
Research Article

Volume 6 • Issue 1 13

Accelerating Minimap2 for Accurate Long Read Alignment on GPUs
Harisankar Sadasivan1*, Milos Maric2, Eric Dawson2, Vishanth Iyer2, Johnny Israeli2*, Satish Narayanasamy1

Abstract
Long read sequencing technology is becoming increasingly popular

for Precision Medicine applications like Whole Genome Sequencing
(WGS) and microbial abundance estimation. Minimap2 is the state-
of-the-art aligner and mapper used by the leading long read sequencing
technologies, today. However, Minimap2 on CPUs is very slow for long
noisy reads. ∼60-70% of the run-time on a CPU comes from the highly
sequential chaining step in Minimap2. On the other hand, most Point-
of-Care computational workflows in long read sequencing use Graphics
Processing Units (GPUs). We present minimap2-accelerated (mm2-ax),
a heterogeneous design for sequence mapping and alignment where
minimap2’s compute intensive chaining step is sped up on the GPU
and demonstrate its time and cost benefits. We extract better intra-read
parallelism from chaining without losing mapping accuracy by forward
transforming Minimap2’s chaining algorithm. Moreover, we better utilize
the high memory available on modern cloud instances apart from better
workload balancing, data locality and minimal branch divergence on the
GPU. We show mm2-ax on an NVIDIA A100 GPU improves the chaining
step with 5.41 - 2.57X speedup and 4.07 - 1.93X speedup : costup over the
fastest version of Minimap2, mm2-fast, benchmarked on a Google Cloud
Platform instance of 30 SIMD cores.

Affiliation:
1Department of Computer Science and Engineering,
University of Michigan Ann Arbor, MI 48109, USA
2NVIDIA Corporation, Santa Clara, CA 95051, USA

*Corresponding author:
Harisankar Sadasivan, Department of Computer Science
and Engineering, University of Michigan Ann Arbor, MI
48109, USA.

Johnny Israeli, NVIDIA Corporation, Santa Clara, CA
95051, USA.

Citation: Harisankar Sadasivan, Milos Maric,
Eric Dawson, Vishanth Iyer, Johnny Israeli,
Satish Narayanasamy. Accelerating Minimap2 for
Accurate Long Read Alignment on GPUs. Journal of
Biotechnology and Biomedicine 6 (2023): 13-23.

Received: December 23, 2022
Accepted: December 12, 2022
Published: January 20, 2023

Keywords: Sequence alignment; Minimap2; GPU; Chaining; Nanopore

Introduction
Long read sequencing is gaining more popularity with improved raw read

accuracy, reduced end-to-end sequencing times, lower costs of adoption and
ease of portability [1, 2]. Longer reads help span highly repetitive regions in
the genome which short reads cannot. This helps applications like denovo
assembly and structural variant calling [1, 3]. A recent study used long read
sequencing to showcase the world’s fastest blood to variants workflow for
genetic diagnosis at the point-of-care [2]. This further underlines the emerging
significance of long read sequencing.Amongst the many post-sequencing
steps in long read processing workflows, sequence mapping and alignment
is one of the first and amongst the most time and cost consuming steps.
Sequence alignment [4] in bioinformatics is a way of arranging the primary
sequences of DNA, RNA or protein to identify regions of similarity while
sequence mapping is a subset of alignment and only finds the approximate
origin of query sequence in the target. We observe that sequence mapping and
alignment is slow and users often spend costly cloud instance hours to keep
up with high throughput sequencers [2]. This problem can worsen as the focus
shifts to longer reads. Additionally, we find that General Purpose Graphics
Processing Units (GPGPUs or simply GPUs) are becoming increasingly
popular for genomics processing. Several high throughput sequencers from

file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark9
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark10
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark9
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark11
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark10
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark12
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark10

Sadasivan S et al., J Biotechnol Biomed 2023
DOI:10.26502/jbb.2642-91280067

Citation: Harisankar Sadasivan, Milos Maric, Eric Dawson, Vishanth Iyer, Johnny Israeli, Satish Narayanasamy. Accelerating Minimap2 for
Accurate Long Read Alignment on GPUs. Journal of Biotechnology and Biomedicine 6 (2023): 13-23.

Volume 6 • Issue 1 14

Oxford Nanopore [5] (GridION and PromethION series),
Thermofisher’s Ion Proton 48 [6] and MGI’s DNBSEQ-T7
[7] have in-built GPUs. Many popular genome sequencing
workflows also utilize GPUs for computation [8–10]. In this
work, we present minimap2-accelerated (mm2-ax) which
speeds up minimap2 (mm2) on the GPU without losing
mapping accuracy and demonstrate its time and cost benefits.

Background
Minimap2: A brief overview

Minimap2 (mm2) [11] is the state-of-the-art DNA/mRNA
sequence mapper and aligner for the most popular long read
sequencing platforms like Oxford Nanopore Technologies
(ONT) and Pacific Biosciences (PacBio) [12]. While BLAST
[4] (using seed-extend paradigm) remains a powerful tool for
full genome alignment, it is very slow especially on very long
reads. For faster alignments, more recent aligners [13–17]
including mm2 filter seeds prior to the final step of base-level
alignment. mm2’s algorithm is based on the seed-chain-
align paradigm (detailed in Figure 1) and has an offline pre-
processing step to build index from target reference. In the
offline pre-processing step, the reference genome is indexed
to a multimap using a hash table with the popular time and
space-saving k-mer samples called minimizers [18] as the
key and minimizer locations on the reference as the values.
Seeding is fast and identifies short fixed-length exact matches
(minimizer seeds) between a read and a reference sequence.
When mm2 processes a sequenced read, minimizers from the
read are used to query the reference index for exact matches
(anchors). These anchors are then sorted based on position
in the reference and then passed onto the next step, chaining.
Chaining takes anchors sorted based on position in the
reference as the input and identifies collinear ordered sub-sets
of anchors called chains such that no anchor is used in more
than one chain. mm2 implements chaining via 1-dimensional
dynamic programming [19] where a complex problem is
recursively broken down into simpler sub-problems. In
summary, chaining sub-selects a few regions (chains) on the
target reference and reduces the work for the next step of base-
level alignment. Further, if base-level alignment is requested,

a 2-dimensional dynamic programming (Needleman-Wunsch
[20] with Suzuki- Kazahara formulation [21]) is applied to
extend from the ends of chains in order to close the gaps
between adjacent anchors in the chains. mm2 is considered
accurate and has multiple use cases [11]. It may be used to
map long noisy DNA/cDNA/mRNA reads, short accurate
genomics reads, to find overlaps between long reads and for
aligning with respect to a full reference genome or genome
assembly. It is only for full genome or assembly alignment
that mm2 proceeds from chaining to the last step of base
level alignment. For a more detailed understanding of how
seeding and base-level alignment operates, one may refer
to prior literature [11, 22]. In the context of this work, we
discuss chaining in-depth as it is the bottleneck stage in mm2
we optimize.

