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Abstract 

The aim of this study was to produce immunogenic nanoparticles carrying cytotoxic T lymphocyte (CTL) epitopes 

of hepatitis C virus non-structural proteins. We have obtained recombinant proteins forming virus-like particles and 

containing the sequences of self-assembling peptides (SAP), PADRE, and CTL epitopes. Using atomic force 

microscopy (AFM), the size of thus obtained nanoparticles was shown to be dependent on number of CTL epitopes 

located at the C terminus of recombinant proteins. Recombinant protein aggregating into virus-like particles (VLP) 

consisted of SAP and a helical linker. It formed 16-18 nm homogeneous particles, as shown by AFM. VPL-PE1, 

which differs from VPL by the presence of PADRE and CTL epitopes from NS3, forms 25-30 nm nanoparticles. 

The VLP-PE2 protein, different from VLP-PE1 by the presence of NS4a and NS4b CTL epitopes, formed 70-80 nm 

nanoparticles. The size of nanoparticles depended on the presence of SAP and the number of inserted epitopes. 

These nanoparticles activated human dendritic cells (DCs) that, in turn, stimulated autologous T lymphocytes. The 
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proliferative activity and interferon-γ (IFN-γ) production by the stimulated T lymphocytes were evaluated by their 

secondary stimulation with commercially available mixture of peptides from non-structural proteins of hepatitis C 

virus. The greatest stimulating effect on T lymphocytes was exerted by DCs activated by nanoparticles, consisting of 

the recombinant mosaic protein with SAP at the N terminus and CTL epitopes of NS3, NS4a, and NS4b proteins at 

the C terminus. The presence of SAP in recombinant proteins’ sequences increased their immunogenicity. 

 

Keywords: self-assembling peptides, nanoparticles, recombinant mosaic proteins, hepatitis C virus CTL epitopes, 

dendritic cells, T lymphocytes. 

 

1. Introduction 

Hepatitis C virus (HCV) is an enveloped RNA virus belonging to the Flaviviridae family. HCV causes an acute 

infectious liver disease with a high risk of turning into chronic hepatitis C (CHC). In many countries, 1-2% of the 

population has CHC that may lead to the development of cirrhosis and hepatocellular carcinoma (HCC) [1, 2]. In 

2016, WHO declared that hepatitis C may be eliminated by 2030 due to significant progress in the treatment of this 

disease with powerful direct-acting antivirals (DAAs). However, the risk of recurrent infection, HCC development, 

reinfection, and formation of occult hepatitis C remains even after successful treatment with DAAs [3-5]. 

Obviously, complete elimination of hepatitis C is impossible without developing an effective vaccine [6]. 

 

Modern scientific advances enable the development of a vaccine against hepatitis C, using various technological 

approaches. Thus, research is underway on the development of candidate vaccines based on recombinant proteins, 

synthetic peptides, virus-like particles, and viral vectors expressing various HCV antigens. For more than 30 years, 

scientists have been working to create a vaccine against hepatitis C, but so far there have been no radical successes 

[7]. However, the accumulated knowledge and new approaches give hope for the development of the vaccine [8, 9]. 

One of promising approaches to the creation of vaccines against hepatitis C is designing nanovaccines based on 

mosaic recombinant polypeptides that simultaneously contain immunogenic sequences of viral epitopes as well as 

adjuvant and signal sequences [10-12]. This approach was used in the present study. Cellular immune response to 

the epitopes of viral non-structural proteins NS3, NS4a, and NS4b has an essential role in the elimination of HCV in 

acute hepatitis C [13-15]. Therefore, in this study, immunogenic CTL epitopes from NS3, NS4a, and NS4b were 

included in a recombinant protein that also contained the PADRE sequence and the peptides that stimulated the 

assembly into nanoparticles. The PADRE (Pan HLA-DR-binding epitope) sequence was used as an internal adjuvant 

carrying a Th epitope [16]. Human dendritic cells (DCs) were activated by these nanoparticles. The aim of this study 

was to produce nanoparticles from a mosaic recombinant protein containing CTL epitopes from HCV proteins NS3, 

NS4a, and NS4b, adjuvant and signal sequences, and to analyze their effect on human DCs. 

