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Accelerating Minimap2 for Accurate Long Read Alignment on GPUs
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Abstract
Long read sequencing technology is becoming increasingly popular 

for Precision Medicine applications like Whole Genome Sequencing 
(WGS) and microbial abundance estimation. Minimap2 is the state-
of-the-art aligner and mapper used by the leading long read sequencing 
technologies, today. However, Minimap2 on CPUs is very slow for long 
noisy reads. ∼60-70% of the run-time on a CPU comes from the highly 
sequential chaining step in Minimap2. On the other hand, most Point-
of-Care computational workflows in long read sequencing use Graphics 
Processing Units (GPUs). We present minimap2-accelerated (mm2-ax), 
a heterogeneous design for sequence mapping and alignment where 
minimap2’s compute intensive chaining step is sped up on the GPU 
and demonstrate its time and cost benefits. We extract better intra-read 
parallelism from chaining without losing mapping accuracy by forward 
transforming Minimap2’s chaining algorithm. Moreover, we better utilize 
the high memory available on modern cloud instances apart from better 
workload balancing, data locality and minimal branch divergence on the 
GPU. We show mm2-ax on an NVIDIA A100 GPU improves the chaining 
step with 5.41 - 2.57X speedup and 4.07 - 1.93X speedup : costup over the 
fastest version of Minimap2, mm2-fast, benchmarked on a Google Cloud 
Platform instance of 30 SIMD cores.
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Introduction
Long read sequencing is gaining more popularity with improved raw read 

accuracy, reduced end-to-end sequencing times, lower costs of adoption and 
ease of portability [1, 2]. Longer reads help span highly repetitive regions in 
the genome which short reads cannot. This helps applications like denovo 
assembly and structural variant calling [1, 3]. A recent study used long read 
sequencing to showcase the world’s fastest blood to variants workflow for 
genetic diagnosis at the point-of-care [2]. This further underlines the emerging 
significance of long read sequencing.Amongst the many post-sequencing 
steps in long read processing workflows, sequence mapping and alignment 
is one of the first and amongst the most time and cost consuming steps. 
Sequence alignment [4] in bioinformatics is a way of arranging the primary 
sequences of DNA, RNA or protein to identify regions of similarity while 
sequence mapping is a subset of alignment and only finds the approximate 
origin of query sequence in the target. We observe that sequence mapping and 
alignment is slow and users often spend costly cloud instance hours to keep 
up with high throughput sequencers [2]. This problem can worsen as the focus 
shifts to longer reads. Additionally, we find that General Purpose Graphics 
Processing Units (GPGPUs or simply GPUs) are becoming increasingly 
popular for genomics processing. Several high throughput sequencers from 
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Oxford Nanopore [5] (GridION and PromethION series), 
Thermofisher’s Ion Proton 48 [6] and MGI’s DNBSEQ-T7 
[7] have in-built GPUs. Many popular genome sequencing 
workflows also utilize GPUs for computation [8–10]. In this 
work, we present minimap2-accelerated (mm2-ax) which 
speeds up minimap2 (mm2) on the GPU without losing 
mapping accuracy and demonstrate its time and cost benefits.

Background
Minimap2: A brief overview

Minimap2 (mm2) [11] is the state-of-the-art DNA/mRNA 
sequence mapper and aligner for the most popular long read 
sequencing platforms like Oxford Nanopore Technologies 
(ONT) and Pacific Biosciences (PacBio) [12]. While BLAST 
[4] (using seed-extend paradigm) remains a powerful tool for 
full genome alignment, it is very slow especially on very long 
reads. For faster alignments, more recent aligners [13–17] 
including mm2 filter seeds prior to the final step of base-level 
alignment. mm2’s algorithm is based on the seed-chain-
align paradigm (detailed in Figure 1) and has an offline pre-
processing step to build index from target reference. In the 
offline pre-processing step, the reference genome is indexed 
to a multimap using a hash table with the popular time and 
space-saving k-mer samples called minimizers [18] as the 
key and minimizer locations on the reference as the values. 
Seeding is fast and identifies short fixed-length exact matches 
(minimizer seeds) between a read and a reference sequence. 
When mm2 processes a sequenced read, minimizers from the 
read are used to query the reference index for exact matches 
(anchors). These anchors are then sorted based on position 
in the reference and then passed onto the next step, chaining. 
Chaining takes anchors sorted based on position in the 
reference as the input and identifies collinear ordered sub-sets 
of anchors called chains such that no anchor is used in more 
than one chain. mm2 implements chaining via 1-dimensional 
dynamic programming [19] where a complex problem is 
recursively broken down into simpler sub-problems. In 
summary, chaining sub-selects a few regions (chains) on the 
target reference and reduces the work for the next step of base-
level alignment. Further, if base-level alignment is requested, 