Minimap2: Sequential chaining
Chaining is the second step in mm2 and sub-selects

regions on the target reference where the last step of base-
level alignment may be performed. An anchor is a short
exact-match on the reference and is a 3-tuple (coordinate on
the reference sequence, coordinate on the query sequence,
length of the anchor). Chaining performs 1-dimensional
dynamic programming on the input sorted anchors (from the
seeding step) to identify collinear ordered sub-sets of anchors
called chains such that no anchor is used in more than one
chain. The chaining task can further be sub-divided into 4
sub-tasks: predecessor range selection, optimal chain score
generation, finding maximum score from start and end of
chains, and backtracking and primary chain identification.
Predecessor range selection is performed for every anchor
in the output sorted list of anchors from the seeding step
in order to dynamically calculate the number of preceding
anchors (0-5000) to which chaining is attempted. While Guo
et al. [23] chose a static predecessor range of 64 for every
anchor, mm2 does a dynamic calculation of the predecessor
range by finding all predecessors within a distance threshold.
Optimal chain score generation finds the preceding anchor
within the predecessor range which yields the maximum
chain score, if it exists, for every anchor. Chain score for
every pair of anchors are derived from gap between anchors

Figure 1: Minimap2 operates in 3 main steps: seeding, chaining and base-level alignment. Our optimizations to chaining are
shown in blue box. Boxes with green fill show chaining sub-tasks which we perform on the GPU instead of CPU.

file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark13
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark14
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark15
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark16
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark18
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark19
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark20
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark12
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark21
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark22
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark0
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark23
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark24
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark25
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark26
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark19
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark19
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark27
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark28

Sadasivan S et al., J Biotechnol Biomed 2023
DOI:10.26502/jbb.2642-91280067

Citation: Harisankar Sadasivan, Milos Maric, Eric Dawson, Vishanth Iyer, Johnny Israeli, Satish Narayanasamy. Accelerating Minimap2 for
Accurate Long Read Alignment on GPUs. Journal of Biotechnology and Biomedicine 6 (2023): 13-23.

Volume 6 • Issue 1 15

for ONT reads longer than 100Kb is as high as ∼68%. When
the workload is normalized for the number of bases aligned,
we also see that the long noisy ONT reads takes longer than
PacBio HiFi on an average to align a base. Let us consider
the randomly sub-sampled ONT dataset with 100K reads of
mean read length 8.25Kb (second bar from the left in Figure
3). This sub-set dataset is representative of the 60X HG002
dataset with N50 as 44Kb24 (N50 is an average read length
metric used in genome assembly). Optimal chain score
generation and finding the maximum of scores at start and end
of a chain contribute to a significant part of the time spent in
ONT chaining (90.9%). The other contributors to chaining are
relatively smaller: predecessor range identification (6.6% of
chaining), and backtracking and primary chain identification
(2.5% of chaining). Irregularity of workload (ONT reads vary
in read lengths — a few hundred to a million bases), memory
accesses, computation, and control flow associated with mm2
makes accelerating it a difficult task. Further, mm2 does not
have any intra-read parallelism in chaining. Optimal chain
score generation and finding the maximum of scores at start
and end of a chain (which contribute to a total of 90.9% of
the time in chaining) are implemented sequentially in mm2.

Prior Work
There have only been a few prior works [22,23,25,26]

which try to improve the performance of (accelerate) mm2.
Zeni et al. [25] and Feng et al. [26] accelerate the base-level
alignment step which is no longer the dominant bottleneck as
reads have grown longer in length. Guo et al. [23] and Kalikar
et al. [22] remove the MAX_SKIP heuristic for speed in mm2
in order to extract intra-range parallelism and parallelizes
chain score generation for each anchor (MAX_SKIP is set
to INF). While Guo et al. [23] correctly identifies chaining
as the bottleneck for longer reads, introduces the concept of
forward transforming the chaining algorithm and accelerates

on the reference, gap between anchors on the query, overlap
between anchors and average length of anchors as shown in
Figure 2b (adopted from Kalikar et al. [22] and shown here
for clarity). Optimal chain score generation is the most time
consuming sub-task in chaining and is sequential within a
read. For every anchor in a read, mm2 proceeds sequentially
through all the predecessors to generate chain scores and
to find the optimal chain score as shown in (Figure 2a).
However, mm2 has a speed heuristic based on MAX_SKIP
parameter which breaks out of the sequential predecessor
check if a better scoring predecessor is not found beyond
a certain number of total attempts (MAX_SKIP number of
attempts) for any anchor. Prior works [22,23] have shown
that removing this speed heuristic (by setting MAX_SKIP to
infinity or INF) enables intra-read or more specifically intra-
range parallelism (parallelizing the chain score generation
with respect to all predecessors for any given current anchor)
in chaining and also improves the mapping accuracy. The
third sub-task identifies the maximum of scores at start and
end of every chain per anchor and is sequential for every
read. Predecessor range selection, chain score generation and
finding maximum of scores at start and end of chain takes
most of the time (97.42%) in chaining. Backtracking and
primary chain identification together takes only 2.58% of
chaining time. Backtracking extends every anchor repeatedly
to its best predecessor and ensures no anchor is used in more
than one chain. Primary chain identification finds primary and
secondary chains based on overlaps and estimates a mapping
quality for each primary chain based on an empirical formula.