 

2. Materials and Methods 

2.1 Bacteria and Plasmids 

E. coli DLT1270 and E. coli DH5a were used for cloning. E. coli DLT1270, transformed by a pQE30 plasmid 

containing the target protein sequence, was used for expression. The pQE30 plasmid was modified by inserting a 
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glycine linker at the BamH1-Sac1 sites to improve the interaction of the hexahistidine site with the Ni sorbent 

during purification. Nucleotide sequences optimized for E. coli encoded the recombinant proteins. 

 

2.2 Plasmids Construction 

The nucleotide sequences encoding recombinant proteins were obtained by annealing the oligonucleotides 

synthesized by Synthol (Russia). The recombinant proteins consisted of the following fragments starting from the N 

terminus: the sequences of hexahistidine, self-assembling peptides (SAP), spiral linker (Sp), Th epitope (PADRE), 

and TCL epitopes of NS3, NS4a, and NS4b proteins belonging to HCV subtype 1b. These sequences were inserted 

into the expressing plasmid pQE30, using the Sac1 and Ecor5 restriction sites and the latter was additionally 

introduced after Sac1. Sequence selection to enhance supercoiling of amino acid chains (helices) was carried out 

using the program available at https://embnet.vital-it.ch/software/COILS_form.html. 

 

2.3 Expression and Purification of Recombinant Proteins 

Expression and purification of recombinant proteins were carried out as described earlier with minor modifications 

[12]. Artificial genes encoding SAP and multiepitope  recombinant HCV proteins were cloned into the pQE30 

plasmid. Recombinant proteins carrying N-terminal polyhistidine tags were expressed in E. coli DLT1270 cells. The 

target proteins were eluted with SPT buffer (10mM Na2HPO4, 10mM Tris-HCl, pH 8.0) containing 1M imidazole 

and 4.5M urea. The eluted proteins were then refolded by dialysis to form nanoparticles. The eluates were dialyzed 

(1:500 volume ratio) overnight against 1M urea in phosphate-buffered saline (PBS) (pH 7.3) at 8°C and against 0.5 

M urea in PBS (pH 7.3) at 8°C. The samples were then dialyzed (1:500 volume ratio) twice overnight against PBS 

(pH 7.3) at 8°C.  

 

The protein concentration was determined by the Bradford method, using the Bio-Rad protein assay kit (Bio-Rad, 

USA). Recombinant proteins were analyzed by SDS polyacrylamide gel (10%) electrophoresis, using the Laemmli 

method, with molecular markers ranging from 10 kDa to 250 kDa (BioRad, #161-0363). 

 

2.4 Atomic force Microscopy Imaging (AFM) 

AFM images of the purified recombinant proteins were obtained using an NTEGRA Prima (NT-MDT, Russia) 

system with silicon cantilevers with Au reflective coating and a tip with a curvature radius of ~35 (nm) (NSG01, 

NT-MDT, Russia). After refolding, recombinant proteins were diluted with PBS, deposited onto freshly cleaved 

mica, and dried at room temperature. PBS was used as a negative control. 

 

2.5 DCs Generation and Activation 

The primary culture of human monocytes was obtained from peripheral blood leukocytes isolated by centrifugation 

in Ficoll-Hypaque density gradient and subsequent purification on magnetic beads with positive selection of CD14+ 

cells (MACS, Miltenyi Biotec). To obtain DCs, monocytes were cultured in RPMI-1640 medium with 10% fetal 

bovine serum, stimulating factor GM-CSF (1000 U/ml), and interleukin 4 (500 U/ml) (SciStoreLab, Russia) for 5 

days. To obtain mature DCs, they were further incubated with the addition of lipopolysaccharide (LPS, 1 µg/ml) 

https://embnet.vital-it.ch/software/COILS_form.html.
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from E. coli (Sigma-Aldrich, Germany) for 2 days [17]. Blood donors were three healthy volunteers. The study 

conforms to the ethical standards of the Declaration of Helsinki. 

 

Mature DCs were incubated in RPMI-1640 medium with 2% autogenous human serum and 10µg/ml recombinant 

protein for 3 days. The DCs were then pre-treated with mitomycin C (30 µg/ml) for 40 min at 37°C and washed 4 

times with PBS before co-cultivation with lymphocytes. 