a 2-dimensional dynamic programming (Needleman-Wunsch 
[20] with Suzuki- Kazahara formulation [21]) is applied to 
extend from the ends of chains in order to close the gaps 
between adjacent anchors in the chains. mm2 is considered 
accurate and has multiple use cases [11]. It may be used to 
map long noisy DNA/cDNA/mRNA reads, short accurate 
genomics reads, to find overlaps between long reads and for 
aligning with respect to a full reference genome or genome 
assembly. It is only for full genome or assembly alignment 
that mm2 proceeds from chaining to the last step of base 
level alignment. For a more detailed understanding of how 
seeding and base-level alignment operates, one may refer 
to prior literature [11, 22]. In the context of this work, we 
discuss chaining in-depth as it is the bottleneck stage in mm2 
we optimize.

Minimap2: Sequential chaining
Chaining is the second step in mm2 and sub-selects 

regions on the target reference where the last step of base-
level alignment may be performed. An anchor is a short 
exact-match on the reference and is a 3-tuple (coordinate on 
the reference sequence, coordinate on the query sequence, 
length of the anchor). Chaining performs 1-dimensional 
dynamic programming on the input sorted anchors (from the 
seeding step) to identify collinear ordered sub-sets of anchors 
called chains such that no anchor is used in more than one 
chain. The chaining task can further be sub-divided into 4 
sub-tasks: predecessor range selection, optimal chain score 
generation, finding maximum score from start and end of 
chains, and backtracking and primary chain identification. 
Predecessor range selection is performed for every anchor 
in the output sorted list of anchors from the seeding step 
in order to dynamically calculate the number of preceding 
anchors (0-5000) to which chaining is attempted. While Guo 
et al. [23] chose a static predecessor range of 64 for every 
anchor, mm2 does a dynamic calculation of the predecessor 
range by finding all predecessors within a distance threshold. 
Optimal chain score generation finds the preceding anchor 
within the predecessor range which yields the maximum 
chain score, if it exists, for every anchor. Chain score for 
every pair of anchors are derived from gap between anchors 

 
Figure 1: Minimap2 operates in 3 main steps: seeding, chaining and base-level alignment. Our optimizations to chaining are 
shown in blue box. Boxes with green fill show chaining sub-tasks which we perform on the GPU instead of CPU.
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for ONT reads longer than 100Kb is as high as ∼68%. When 
the workload is normalized for the number of bases aligned, 
we also see that the long noisy ONT reads takes longer than 
PacBio HiFi on an average to align a base. Let us consider 
the randomly sub-sampled ONT dataset with 100K reads of 
mean read length 8.25Kb (second bar from the left in Figure 
3). This sub-set dataset is representative of the 60X HG002 
dataset with N50 as 44Kb24 (N50 is an average read length 
metric used in genome assembly). Optimal chain score 
generation and finding the maximum of scores at start and end 
of a chain contribute to a significant part of the time spent in 
ONT chaining (90.9%). The other contributors to chaining are 
relatively smaller: predecessor range identification (6.6% of 
chaining), and backtracking and primary chain identification 
(2.5% of chaining). Irregularity of workload (ONT reads vary 
in read lengths — a few hundred to a million bases), memory 
accesses, computation, and control flow associated with mm2 
makes accelerating it a difficult task. Further, mm2 does not 
have any intra-read parallelism in chaining. Optimal chain 
score generation and finding the maximum of scores at start 
and end of a chain (which contribute to a total of 90.9% of 
the time in chaining) are implemented sequentially in mm2.