Minimap2 profile
We profiled a single threaded CPU execution of mm2 on

randomly sub-sampled 100K reads of ONT and PacBio HiFi
on 3/12 an Intel Cascade Lake core and observed different
profiles as previously noted22. Figure 3 shows that for ONT,
chaining is the bottleneck while alignment is the bottleneck
for PacBio. Further, the percentage of time spent in chaining

Figure 2: Chaining explained. (a) In Minimap2, every current
anchor (A2 (r2, q2, l2) in this case) attempts to sequentially chain
its predecessors within a pre-calculated predecessor range. If the
chaining score with a predecessor is greater than the score value
stored at current anchor A2, the new chain score and index of the
predecessor is updated at A2 (in the direction of the arrow). (b) The
chain score with a predecessor is computed from anchor gap cost
(evaluated as a function of reference_gap, query gap and average
length of all anchors) and overlap cost.

Figure 3: Summary of approximate time spent in seed-chain-
align. mm2 takes longer to map long noisy ONT reads and spends a
greater percent of total mapping time in chaining. X-axis shows the
sequencing technology with mean read length of each sets of 100K
randomly sub-sampled reads.

file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark2
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark29
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark27
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark28
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark30
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark31
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark30
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark31
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark28
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark27
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark28
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark1
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark27
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark1
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark27
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark28

Sadasivan S et al., J Biotechnol Biomed 2023
DOI:10.26502/jbb.2642-91280067

Citation: Harisankar Sadasivan, Milos Maric, Eric Dawson, Vishanth Iyer, Johnny Israeli, Satish Narayanasamy. Accelerating Minimap2 for
Accurate Long Read Alignment on GPUs. Journal of Biotechnology and Biomedicine 6 (2023): 13-23.

Volume 6 • Issue 1 16

it on GPU and Field Programmable Gate Array (FPGA),
this work fails to guarantee output equivalency to mm2 with
MAX_SKIP set to INF. We find that it misaligns (produces
mismatched primary alignments) ∼7% of the reads with
lengths above N50 while also failing to align ∼2% of those
reads from our ONT 60X HG002 dataset. This decrease in
mapping accuracy is mainly because Guo et al. follows a static
predecessor range selection unlike the dynamic selection
in mm2 and also because the chaining score update rules
are not modified accordingly with the transform. mm2-fast
[22] is the most recent prior work in accelerating mm2 and
accelerates all three steps in mm2 utilizing Single Instruction
Multiple Data (SIMD processes multiple data with a single
instruction) CPUs. While mm2-fast parallelizes chain score
generation, we identify certain sections of chaining which
are not parallelized. We profiled mm2-fast on the 100K sub-
sampled reads from ONT and find that 34.08% of the total
time spent in doing chain score generation and finding the
maximum of scores at start and end of chains is in sequential
code and not parallelized. mm2-fast does not use SIMD lanes
when predecessor range is less than or equal to 5, for finding
maximum predecessor score index and finding maximum
of scores at start and end of chains for every anchor. This
motivates the need for a better parallelization scheme.

Our Contributions
In this work, we optimized the dominant bottleneck of

mm2 in processing long noisy reads, chaining, on the GPU
without compromising accuracy. We show mm2-ax has
better speedup and speedup : costup compared to mm2-
fast, a SIMD- vectorized version of Minimap2 on 30 Intel
Cascade Lake cores. As discussed, mm2 presents a difficult
task to parallelize with sequential chaining step and irregular
workloads, memory accesses, computation, and control
flow. Prior efforts at accelerating chaining either produces
alignments significantly deviant from mm2 [23] or still does
some amount of sequential execution within chaining and
can benefit from a better parallelization scheme [22]. Hence,
we attempted to better utilize the inherent parallelism in
chaining without compromising accuracy on GPUs which
are becoming increasingly popular for genomics workflows.
To this end, we forward transform the predecessor range
calculation to successor range calculation so as not to lose
mapping accuracy and also forward transform the optimal
chain score generation to introduce intra-range parallelism.
Forward transformed chaining eliminates the need to
sequentially find the maximum of all chain scores from all the
SIMD lanes and instead enables better utilization of Single
Instruction Multi-Threaded (SIMT is similar to SIMD but
on a GPU) parallelization scheme on a GPU. Additionally,
we also benefit from inter-read parallelism by concurrently
processing multiple reads on the large number of Streaming
Multiprocessors (SMs) on the GPU.

We designed a heterogeneous system where the bottleneck
step, chaining, is sped up on the GPU while seeding and
base-level alignment happens on the CPU. We exploit the
low memory footprint of mm2 and trade-off memory for
performance via better occupancy of the GPU resources by
the highly irregular workload in mm2 chaining. Minimal
branch divergence, coalesced global memory accesses and
better spatial data locality are some of the optimizations. We
compare our accelerated minimap2 (mm2-ax) on GPU to
SIMD-vectorized mm2-fast on CPU. Our evaluation metrics
include accuracy, speedup, and speedup : costup. We show
that mm2-ax produces 100% identical alignments to mm2-
fast (same accuracy as mm2 with MAX_SKIP set to INF) and
delivers 5.41 - 2.57X speedup and 4.07 - 1.93X speedup :
costup with respect to mm2-fast on ONT 60X HG002 dataset.