 

2.6 Analysis of the Proliferative Activity of T lymphocytes 

T lymphocytes were isolated from human peripheral blood leukocytes. The lymphocytes were cryopreserved after 

monocytes were removed. The lymphocytes were thawed and purified using the Pan T Cell Isolation Kit II (Miltenyi 

Biotec, Germany). Purified T lymphocytes were co-cultured with the stimulated DCs at 10:1 ratio for 5 days. A 

medium containing a PepTivator mixture of peptides “HCV 1b NS3, NS4” (Miltenyi Biotec, Germany) was then 

added to concentration of 1µg/ml and incubated for 24 hours. As a positive control, cells were also stimulated in 

separate wells with 10µg/ml phythaemagglutinin (PHA, PanEco, Russia). The proliferative activity was evaluated 

using CCK-8 (Sigma-Aldrich, Germany). The stimulation index (SI) was measured as the ratio of optical density of 

stimulated cells to that of non-stimulated cells. Each measurement was repeated three times. 

 

2.7 Determination of IFN-γ in the Culture Medium 

For 3 days, the content of IFN-γ in the culture medium was determined using the Gamma-Interferon-ELISA-BEST 

test system (Vector Best, Russia). Each measurement was repeated three times. 

 

2.8 Statistical Analysis 

The quantitative data was calculated as mean ± 2SEM. A Student's t test was used to assess the significance of 

differences. P values <0.05 were taken as statistically significant. 

 

3. Results 

3.1 Design and expression of recombinant proteins containing HCV epitopes 

Certain viral antigenic epitopes in the form of synthetic peptides can induce an immune response which, however, 

will be very weak due to the small size of the peptides. It is known that these peptides’ immunogenicity can be 

increased by attaching them to a large protein or virus-like particles or nanoparticles [18]. In this study, we have 

constructed nanoparticles based on self-assembling mosaic recombinant polypeptides reproducing HLA-A2-

restricted CTL epitopes of non-structural proteins of HCV. Self-assembling peptides developed by Raman were used 

with a slight modification, which enhances supercoiling of recombinant proteins and improves assembly of 

nanoparticles that are similar in size to virus-like particles [19]. 

  

When designing mosaic recombinant proteins, we used the well-known immunogenic CTL epitopes of non-

structural HCV proteins: NS3, amino acid (aa) sequences 1069-1082 and aa 1169-1177 [20-23]; NS4a, aa 1689–

1711 [14, 15, 21, 24]; NS4b, aa 1763-1816 and aa 1851-1859 [22, 25, 26]. Dilysine linkers (KK) were inserted 
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between epitopes to improve their processing and presentation [27]. To enhance immunogenicity, the PADRE 

sequence (AKFVAAWTLKAAA) was inserted [16]. The structure of the first protein designated as PE2 was His-

PADRE-NS3 epitopes-NS4b epitopes-NS4a epitopes. Its amino acid sequence is shown below: 

MRGSHHHHHHGSACELAKFVAAWTLKAAADKKFLATCINGVCWTVYKKLLCPSGHVVKKKKHMWNFIS

GVQYLAGLSTLPGNPAIASLMAFTASITSPLTTQYTLLFNILGGWVKKILAGYGAGVKKLSTWVLVGGVLA

ALAAYCLTTGSVVIVGRIVLSGKPAIIPDREVLYQEFDEMEECDI 

 

The structure of the second protein designated as VLP was His-SAP-Sp. Its amino acid sequence is shown below: 

MRGSHHHHHHGSACELDMELRELQETLAALQDVRELLRQQVKQITFLKCLLMGGRLLCRLEELERRLEEL

ERRLEELERRDLEEAAEEKKEEAAEEKKEEAAEEKKEEAAEED.  

 

The structure of the third protein designated as VLP-PE1 was His-SAP-Sp-PADRE-NS3 epitopes. The amino acid 

sequence is shown below: 

MRGSHHHHHHGSACELDMELRELQETLAALQDVRELLRQQVKQITFLKCLLMGGRLLCRLEELERRLEEL

ERRLEELERRDLEEAAEEKKEEAAEEKKEEAAEEKKEEAAEEDL AKFVAAWTLKAAAD 

KKFLATCINGVCWTVYKKLLCPSGHVVKK.  