Prior Work
There have only been a few prior works [22,23,25,26] 

which try to improve the performance of (accelerate) mm2. 
Zeni et al. [25] and Feng et al. [26] accelerate the base-level 
alignment step which is no longer the dominant bottleneck as 
reads have grown longer in length. Guo et al. [23] and Kalikar 
et al. [22] remove the MAX_SKIP heuristic for speed in mm2 
in order to extract intra-range parallelism and parallelizes 
chain score generation for each anchor (MAX_SKIP is set 
to INF). While Guo et al. [23] correctly identifies chaining 
as the bottleneck for longer reads, introduces the concept of 
forward transforming the chaining algorithm and accelerates 

on the reference, gap between anchors on the query, overlap 
between anchors and average length of anchors as shown in 
Figure 2b (adopted from Kalikar et al. [22] and shown here 
for clarity). Optimal chain score generation is the most time 
consuming sub-task in chaining and is sequential within a 
read. For every anchor in a read, mm2 proceeds sequentially 
through all the predecessors to generate chain scores and 
to find the optimal chain score as shown in (Figure 2a). 
However, mm2 has a speed heuristic based on MAX_SKIP 
parameter which breaks out of the sequential predecessor 
check if a better scoring predecessor is not found beyond 
a certain number of total attempts (MAX_SKIP number of 
attempts) for any anchor. Prior works [22,23] have shown 
that removing this speed heuristic (by setting MAX_SKIP to 
infinity or INF) enables intra-read or more specifically intra-
range parallelism (parallelizing the chain score generation 
with respect to all predecessors for any given current anchor) 
in chaining and also improves the mapping accuracy. The 
third sub-task identifies the maximum of scores at start and 
end of every chain per anchor and is sequential for every 
read. Predecessor range selection, chain score generation and 
finding maximum of scores at start and end of chain takes 
most of the time (97.42%) in chaining. Backtracking and 
primary chain identification together takes only 2.58% of 
chaining time. Backtracking extends every anchor repeatedly 
to its best predecessor and ensures no anchor is used in more 
than one chain. Primary chain identification finds primary and 
secondary chains based on overlaps and estimates a mapping 
quality for each primary chain based on an empirical formula.

Minimap2 profile
We profiled a single threaded CPU execution of mm2 on 

randomly sub-sampled 100K reads of ONT and PacBio HiFi 
on 3/12 an Intel Cascade Lake core and observed different 
profiles as previously noted22. Figure 3 shows that for ONT, 
chaining is the bottleneck while alignment is the bottleneck 
for PacBio. Further, the percentage of time spent in chaining 

Figure 2: Chaining explained. (a) In Minimap2, every current 
anchor (A2 (r2, q2, l2) in this case) attempts to sequentially chain 
its predecessors within a pre-calculated predecessor range. If the 
chaining score with a predecessor is greater than the score value 
stored at current anchor A2, the new chain score and index of the 
predecessor is updated at A2 (in the direction of the arrow). (b) The 
chain score with a predecessor is computed from anchor gap cost 
(evaluated as a function of reference_gap, query gap and average 
length of all anchors) and overlap cost.

Figure 3: Summary of approximate time spent in seed-chain-
align. mm2 takes longer to map long noisy ONT reads and spends a 
greater percent of total mapping time in chaining. X-axis shows the 
sequencing technology with mean read length of each sets of 100K 
randomly sub-sampled reads.
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it on GPU and Field Programmable Gate Array (FPGA), 
this work fails to guarantee output equivalency to mm2 with 
MAX_SKIP set to INF. We find that it misaligns (produces 
mismatched primary alignments) ∼7% of the reads with 
lengths above N50 while also failing to align ∼2% of those 
reads from our ONT 60X HG002 dataset. This decrease in 
mapping accuracy is mainly because Guo et al. follows a static 
predecessor range selection unlike the dynamic selection 
in mm2 and also because the chaining score update rules 
are not modified accordingly with the transform. mm2-fast 
[22] is the most recent prior work in accelerating mm2 and 
accelerates all three steps in mm2 utilizing Single Instruction 
Multiple Data (SIMD processes multiple data with a single 
instruction) CPUs. While mm2-fast parallelizes chain score 
generation, we identify certain sections of chaining which 
are not parallelized. We profiled mm2-fast on the 100K sub-
sampled reads from ONT and find that 34.08% of the total 
time spent in doing chain score generation and finding the 
maximum of scores at start and end of chains is in sequential 
code and not parallelized. mm2-fast does not use SIMD lanes 
when predecessor range is less than or equal to 5, for finding 
maximum predecessor score index and finding maximum 
of scores at start and end of chains for every anchor. This 
motivates the need for a better parallelization scheme.