Materials and Methods
Parallelizing chaining: forward loop transformation

Chaining in mm2 identifies optimal collinear ordered
subsets of anchors from the input sorted list of anchors. mm2
does a sequential pass over all the predecessors and does
sequential score comparisons to identify the best scoring
predecessor for every anchor. The exact chaining algorithm
used in mm2 is not parallelizable and hence, mm2 is only
able to utilize inter-read parallelism. Prior works [22, 23]
have shown that removing the speed heuristic in chaining by
setting MAX_SKIP to INF enables intra-range parallelism
(parallel chain score generation for all predecessors for
any given anchor, i.e, parallelizing the inner for loop in
Algorithm 1) and improves mapping accuracy. However, the
total amount of work to be performed per anchor increases.
We apply the same configuration in mm2-ax. We find that
∼34% of the run time in mm2-fast’s optimal chain score
generation and finding maximum of scores at start and end of
all chains is spent sequentially. Chain score generation when
the predecessor range is lesser than or equal to 5, finding
maximum chaining score from among the 16 vector lanes
and finding maximum of scores at start and end of all chains
are all performed sequentially. In order to make better use
of intra-range parallelism in chaining, we forward transform

Figure 4: Forward transforming predecessor range selection to
successor range selection: The cell with solid black outline represents
the current anchor for which predecessor/successor range calculation
is performed. The arrow starts from the predecessor/successor and
points to the current anchor A3 whose range is updated sequentially.

file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark28
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark27

Sadasivan S et al., J Biotechnol Biomed 2023
DOI:10.26502/jbb.2642-91280067

Citation: Harisankar Sadasivan, Milos Maric, Eric Dawson, Vishanth Iyer, Johnny Israeli, Satish Narayanasamy. Accelerating Minimap2 for
Accurate Long Read Alignment on GPUs. Journal of Biotechnology and Biomedicine 6 (2023): 13-23.

Volume 6 • Issue 1 17

contribute 90.6% of chaining time and is accelerated on the
GPU. Seeding, successor range identification or forward
transformed predecessor range identification (6.6% of
chaining), backtracking and primary chain identification
(2.5% of chaining) and base-level alignment are performed
on the CPU. Further, the heterogeneous design also helps us
better balance the workload and reduce resource idling on the
GPU, as discussed in below sections.

GPU occupancy: Condensed workload vector and
workload balancing

We find that ∼67% of the input anchors do not start a chain
and this contributes to the sparsity of the successor range
vector which is to be input to optimal chain score generation.
In order to better occupy the GPU resources with the irregular
workload, we perform successor range identification (steps
3-8 in Algorithm 1) on the CPU to convert this sparse input
vector of successor ranges which defines the workload in
chain core generation, into a condensed one with non-zero
successor ranges. This incurs a GPU and host memory trade-
off for better performance by ensuring GPU threads do not
idle on anchors with a successor range of zero. Further,
the compute overhead on the host CPU from successor
range identification is minimized by implementing a speed
heuristic (steps 3-6 in Algorithm 1) to reduce the number
of iterations in identifying the successor range for every
anchor. This is based on the observation that ∼67% of the
anchors on an average have a predecessor/successor range
of zero and ∼93% have a range lesser than or equal to 16.
Further, we also implement a series of additional measures to
ensure better GPU occupancy, as we realize that this is one
of the most important problems [27] while dealing with ONT

predecessor range selection (Figure 4) and optimal chain
score generation (Figure 5 and Algorithm 1). This saves us the
sequential passes which mm2-fast does to find the maximum
chaining score. In this context, forward transformation refers
to changing the order of computation to parallely evaluate
successor anchors instead of iterating through predecessor
anchors. This enables us to perform chain score generation
and update in parallel as shown in Figure 5. Although the
forward transformation of optimal chain score generation is
first introduced by Guo et al. [23], in order to retain mapping
accuracy, we implement two novel modifications. First, we
calculate dynamic successor range instead of a static range
of 64 for every anchor prior to chaining. We efficiently
implement the successor range calculation with few iterations
based on insights from cumulative distribution function of
predecessor ranges for all anchors (discussed later in Figure
6b). Secondly, the chain score update policy is modified from
> to ≥ (except for the immediately neighboring anchor) for
the forward traversal as shown in Figure 5b. This ensures that
farther anchors get precedence over nearer ones for forward
chaining.

Heterogeneous system design
mm2-ax is a heterogeneous design (uses specialized

compute cores, GPUs in this case) which performs seeding
and successor range identification on the CPU and efficiently
implements optimal chain score generation and finding
maximum of scores at start and end of chain on the GPU.
The output scores and optimal successor index arrays from
chaining are returned to the host CPU for backtracking. From
mm2’s profile in Figure 3, optimal chain score generation
and finding maximum of scores at start and end of chain

Sadasivan S et al., J Biotechnol Biomed 2023
DOI:10.26502/jbb.2642-91280067

Citation: Harisankar Sadasivan, Milos Maric, Eric Dawson, Vishanth Iyer, Johnny Israeli, Satish Narayanasamy. Accelerating Minimap2 for
Accurate Long Read Alignment on GPUs. Journal of Biotechnology and Biomedicine 6 (2023): 13-23.

Volume 6 • Issue 1 18

reads of variable lengths and predecessor ranges. To ensure
GPU occupancy from workload balancing, we bin and batch
reads of similar lengths together onto the GPU. For example,
reads of length 2Kb-3Kb, 3Kb-4Kb and 4Kb-5Kb are binned
together. For smaller read lengths (<= 10Kbp), we define each
concurrently launched workload at a coarser grain, i.e, as
many reads as it takes to concurrently occupy all the SMs on
the GPU. For longer reads, we observe that this does not yield
the optimal performance because long reads present a case of
highly imbalanced workloads as reads are more variable in
length and any SM which may finish early remains unused.
For example, in 50-150Kb range, reads are highly varying in
read lengths, and it is difficult to find multiple reads within
1Kb variance in lengths. Hence, for longer reads we keep
bin ranges wider: 45-50Kb, 50-100Kb and 100-150Kb. For
longer reads, we follow a two-fold strategy for higher GPU
occupancy. First, we define fine-grained workloads, i.e, with
only as many reads as it takes to occupy an entire SM. Second,
we always follow up very-long read bin workloads with fine-
grained workloads of shorter read lengths (2Kb). This twofold

strategy helps better balance highly imbalanced workloads of
very long reads. For better GPU occupancy, we also launch
multiple concurrent GPU kernels (functions) using CUDA
streams (GPU work queues). As soon as a hardware resource
gets free on the GPU, the scheduler executes the next
kernel. Additionally, each Streaming Multiprocessor (SM)
concurrently processes multiple reads. Data transfer between
the CPU and GPU are overlapped with compute on the GPU
by issuing asynchronous memory copies on CUDA streams.
We also benefit from the higher bandwidth of HBM2 and the
eight copy engines on A100.