 

The fourth protein designated as VLP-PE2 had the following structure: His-SAP-Sp-PADRE-NS3 epitopes -NS4b 

epitopes -NS4a epitopes. The amino acid sequence is shown below: 

MRGSHHHHHHGSACELDMELRELQETLAALQDVRELLRQQVKQITFLKCLLMGGRLLCRLEELERRLEEL

ERRLEELERRDLEEAAEEKKEEAAEEKKEEAAEEKKEEAAEEDLAKFVAAWTLKAAADKKFLATCINGVC

WTVYKKLLCPSGHVVKKKKHMWNFISGVQYLAGLSTLPGNPAIASLMAFTASITSPLTTQYTLLFNILGGW

VKKILAGYGAGVKKLSTWVLVGGVLAALAAYCLTTGSVVIVGRIVLSGKPAIIPDREVLYQEFDEMEECDI 

As all recombinant proteins were expressed in an insoluble form, they were dissolved in 7M guanidine 

hydrochloride and purified on the Ni sorbent (as described in Materials and Methods). The purified proteins were 

analyzed by polyacrylamide gel electrophoresis (Fig. 1). 

 

Figure 1: As shown by electrophoretic analysis, proteins were sufficiently purified and aggregated into dimers and 

larger aggregates. The tendency to aggregate was most pronounced in a recombinant protein VLP containing only 

self-assembling peptides and a helical linker (Fig. 1, track 2). 
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3.2 Atomic force Microscopy Imaging of Recombinant Proteins 

After refolding, the purified recombinant proteins were examined using atomic force microscopy (AFM). All 

recombinant proteins containing self-assembling peptides formed nanoparticles. Nanoparticles, containing a self-

assembling peptide and a helical linker, formed homogeneous 16-18 nm particles (Fig. 2a). These particles formed 

aggregates. In the VLP-PE1 protein, which differs from VLP by the presence of PADRE and T cell epitopes from 

NS3, the nanoparticles were larger (25-30 nm) and less aggregated (Fig. 2b). The VLP-PE2 protein, which differed 

from VLP-PE1 by the presence of NS4a and NS4b, formed even larger nanoparticles 70-80 nm in size (Fig. 2c). The 

PE2 protein that contained no self-assembling peptides also formed aggregates, but more amorphous and 

inhomogeneous in size (from 10 to 150 nm) (Fig. 2d). 

 

 

a) AFM image of VLP (2D and 3D) 

 

b) AFM image of VLP-PE1 (2D and 3D) 

 

 

c) AFM image of VLP-PE2 (2D and 3D) 
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d) AFM image of PE (2D and 3D) 

Figure 2: It follows from the AFM data that the size of the resulting nanoparticles depends on the presence of a self-

assembling peptide and the number of inserted CTL epitopes. 

 

3.3 The Effects of the Recombinant Proteins on DCs 

T lymphocytes stimulated with activated DCs become able to enhance proliferation during secondary stimulation 

with immunogenic peptides. The proliferative activity of lymphocytes stimulated with activated DCs is shown in 

Fig. 3. 

 

Figure 3: The proliferative activity of lymphocytes after their stimulation with DCs activated by various 

recombinant proteins. Abbreviation: PHA - phytohemmaglutinin. Significance differences (p <0.01) from control 

(PBS) are marked with an asterisk (*). 

 

It follows from the data presented in Fig. 3 that the presence of self-assembling peptides in a recombinant protein is 

associated with a more efficient activation of DCs and, accordingly, with a more pronounced proliferative activity of 

the stimulated T lymphocytes. The stimulation index (SI) value depended on the recombinant protein’s structure. 

Thus, SI of PE that does not contain amino acid sequence of self-assembling peptides comprised 2.1, which was not 

statistically significant, while VLP-PE1 and VLP-PE2 containing self-assembling peptides had higher SI values of 
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3.8 and 5.2, respectively (p <0.01). Thus, the presence of self-assembling peptides in the sequence of recombinant 

protein increases its immunogenicity. 

