 
a critical gap and expanding its applicability to open, non-
planar trajectories. By redefining boundaries, it simplifies the 
study of rotational and translational flows, offering a versatile 
tool for analyzing complex dynamics such as those observed 
in the flowers and stem of Trachelospermum jasminoides. 
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