Inter-read and intra-range parallelism
A server-class GPU like NVIDIA A100 has 108 SMs.

The key to high performance on the GPU is to ensure that
all the SMs always have useful work to do and there are
sufficient Single Instruction Multi-Threaded (SIMT) warps/
sub-warps (groups of threads) concurrently on the GPU to
hide the relatively higher global memory access latencies
(i.e, ensure higher warp occupancy). While we utilize only

Figure 5: Parallelizing Minimap2’s chain score generation (shown in a) by forward transformation (shown in b). Additionally, we
retain mapping accuracy by modifying the score comparison check (> to >=) with all anchors except the immediate neighbor to
enable farther anchors to take precedence over neighboring anchors to be forward chained.

Figure 6: Workload is sparse and irregular. (a) ∼67% of anchors fed to the chaining step do not start a chain. (b) Predecessor range
is less than or equal to 16 for ∼92% of all anchors and goes as high as 5000 only for a small fraction of total anchors.

Sadasivan S et al., J Biotechnol Biomed 2023
DOI:10.26502/jbb.2642-91280067

Citation: Harisankar Sadasivan, Milos Maric, Eric Dawson, Vishanth Iyer, Johnny Israeli, Satish Narayanasamy. Accelerating Minimap2 for
Accurate Long Read Alignment on GPUs. Journal of Biotechnology and Biomedicine 6 (2023): 13-23.

Volume 6 • Issue 1 19

inter-read parallelism (concurrently processing multiple
reads per SM) for finding the maximum of scores at start
and end of chain, we utilize both inter-read and intra-range
parallelism (via forward transformation) for the optimal
chain score generation. Intra-range parallelism comes from
concurrent warps (sets of 32 parallel threads) performing
chain score generation in parallel for all successors within the
successor range of a given anchor. The next anchor attempts
to chain only after it’s previous anchor’s optimal chain score
generation step is completed. To this end, we have a thread
synchronization barrier (syncthread()) waiting on all the
threads to finish chain score generation and update for all
the successors of a given anchor. Please note that Guo et al.
[23] uses more synchronization barriers (six of them) in the
chain score generation kernel. However, we only need one
as we reduce the number of points of branch divergence by
combining multiple condition checks together.

Data Locality
We observe optimal benefits from optimizing for better

spatial data locality rather than temporal locality. Temporal
cache locality refers to re-use of data in cache, while spatial
cache locality refers to use of data from adjacent storage
locations. For example, we pre-fetch data for a group of
successors per current anchor in each concurrently processed
read into L1 cache for better performance from improved
spatial data locality. We use the PTX instruction __prefetch_
global_l1 to prefetch the successor anchor’s inputs (query and
reference coordinates) and chaining output (score and parent
values) from global memory to L1 cache in a coalesced fashion
for every set of 32 successors per anchor. While Guo et al.
[23] attempted to exploit temporal locality from using shared
memory (memory shared between parallel threads of a read
) with a static successor range, this approach does not prove
beneficial with a dynamic successor range because of limited

scope for any benefits from temporal data locality. Frequent
cache misses due to different successor ranges lead to data
transfer latency from shared memory to registers, adding up
to outweighing any benefit from using shared memory at all.
We therefore use more registers per GPU thread instead of
utilizing shared memory. We also coalesce global memory
reads and writes for successor anchors to reduce the total
number of transactions to high-latency global memory.

Minimal branch divergence
Conditional branches are kept to a minimum in our

implementation by combining conditions when successors
are not updated after score generation. This helps reduce
branch divergence, which affects performance on the GPU.
There are only two conditional blocks for every read that
is processed within the chain score generation kernel (one
for score generation and the other for update, as seen in
Algorithm 1). On the other hand, Guo et al. [23] has nine
conditional blocks evaluated per read. Further, we utilize
CUDA’s warp-synchronized integer intrinsics to efficiently
perform operations like logarithm and absolute differences.
clz() lets us efficiently calculate logarithm during the chain
score generation step from counting the leading zeros and
subtracting this count from the number of bits in int32
datatype (32). sad enables us to efficiently compute the
overlap cost from the absolute difference of query_gap and
reference_gap (shown in Figure 2b).

Implementation
Experimental Setup

Minimap2 (mm2) is a fast evolving software with 7
new releases on the master branch and 2 new branches
incorporating mm2-fast in the year 2021 alone. We decided
to accelerate Minimap2 v2.17 which is used in Oxford

Figure 7: (a) mm2-ax yields 5.41 - 2.57X speedup and 4.07 - 1.93X speedup : costup over SIMD-vectorized
mm2-fast baseline. (b) The chaining performance across various read lengths may be further improved by 1.3-
2.3X if we can engineer to hide the data transfer related costs.

Sadasivan S et al., J Biotechnol Biomed 2023
DOI:10.26502/jbb.2642-91280067

Citation: Harisankar Sadasivan, Milos Maric, Eric Dawson, Vishanth Iyer, Johnny Israeli, Satish Narayanasamy. Accelerating Minimap2 for
Accurate Long Read Alignment on GPUs. Journal of Biotechnology and Biomedicine 6 (2023): 13-23.

