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Introduction
Medical imaging, especially computed tomography (CT), is becoming 

increasingly important in research studies and clinical trials. Large projects 
and trials could include hundreds or thousands of CT studies and adequate 
image quality is essential for reliable results. This is a particular concern in 
multi-center trials, which often provide detailed imaging guides that must be 
followed in order to correctly include patients. Problems related to imaging 
could lead to either exclusion of patients or false image data incorporated 
in study or trial results. A quality check of images selected for a study is 
therefore an important process. Today, this is performed manually. Often, 
the quality check must be performed promptly by the clinical research 
organization before the patient can be enrolled. In both clinical trials and in 
large retrospective studies, this could be tedious work. The quality check of 
images could ensure for example that:

• The correct part of the body is visible in the CT, e.g., the chest in a lung
cancer study,
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• CT artefacts are not present, e.g., hip prostheses causing
artefacts which usually prevent a proper analysis of the
prostate,

• The CT is acquired according to the study protocol
regarding the use of intravenous or oral contrast.

Information about a CT study should ideally be described
in the DICOM tags. However, experience shows that it is not 
possible to rely only on this information. This is true especially 
in research projects and clinical trials when important 
information in the DICOM tags could be deleted in the 
pseudonymization process. The use of artificial intelligence 
(AI) to solve clinical problems has been intensely studied 
in recent times [1]. Deep learning, in particular, has gained 
attention as a method of obtaining complex information from 
medical images. AI could potentially be trained to help with 
image quality assessment and could be an important tool in 
this important, otherwise manual, task. The aim of this study 
was to develop an AI-based method for quality assessment 
of CT studies, both regarding the parts of the body included 
(i.e. head, chest, abdomen, pelvis), and other image features 
(i.e. presence of hip prosthesis, intravenous contrast and oral 
contrast).

Methods
Patients

We retrospectively included 1,000 CT studies from eight 
publicly available CT databases, see Table 1.

Before training the model, the full image set of 1, 000 
CT studies was randomly divided into a training (n = 500), a 
validation/tuning (n = 250), and a testing set (n = 250). The 
test set was reserved for model evaluation.
Manual Classification/Ground Truth Definition

All CT studies were classified by a nuclear medicine 
specialist experienced in hybrid imaging. Each case was 
classified based on the presence of the following seven 
features:

• Head- The cranium is visible at least partly. Head is not
present if only part of the mandible is visible.

• Chest- The lungs are visible. Only very minor parts may
be missing.

• Abdomen- Main parts of liver, spleen, and the kidneys
are visible.

• Pelvis- The hip bones are visible.
• Hip prosthesis- Uni- or bilateral hip prosthesis including

implants for fixation of hip fractures.
• Intravenous (IV) contrast- Signs of intravenous contrast

including different phases.

• Oral contrast- Signs of oral contrast including different
phases.

An overview of the distribution of the different classes in 
the dataset is given in Table 2.

AI Tool
The AI tool consists of a 3D-ResNet, [17] a deep neural 

network designed for classification of 3D images. The 
network have an input shape of 110 × 110 × 110 × 1 pixels 
with 7 output channels each with its own sigmoid activation. 
Each output channel represents one of the classes defined 
in  Section 2.2. Many CT images contain quite a lot of air, 
which is not helpful for classification. In order to remove 
air, the images are smoothed using a Gaussian kernel with 
standard deviation 5mm3. An axis-aligned bounding box is 
then fitted to all pixels with Hounsfield unit (HU) above –800 
in the smoothed image. The original image is then cropped to 
this bounding box. The cropped CT images are pre-processed 
by clamping the HU values to the range [-1000, 3000] and 
then normalized to [-1, 1]. Furthermore, the CT volumes are 
re-sized to resolution 5 × 6 × 12 mm (or the smallest possible 
pixel shape with the same aspect ratio making the full image 
fit) and placed in the middle of the input volume.

Sampling: The classes are quite imbalanced as seen in Table 
2. In order to sample uncommon examples more often each
image i is sampled proportional to a weight wi defined as:

      (1)

Database Number of 
images References

C4KC-KiTS 204 [2–4]

ACRIN 6668 203 [2, 5, 6]

CT Lymph Nodes 176 [2, 7–9]

CT-ORG 117 [2, 10–12]

NSCLC-Radiomics 115 [2, 13, 14]

Task 07 Pancreas 100 [15]

Task 03 Liver 52 [15]

Anti-PD-1 Immunotherapy Lung 33 [2, 16]

Total 1,000

Table 1: The number of images selected from each publicly 
available database.