Our Contributions
In this work, we optimized the dominant bottleneck of 

mm2 in processing long noisy reads, chaining, on the GPU 
without compromising accuracy. We show mm2-ax has 
better speedup and speedup : costup compared to mm2-
fast, a SIMD- vectorized version of Minimap2 on 30 Intel 
Cascade Lake cores. As discussed, mm2 presents a difficult 
task to parallelize with sequential chaining step and irregular 
workloads, memory accesses, computation, and control 
flow. Prior efforts at accelerating chaining either produces 
alignments significantly deviant from mm2 [23] or still does 
some amount of sequential execution within chaining and 
can benefit from a better parallelization scheme [22]. Hence, 
we attempted to better utilize the inherent parallelism in 
chaining without compromising accuracy on GPUs which 
are becoming increasingly popular for genomics workflows. 
To this end, we forward transform the predecessor range 
calculation to successor range calculation so as not to lose 
mapping accuracy and also forward transform the optimal 
chain score generation to introduce intra-range parallelism. 
Forward transformed chaining eliminates the need to 
sequentially find the maximum of all chain scores from all the 
SIMD lanes and instead enables better utilization of Single 
Instruction Multi-Threaded (SIMT is similar to SIMD but 
on a GPU) parallelization scheme on a GPU. Additionally, 
we also benefit from inter-read parallelism by concurrently 
processing multiple reads on the large number of Streaming 
Multiprocessors (SMs) on the GPU.

We designed a heterogeneous system where the bottleneck 
step, chaining, is sped up on the GPU while seeding and 
base-level alignment happens on the CPU. We exploit the 
low memory footprint of mm2 and trade-off memory for 
performance via better occupancy of the GPU resources by 
the highly irregular workload in mm2 chaining. Minimal 
branch divergence, coalesced global memory accesses and 
better spatial data locality are some of the optimizations. We 
compare our accelerated minimap2 (mm2-ax) on GPU to 
SIMD-vectorized mm2-fast on CPU. Our evaluation metrics 
include accuracy, speedup, and speedup : costup. We show 
that mm2-ax produces 100% identical alignments to mm2-
fast (same accuracy as mm2 with MAX_SKIP set to INF) and 
delivers 5.41 - 2.57X speedup and 4.07 - 1.93X speedup : 
costup with respect to mm2-fast on ONT 60X HG002 dataset.

Materials and Methods
Parallelizing chaining: forward loop transformation

Chaining in mm2 identifies optimal collinear ordered 
subsets of anchors from the input sorted list of anchors. mm2 
does a sequential pass over all the predecessors and does 
sequential score comparisons to identify the best scoring 
predecessor for every anchor. The exact chaining algorithm 
used in mm2 is not parallelizable and hence, mm2 is only 
able to utilize inter-read parallelism. Prior works [22, 23] 
have shown that removing the speed heuristic in chaining by 
setting MAX_SKIP to INF enables intra-range parallelism 
(parallel chain score generation for all predecessors for 
any given anchor, i.e, parallelizing the inner for loop in 
Algorithm 1) and improves mapping accuracy. However, the 
total amount of work to be performed per anchor increases. 
We apply the same configuration in mm2-ax. We find that 
∼34% of the run time in mm2-fast’s optimal chain score 
generation and finding maximum of scores at start and end of 
all chains is spent sequentially. Chain score generation when 
the predecessor range is lesser than or equal to 5, finding 
maximum chaining score from among the 16 vector lanes 
and finding maximum of scores at start and end of all chains 
are all performed sequentially. In order to make better use 
of intra-range parallelism in chaining, we forward transform 

Figure 4: Forward transforming predecessor range selection to 
successor range selection: The cell with solid black outline represents 
the current anchor for which predecessor/successor range calculation 
is performed. The arrow starts from the predecessor/successor and 
points to the current anchor A3 whose range is updated sequentially.
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contribute 90.6% of chaining time and is accelerated on the 
GPU. Seeding, successor range identification or forward 
transformed predecessor range identification (6.6% of 
chaining), backtracking and primary chain identification 
(2.5% of chaining) and base-level alignment are performed 
on the CPU. Further, the heterogeneous design also helps us 
better balance the workload and reduce resource idling on the 
GPU, as discussed in below sections. 