Volume 6 • Issue 1 20

Nanopore’s variant calling pipeline with Medaka [9] .
Kalikar et al. [22] has accelerated Minimap2 versions v2.18
and v2.22. mm2 v2.18 and v2.17 produce equivalent results
in chaining and are, hence, comparable. We demonstrate
the benefits of our chaining optimizations on a server class
NVIDIA A100 GPU. Our evaluations are performed on
Google Cloud Platform (GCP). Speedup is normalized to a
costup factor to evaluate a speedup : costup metric in order to
take into account the usually higher GPU costs on the cloud.
Our costup factor on GCP is 1.33X, but this would be lower
if one were to use Amazon Web Services (AWS). mm2-ax is
evaluated on a single GCP instance of a2- highgpu-1g with
85GB of host memory and one NVIDIA A100 GPU of 40GB
memory. We compare mm2-ax to the SIMD accelerated
mm2-fast (fast-contrib branch of mm2) on a single GCP c2-
standard-60 instance (30 AVX-512 vectorized Intel Cascade
Lake cores and 240GB memory). We use NVIDIA Nsight
Compute [28] for profiling GPU events and Nsight Systems
[29] for visualization of concurrent GPU events. Seqtk [30] is
used for random sub-sampling of DNA sequences. We used
Perf [31] for profiling mm2 on the CPU. To ensure better
GPU resource utilization with nanopore reads of varying
length (few hundred to a million bases), we bin reads based
on read lengths before batching their sorted anchors onto the
GPU for chaining. For example, reads of length 1-2 Kilobases
(Kb) go to the same bin, reads of length 2-3Kb go to the same
bin etc. However, for longer read lengths, we bin 50K-100K,
100K-150K etc. because it is relatively harder to find reads
closer in read lengths. The reads within a bin could still
present an unbalanced workload as the predecessor ranges
of every anchor is different. This binning may be done very
efficiently during basecalling as the basecaller has access to
read lengths, and hence the overhead introduced is negligible.
We also try to fit in as many reads as possible on to the GPU’s
DRAM for every read bin. We measure the compute time for
optimal chain score generation and sub-task to find maximum
of scores at start and end of chain on the GPU and compare
it to that of the SIMD baseline to evaluate SpeedUp metric
(compute time taken by CPU baseline mm2-fast divided by
time taken by mm2-ax on GPU). We then divide this with
1.33X to normalize for cost and calculate the speedup :
costup metric. The overhead presented by successor range
selection over predecessor range selection on the host CPU
is very negligible (< 2.8% of total CPU time) and is, hence,
not considered for our analysis. Further, it is worthwhile
to note that successor range identification can outperform
predecessor range identification using SIMD vectorization
on the host CPU as our forward transform essentially makes
successor range identification parallelizable. Further, we also
evaluate mapping accuracy of mm2-ax vs mm2-fast (or mm2
with MAX_SKIP set to INF). Mapping accuracy is defined as
the number of reads from mm2-ax producing bit-exact chains
to mm2-fast. If any of the 12 fields in mm2-ax’s Pairwise

Alignment Format (PAF) formatted output differs from that
of mm2’s in the primary alignments, we treat the read as
misaligned. The datasets we use are publicly available [32–
35]. HG002 genome sequenced by ONT PromethION with
60X coverage and 15Kb and 20Kb PacBio HiFi reads with
34X coverage.

Optimal GPU conifgurations
Of the two chaining sub-tasks offloaded to the GPU, chain

score generation takes approximately greater than 95% of
the time on the GPU. Hence, we discuss how we performed
design-space exploration to identify the optimal GPU kernel
launch parameters for this sub-task. Kernel launch parameters
refer to a predefined configuration with which a kernel or
function may be executed on the GPU. In this context, we can
define the chain score generation kernel launch parameters as
a 3-tuple (thread blocks per SM, number of concurrent reads
processed per block in an SM , number of parallel threads
per read). In this context, thread blocks are groups of parallel
threads within an SM which may or may not be processing
the same read. We find the register requirement per thread
on an NVIDIA A100 GPU to figure out the achievable upper
bound of GPU kernel launch parameters on the A100 GPU.
Using NVIDIA’s Nsight Compute Profiler, we profiled mm2-
ax and observed that we require 53 registers per thread for the
optimal chain score generation kernel, and this observation
helps provide an upper bound on the maximum number of
parallel threads that can be launched on the SM in our case.
From Fig. 6b, one may try to fit more concurrent reads
with 16 or 32 threads per read, but it is observed that this
configuration hurts spatial cache locality across reads and is
hence, not beneficial. The optimal configuration is observed to
be in the direction of higher concurrent reads per SM instead
of per thread bock and towards more threads allocated per
read for chaining. This is because having more threads per
read enables better spatial data locality in L1 cache through
larger coalesced global memory accesses. We find that (9
thread blocks per SM, 1 concurrent read per thread block,
128 parallel threads per read) is the best performing kernel
configuration. This is followed by (3, 3, 128) and (1, 4, 256).
From Fig. 6a, we observe that ∼67% of anchors fed to the
chaining step do not start a chain. This observation helps us
to ensure better arithmetic intensity (more computations per
byte of data fetched from high latency global memory). In this
regard, we perform successor range identification on the host
CPU and condense the sparse vector of successor ranges to
a dense one with non-zero successor range before offloading
the chain score generation sub-task to the GPU. Further,
Fig. 6b informed us to efficiently implement successor range
identification. 67% of the anchors have predecessor ranges
equal to zero, and greater than 92% have predecessor ranges
less than or equal to 16. We use this information to efficiently
implement successor range selection by reducing the number
of total iterations. We did a design space exploration to

Sadasivan S et al., J Biotechnol Biomed 2023
DOI:10.26502/jbb.2642-91280067

Citation: Harisankar Sadasivan, Milos Maric, Eric Dawson, Vishanth Iyer, Johnny Israeli, Satish Narayanasamy. Accelerating Minimap2 for
Accurate Long Read Alignment on GPUs. Journal of Biotechnology and Biomedicine 6 (2023): 13-23.

Volume 6 • Issue 1 21

identify the granularity of dispatching work to the GPU for
optimal performance. While concurrently dispatching coarse
grained workloads (each workload is defined with as many
reads as it takes to fill all the 108 SMs on A100) yielded
the best results for reads smaller than or equal in length to
10Kb, coarse grained workloads do not work well for longer
reads as any SM that finishes early may idle. Concurrently
dispatching fine-grained workloads (each workload is sized
with as many as reads as it takes to fill only a single SM)
yielded the best performance for reads longer than 10Kb.
Concurrent fine-grained dispatches with each workload sized
to fill 2 and 4 SMs closely competes but gives slightly lower
benefits. Additionally, a fine-grained workload for longer
reads is always followed by fine-grained workload of smaller
reads (we choose 2Kb) to yield a better performance. This
is because multiple fine-grained workloads of smaller reads
can better load balance without adding a significant tail to the
critical path.