Class Positive count Negative count
Head 256 744
Chest 603 397

Abdomen 903 97
Pelvis 702 298

Hip prosthesis 25 975
Intravenous contrast 256 744

Oral contrast 422 578

Table 2: Positive and negative examples for each class in the dataset.
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where L  is the set of labels, pℓ  the total number of positive 
examples, and nℓ the total number of negative examples for 
label ℓ. pℓ and nℓ are calculated individually for the training 
and validation sets.
Training: Binary cross-entropy is used as loss function 
and the network is optimized using the ADAM optimizer 
[18] with Nesterov momentum and an initial learning rate of
1 × 10−5. Each training and validation epoch consists of 2, 000
samples and 400 samples respectively. If the validation loss
has not improved for 10 epochs the learning rate is halved
until it reaches a minimum value of 1 × 10−8. The training
stops when validation loss has not improved for 20 epochs.
During training the images are augmented using rotations
(−0.1 to 0.1 radians), scaling (−10 to 10%) and an intensity
shift of (−100 to +100 HU).

Results
The classification results on the test set of is presented in 

Table 3. The accuracy for the anatomical regions and presence 
of hip prosthesis were 98.4% to 100.0%. The accuracy for 
intravenous contrast was 89.6% and for oral contrast 82.4%. 
Figure 1 and 2 show patient examples with correct and non-
correct classifications.

Discussion
In this study we have shown that it is feasible to develop 

an AI-based tool to automatically check that the correct body 
parts are visible in the CT studies, with a very high accuracy. 
The AI-based method was also able to accurately detect 
hip prosthesis even though the number of positive cases 
in the training and validation sets were limited (n = 19). A 
limitation of this study was that the AI-based tool only made 
a classification regarding presence of contrast or not. Many 
different phases of contrast enhancement exist, [19] typically 
early arterial phase (15–25 s post injection), late arterial 
phase (30–40 s post injection), hepatic or late portal venous 
phase (70–90 s post injection), nephrogenic phase (85–120 
s post injection) and excretory or delayed phase (5–10 min 
post injection). No clearly defined times post injection of 
the contrast agent exist, but with a large number of images 

with different contrast phases in the training group, it would 
probably be possible to train an AI-method to categorize 
the contrast phase in more detail than we did in this study. 
Other potential problems related to intravenous contrast is 
different amounts of contrast agent administered, for example 
reduced doses in patients with kidney disease. Problems with 
oral contrast for this type of task include different timings 
of contrast as well as different contrast agents (for example 
barium or iodine-based agents). A more comprehensive 
classification of contrast would most likely require a much 
larger training set. Some of the false negative cases of our 
test set represented very late intravenous phases with low 
contrast in the aorta but contrast in the kidneys or urinary 
bladder (Figure 2). This type of cases was not common in 
the training set. Also the appearance of oral contrast on 
CT showed substantial variation. In most cases contrast 
was clearly visible in the small bowel. In other cases only 
the stomach or colon showed contrast. Medical imaging is 
often a key asset in clinical trials, as it can provide efficacy 
evaluation and safety monitoring [20]. It is also often used as 
screening for eligible patients to include. Medical imaging 
can also improve clinical trial efficacy and reduce the time to 
complete a specific trial, by offering imaging biomarkers that 
can act as a surrogate endpoint. In order to do so, good image 
quality is crucial and therefore it is necessary to monitor 
image quality throughout different stages of a study. A step in 
the quality assessment could be to determine if correct body 

Classification task TP TN FP FN Accuracy
Head 70 176 0 4 98.40%
Chest 146 104 0 0 100.00%
Abdomen 222 24 0 4 98.40%
Pelvis 167 80 0 3 98.80%
Hip prosthesis 6 244 0 0 100.00%
Intravenous contrast 149 75 13 13 89.60%
Oral contrast 71 135 15 29 82.40%

Table 3: Result for the 250 test CT studies. True positive (TP), 
True negative (TN), False positive (FP), False negative (FN), and 
accuracy.

Figure 1: Example of a correctly classified image from ref [5]. 
Head, chest, abdomen, pelvis, hip prosthesis, and oral contrast were 
present. Intravenous contrast was not present.

Figure 2: Example of image with a miss-classification from ref [5]. 
Excretory intravenous contrast phase is present, but not detected by 
AI. All other classifications were correct.
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parts are included and if the images contain contrast agent 
or not. Further development of automated image quality 
assessment could also include image properties such as noise 
level and patient motion. Evaluation by a human observer is 
both time consuming and subjective. AI-based tools could 
help minimize both issues.

Conclusions
We have shown that it is feasible to develop an AI-

based method to automatically perform a quality assessment 
regarding if correct body parts are included in CT scans, with 
a very high accuracy.
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