GPU occupancy: Condensed workload vector and 
workload balancing

We find that ∼67% of the input anchors do not start a chain 
and this contributes to the sparsity of the successor range 
vector which is to be input to optimal chain score generation. 
In order to better occupy the GPU resources with the irregular 
workload, we perform successor range identification (steps 
3-8 in Algorithm 1) on the CPU to convert this sparse input 
vector of successor ranges which defines the workload in 
chain core generation, into a condensed one with non-zero 
successor ranges. This incurs a GPU and host memory trade-
off for better performance by ensuring GPU threads do not 
idle on anchors with a successor range of zero. Further, 
the compute overhead on the host CPU from successor 
range identification is minimized by implementing a speed 
heuristic (steps 3-6 in Algorithm 1) to reduce the number 
of iterations in identifying the successor range for every 
anchor. This is based on the observation that ∼67% of the 
anchors on an average have a predecessor/successor range 
of zero and ∼93% have a range lesser than or equal to 16. 
Further, we also implement a series of additional measures to 
ensure better GPU occupancy, as we realize that this is one 
of the most important problems [27] while dealing with ONT 

predecessor range selection (Figure 4) and optimal chain 
score generation (Figure 5 and Algorithm 1). This saves us the 
sequential passes which mm2-fast does to find the maximum 
chaining score. In this context, forward transformation refers 
to changing the order of computation to parallely evaluate 
successor anchors instead of iterating through predecessor 
anchors. This enables us to perform chain score generation 
and update in parallel as shown in Figure 5. Although the 
forward transformation of optimal chain score generation is 
first introduced by Guo et al. [23], in order to retain mapping 
accuracy, we implement two novel modifications. First, we 
calculate dynamic successor range instead of a static range 
of 64 for every anchor prior to chaining. We efficiently 
implement the successor range calculation with few iterations 
based on insights from cumulative distribution function of 
predecessor ranges for all anchors (discussed later in Figure 
6b). Secondly, the chain score update policy is modified from 
> to ≥ (except for the immediately neighboring anchor) for 
the forward traversal as shown in Figure 5b. This ensures that 
farther anchors get precedence over nearer ones for forward 
chaining.

Heterogeneous system design
mm2-ax is a heterogeneous design (uses specialized 

compute cores, GPUs in this case) which performs seeding 
and successor range identification on the CPU and efficiently 
implements optimal chain score generation and finding 
maximum of scores at start and end of chain on the GPU. 
The output scores and optimal successor index arrays from 
chaining are returned to the host CPU for backtracking. From 
mm2’s profile in Figure 3, optimal chain score generation 
and finding maximum of scores at start and end of chain 
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reads of variable lengths and predecessor ranges. To ensure 
GPU occupancy from workload balancing, we bin and batch 
reads of similar lengths together onto the GPU. For example, 
reads of length 2Kb-3Kb, 3Kb-4Kb and 4Kb-5Kb are binned 
together. For smaller read lengths (<= 10Kbp), we define each 
concurrently launched workload at a coarser grain, i.e, as 
many reads as it takes to concurrently occupy all the SMs on 
the GPU. For longer reads, we observe that this does not yield 
the optimal performance because long reads present a case of 
highly imbalanced workloads as reads are more variable in 
length and any SM which may finish early remains unused. 
For example, in 50-150Kb range, reads are highly varying in 
read lengths, and it is difficult to find multiple reads within 
1Kb variance in lengths. Hence, for longer reads we keep 
bin ranges wider: 45-50Kb, 50-100Kb and 100-150Kb. For 
longer reads, we follow a two-fold strategy for higher GPU 
occupancy. First, we define fine-grained workloads, i.e, with 
only as many reads as it takes to occupy an entire SM. Second, 
we always follow up very-long read bin workloads with fine-
grained workloads of shorter read lengths (2Kb). This twofold 

strategy helps better balance highly imbalanced workloads of 
very long reads. For better GPU occupancy, we also launch 
multiple concurrent GPU kernels (functions) using CUDA 
streams (GPU work queues). As soon as a hardware resource 
gets free on the GPU, the scheduler executes the next 
kernel. Additionally, each Streaming Multiprocessor (SM) 
concurrently processes multiple reads. Data transfer between 
the CPU and GPU are overlapped with compute on the GPU 
by issuing asynchronous memory copies on CUDA streams. 
We also benefit from the higher bandwidth of HBM2 and the 
eight copy engines on A100.