Results
mm2-ax demonstrates a 5.41 - 2.57X speedup and 4.07

- 1.93X speedup : costup over SIMD-vectorized mm2-fast
baseline as shown in Figure 7a. It is observed that coarse-
grained load dispatching to the GPU is better for read lengths
smaller than 10Kb while fine-grained load dispatching to
each SM is better for longer reads. In Figure 7b we show
the chaining performance gain factor without including the
data transfer related costs (memory allocation, asynchronous
memory copies on CUDA streams and data serialization).

Additionally, we also evaluate the mapping accuracy
of mm2-ax with respect to mm2-fast on the complete 60X
HG002 ONT dataset and we observe that all the output chains
match in all the first 12 fields of the output Paiwise Mapping
Format (PAF) file. As mm2-ax is limited by the DRAM
capacity of the GPU, we use minimap2 modified with our
forward transformed chaining logic on the CPU to evaluate
accuracy on the very large 60X HG002 dataset. We then
compare and validate the output PAF file to the outputs of
both mm2-fast and mm2 modified with MAX_SKIP set to
INFINITY.

Discussion
We only discuss the profile of the most time-consuming

kernel of mm2-ax on the GPU, optimal chain score generation.
Here we present the profile of optimal chain score generation
kernel on the 2Kb bin of reads. From Fig. 8a, we see that the
chain score generation kernel on the GPU is memory bound.
Unless we increase the arithmetic intensity of the kernel, we
cannot transform it to a compute bound kernel. From Figure
8b, we observe that high register usage per thread limits the
theoretical number of active warps per SM on the GPU. The
higher the warp occupancy, the better the kernel is in hiding
the relatively longer global memory access latency on the
GPU. The achieved number of active warps per SM is 12
(33% of the theoretical maximum). One way to ensure there
are enough warps on the SM is by integrating asynchronous
FIFOs at the input and output of chaining to better manage
input and output out of the GPU. One may also try to better
hide the data transfer related costs to gain further improve in
performance. Further, it may be noted that one may further
improve performance by making the range of read lengths
that go into a bin even smaller. In our case, the HG002 dataset
presented reads in 50-150Kb range to be highly varying in
read lengths and hence, we defined long read bins with higher
variance in read lengths. It is also worthwhile to consider
porting the entire mm2 software to the GPU as most long read
sequencing workflows are now shifting to GPUs.

Conclusions
Long read sequencing workflows on GPUs are becoming

increasingly popular for healthcare and genomics applications
like Precision Medicine and microbiome abundance estimation.
We identify chaining as the bottleneck in the state-of-the-art
aligner used for long read mapping and alignment. Chaining
constitutes as high as ∼67% of the total alignment time in
long noisy ONT reads of lengths greater than 100Kb. We
address this problem with mm2-ax (minimap2-accelerated),
a heterogeneous system for accelerating the chaining step of
minimap2. We implement various optimizations to ensure
better occupancy and workload balancing on the GPU. Some
key optimizations include forward transformed chaining
for better intra-read parallelism, trading-off host and GPU
memory for better performance on the GPU, better spatial
data locality and minimal branch divergence. We show mm2-
ax on an NVIDIA A100 GPU improves the chaining step with
5.41 - 2.57X speedup and 4.07 – 1.93X speedup : costup over
the fastest version of minimap2, mm2-fast, benchmarked on
a single Google Cloud Platform instance of 30 AVX-512
vectorized cores (Intel Cascade Lake).

Acknowledgements
Development of mm2-ax was supported by NVIDIA

Corporation and University of Michigan Ann Arbor (via

Figure 8: mm2-ax is memory bound. (a)Roofline Plot: Chain score
generation is memory bound. Operating point is shown in a red cross
mark. (b) Theoretical warp occupancy on the GPU is bounded by the
number of registers used by each thread.

Sadasivan S et al., J Biotechnol Biomed 2023
DOI:10.26502/jbb.2642-91280067

Citation: Harisankar Sadasivan, Milos Maric, Eric Dawson, Vishanth Iyer, Johnny Israeli, Satish Narayanasamy. Accelerating Minimap2 for
Accurate Long Read Alignment on GPUs. Journal of Biotechnology and Biomedicine 6 (2023): 13-23.

Volume 6 • Issue 1 22

D. Dan and Betty Kahn foundation grants). Additionally,
we would like to thank Oded Green, Lotfi Slim, Harry
Clifford, Mehrzad Samadi and Ajay Tirumala from NVIDIA
Corporation for their helpful suggestions and advice on
efficiently using NVIDIA GPUs.

Author contributions statement
H.S. performed the analysis, design, and implementation

of mm2-ax. M.M. recommended various performance
optimizations and CUDA best practices for implementing
mm2-ax. E.D. and V.I. helped better understand the mm2
chaining algorithm and prior work. J.I. and S.N. led the
collaborative effort and helped design the optimization
strategy for mm2-ax. All authors reviewed the manuscript.

Data availability statement
Datasets are publicly available with CC0 license from

Human Pangenome Reference Consortium: https://github.
com/human- pangenomics/HG002_Data_Freeze_v1.0 [32–
36].

Additional information
Software Availability

mm2-ax is currently closed source. However, a docker
image for mm2-ax and instructions on using the image with
singularity is made available on GitHub: https://github.com/
hsadasivan/mm2-ax. Zenodo DOI: https://doi.org/ 10.5281/
zenodo.6374533.

Competing Interests
The authors declare that they have no competing interests.

References

1.	 Mantere T, Kersten S, Hoischen A. Long-read sequencing
emerging in medical genetics. Front. genetics 10 (2019):
426.

2.	 Gorzynski JE, Sneha D Goenka, Shafin BS, et al.
Ultrarapid nanopore genome sequencing in a critical care
setting. The New Engl journal medicine 386 (2022): 700-
702.

3.	 Amarasinghe SL, Su S, Dong X, et al. Opportunities and
challenges in long-read sequencing data analysis. Genome
biology 21 (2020): 1–16.

4.	 Altschul SF, Gish W, Miller W, et al. Basic local alignment
search tool. J. molecular biology 215 (1990): 403-410.

5.	 ONT products. Oxford Nanopore Technologies (2022).

6.	 Ion proton™ sequencer specifications: Thermo fisher
scientific - US. Ion Proton.

7.	 DNBSEQ-T7: High-speed,high flexibility and ultra-
high throughput sequencer-mgi-leading life science
innovation. MGI

8.	 Shafin K, Pesout T, Chang PC, et al. Haplotype-aware
variant calling with pepper-margin-deepvariant enables
high accuracy in nanopore long-reads. Nat. methods 18
(2021): 1322–1332.