 

3.4. Production of IFN-γ by T lymphocytes 

IFN-γ is involved in the regulation of nearly all phases of the immune and inflammatory responses, including the 

activation and differentiation of T, B, and NK cells and macrophages. IFN-γ secretion is characteristic of Th1 

lymphocytes that secrete it only when activated. IFN-γ also increases the expression of class I MHC proteins on 

professional APCs and thus promotes antigen presentation to helper T cells. Therefore, it was important to analyze 

the impact of our recombinant proteins on the production of IFN-γ by lymphocytes. The accumulation of IFN-γ 

reflects the efficiency of stimulation of T lymphocytes by DCs presenting CTL epitopes. The greatest accumulation 

of IFN-γ was observed in the case of DCs activated by VLP-PE2 (267±8 pg/ml), with slightly less accumulation 

noted with DCs activated by VLP-PE1 (146±12 pg/ml) and very little accumulation in the case of DCs activation by 

PE2 (75±13 pg/ml) (Fig. 4). 

 

 

Figure 4: The obtained data suggests that recombinant proteins in the form of nanoparticles activate DCs more 

effectively than epitope-containing recombinant proteins PE2 that do not contain self-assembling peptides. 

 

4. Discussion 

Nanoparticles formed from self-assembling peptides, which are close in size to viral particles, are commonly called 

virus-like particles [19]. These virus-like particles have attracted attention as a convenient approach to vaccine 

design due to their ability to efficiently deliver epitopes to sensitive cells of the immune system. It was previously 

shown that recombinant proteins assembled into artificial nanoparticles are highly immunogenic [11, 28]. During 

nanoparticles assembly process, antigenically active inserted parts are located on the outer surface of the particles, 

imitating viral particles [19]. And immune response is formed mainly to the inserted components located on the 

surface of nanoparticles. Several authors have shown that nanoparticles could activate immune system more 

efficiently than peptides because nanoparticles can be more easily captured and processed by antigen-presenting 
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cells (APCs), thus promoting the maturation of APCs and the immune response activation [29, 30]. It has also been 

reported that virus-like particles could easily travel to lymph nodes where they presented the antigens to resident 

APCs and activated T and B cell responses [31]. 

 

In the present study, we investigated the efficacy of human DCs activation by artificial nanoparticles carrying CTL 

epitopes of HCV non-structural proteins. The nanoparticles constructed from mosaic recombinant proteins varied in 

size from 16 to 80 nm, depending on the number of CTL epitopes localized at the C terminus. The VPL-PE1 protein 

contained epitopes from NS3 only, while the VPL-PE2 protein, in addition to these epitopes, also contained 

determinants from NS4a and NS4b. As a result, the VPL-PE2 particle size sharply increased from 25-30 nm to 70-

80 nm. This fact indicates the importance of amino acid sequences for the assembly of nanoparticles.  

 

DCs are key antigen-presenting cells in immune response [32-34]. It was shown in model experiments in mice that 

large nanoparticles (500-2,000 nm) bind well to DCs while smaller nanoparticles (20-200 nm) are more easily 

transported by DCs to the lymph nodes where they contact with the lymphocytes [35, 36] In our study, nanoparticles 

with epitopes of HCV proteins varied in size from 25 to 80 nm, which corresponds to smaller nanoparticles (the size 

of 20-200 nm) that are easily transported to the lymph nodes. In chronic hepatitis C, as shown by a number of 

authors, DCs largely lose their ability to activate T lymphocytes [37, 38]. Other authors believe that MHC II antigen 

processing and presentation function is preserved in individuals chronically infected with HCV [39]. It is possible 

that the problem of weak T cell immune response to candidate vaccine constructs is associated with their ineffective 

structure.  

 

Currently, biomedicine is actively pursuing research related to the use of virus-like particles as a platform for the 

construction of recombinant hepatitis C vaccines [40]. Efforts are mainly focused on the use of surface proteins E1 

and E2 of HCV. Some positive results have been obtained by a number of authors on chimpanzees [41]. We believe, 

however, that for more effective vaccine construction, a combination of B and T epitopes of both the structural and 

non-structural proteins of HCV must be included. 

 

5. Conclusion  

In this study, we have created mosaic recombinant proteins capable of self-assembling into nanoparticles and 

activating DCs that, in turn, successfully stimulated T lymphocytes. Our results indicate that the greatest stimulating 

effect on T lymphocytes is exerted by DCs activated by 70-80 nm nanoparticles carrying CTL epitopes of HCV 

NS3, NS4a, and NS4b proteins. Further research in this direction can lead to the development of a promising 

candidate vaccine against hepatitis C. 
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