9.	 Nanoporetech. MEDAKA: Sequence correction provided
by ont research. Oxford Nanopore Technologies.

10.	GPU applications: High performance computing.
NVIDIA.

11.	Li H. Minimap2: pairwise alignment for nucleotide
sequences. Bioinformatics 34 (2018): 3094-3100.

12.	Sequence with confidence. PacBio (2022).

13.	Li, H. Aligning sequence reads, clone sequences and
assembly contigs with bwa-mem. Arxiv (2013).

14.	Langmead B, Salzberg SL. Fast gapped-read alignment
with bowtie 2. Nat methods 9 (2012): 357-359.

15.	Kiełbasa SM, Wan R, Sato K, et al. Adaptive seeds tame
genomic sequence comparison. Genome research 21
(2011): 487-493.

16.	Sovic I, Sikic M, Wilm A, et al. Fast and sensitive
mapping of nanopore sequencing reads with graphmap.
Nat. communications 7 (2016): 1–11.

17.	Ren J, Chaisson MJ. lra: A long read aligner for sequences
and contigs. PLOS Comput Biol 17 (2021): e1009078.

18.	Roberts M, Hayes W, Hunt BR, et al. Reducing storage
requirements for biological sequence comparison.
Bioinformatics 20 (2004): 3363-3369.

19.	Bellman RE, Kalaba RE, Teichmann T. Dynamic
programing. Phys. Today 19 (1966): 98.

20.	Needleman SB, Wunsch CD. A general method applicable
to the search for similarities in the amino acid sequence
of two proteins. J molecular biology 48 (1970): 443-453.

21.	Suzuki H, Kasahara M. Introducing difference recurrence
relations for faster semi-global alignment of long
sequences. BMC bioinformatics 19 (2018): 33-47.

22.	Kalikar S, Jain C, Vasimuddin M, et al. Accelerating
minimap2 for long-read sequencing applications on
modern cpus. Nat Comput Sci 2 (2022): 78-83.

23.	Guo L, Lau J, Ruan Z, et al. Hardware acceleration of
long read pairwise overlapping in genome sequencing: A
race between fpga and gpu. In 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom
Computing Machines (FCCM) (2019): 127-135.

https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0
https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0
https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark38
file:///D:\.Articles\JBB\11. December\7269 2040paid Galleyproof\7269-Article Text-30768-1-4-20221205.docx#_bookmark40
https://github.com/hsadasivan/mm2-ax
https://github.com/hsadasivan/mm2-ax
https://doi.org/10.5281/zenodo.6374533
https://doi.org/10.5281/zenodo.6374533
https://doi.org/10.5281/zenodo.6374533

Sadasivan S et al., J Biotechnol Biomed 2023
DOI:10.26502/jbb.2642-91280067

Citation: Harisankar Sadasivan, Milos Maric, Eric Dawson, Vishanth Iyer, Johnny Israeli, Satish Narayanasamy. Accelerating Minimap2 for
Accurate Long Read Alignment on GPUs. Journal of Biotechnology and Biomedicine 6 (2023): 13-23.

Volume 6 • Issue 1 23

24.	Alhakami H, Mirebrahim H, Lonardi S. A comparative
evaluation of genome assembly reconciliation tools.
Genome biology 18 (2017): 1-14.

25.	Zeni A, Guidi G, Ellis M, et al. Logan: High-performance
gpu-based x-drop long-read alignment. In 2020 IEEE
International Parallel and Distributed Processing
Symposium (IPDPS) (2020): 462-471.

26.	Feng Z, Qiu S, Wang L, et al. Accelerating long read
alignment on three processors. In Proceedings of the 48th
International Conference on Parallel Processing (2019):
1-10.

27.	Gamaarachchi H, Lam CW, Gihan J, et al. Gpu accelerated
adaptive banded event alignment for rapid comparative
nanopore signal analysis. BMC bioinformatics 21 (2020):
1-13.

28.	Nsight compute. NVIDIA https://docs.nvidia.com/nsight-
compute/NsightCompute/index.htmla.

29.	Nsight systems. NVIDIA https://developer.nvidia.com/
nsight-systems.

30.	Li H. seqtk toolkit for processing sequences in fasta/q
formats. GitHub 767 (2012): 69.

31.	Torvalds. Linux/tools/perf at master • torvalds/linux. Github

32.	Consortium HPR. HG002 data freeze (v1.0) ONT 60x
coverage reads.

33.	Consortium HPR. HG002 data freeze (v1.0) PacBio HiFi
15Kb reads.

34.	Consortium, H. P. R. HG002 data freeze (v1.0) PacBio
HiFi 20Kb reads.

35.	Shafin K, Pesout T, Ryan LR, et al. Nanopore sequencing
and the shasta toolkit enable efficient de novo assembly
of eleven human genomes. Nat biotechnology 38 (2020):
1044-1053.

36.	Wenger AM, Paul P, Williams JR, et al. Accurate
circular consensus long-read sequencing improves
variant detection and assembly of a human genome. Nat.
biotechnology 37 (2019): 1155-1162.

https://docs.nvidia.com/nsight-compute/NsightCompute/index.htmla
https://docs.nvidia.com/nsight-compute/NsightCompute/index.htmla
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems

	Title
	Abstract
	Keywords
	Introduction
	Background
	Minimap2: A brief overview
	Minimap2: Sequential chaining
	Minimap2 profile
	Prior Work
	Our Contributions

	Materials and Methods
	Parallelizing chaining: forward loop transformation
	Heterogeneous system design
	GPU occupancy: Condensed workload vector and workload balancing
	Inter-read and intra-range parallelism
	Data Locality
	Minimal branch divergence

	Implementation
	Experimental Setup
	Optimal GPU conifgurations

	Results
	Discussion
	Conclusions
	Acknowledgements
	Author contributions statement
	Data availability statement
	Additional information
	Software Availability

	Competing Interests
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	References