Inter-read and intra-range parallelism
A server-class GPU like NVIDIA A100 has 108 SMs. 

The key to high performance on the GPU is to ensure that 
all the SMs always have useful work to do and there are 
sufficient Single Instruction Multi-Threaded (SIMT) warps/
sub-warps (groups of threads) concurrently on the GPU to 
hide the relatively higher global memory access latencies 
(i.e, ensure higher warp occupancy). While we utilize only 

 
Figure 5: Parallelizing Minimap2’s chain score generation (shown in a) by forward transformation (shown in b). Additionally, we 
retain mapping accuracy by modifying the score comparison check (> to >=) with all anchors except the immediate neighbor to 
enable farther anchors to take precedence over neighboring anchors to be forward chained.

Figure 6: Workload is sparse and irregular. (a) ∼67% of anchors fed to the chaining step do not start a chain. (b) Predecessor range 
is less than or equal to 16 for ∼92% of all anchors and goes as high as 5000 only for a small fraction of total anchors.
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inter-read parallelism (concurrently processing multiple 
reads per SM) for finding the maximum of scores at start 
and end of chain, we utilize both inter-read and intra-range 
parallelism (via forward transformation) for the optimal 
chain score generation. Intra-range parallelism comes from 
concurrent warps (sets of 32 parallel threads) performing 
chain score generation in parallel for all successors within the 
successor range of a given anchor. The next anchor attempts 
to chain only after it’s previous anchor’s optimal chain score 
generation step is completed. To this end, we have a thread 
synchronization barrier (syncthread() ) waiting on all the 
threads to finish chain score generation and update for all 
the successors of a given anchor. Please note that Guo et al. 
[23] uses more synchronization barriers (six of them) in the 
chain score generation kernel. However, we only need one 
as we reduce the number of points of branch divergence by 
combining multiple condition checks together.

Data Locality
We observe optimal benefits from optimizing for better 

spatial data locality rather than temporal locality. Temporal 
cache locality refers to re-use of data in cache, while spatial 
cache locality refers to use of data from adjacent storage 
locations. For example, we pre-fetch data for a group of 
successors per current anchor in each concurrently processed 
read into L1 cache for better performance from improved 
spatial data locality. We use the PTX instruction __prefetch_
global_l1 to prefetch the successor anchor’s inputs (query and 
reference coordinates) and chaining output (score and parent 
values) from global memory to L1 cache in a coalesced fashion 
for every set of 32 successors per anchor. While Guo et al. 
[23] attempted to exploit temporal locality from using shared 
memory (memory shared between parallel threads of a read 
) with a static successor range, this approach does not prove 
beneficial with a dynamic successor range because of limited 

scope for any benefits from temporal data locality. Frequent 
cache misses due to different successor ranges lead to data 
transfer latency from shared memory to registers, adding up 
to outweighing any benefit from using shared memory at all. 
We therefore use more registers per GPU thread instead of 
utilizing shared memory. We also coalesce global memory 
reads and writes for successor anchors to reduce the total 
number of transactions to high-latency global memory.

Minimal branch divergence
Conditional branches are kept to a minimum in our 

implementation by combining conditions when successors 
are not updated after score generation. This helps reduce 
branch divergence, which affects performance on the GPU. 
There are only two conditional blocks for every read that 
is processed within the chain score generation kernel (one 
for score generation and the other for update, as seen in 
Algorithm 1). On the other hand, Guo et al. [23] has nine 
conditional blocks evaluated per read. Further, we utilize 
CUDA’s warp-synchronized integer intrinsics to efficiently 
perform operations like logarithm and absolute differences. 
clz() lets us efficiently calculate logarithm during the chain 
score generation step from counting the leading zeros and 
subtracting this count from the number of bits in int32 
datatype (32). sad enables us to efficiently compute the 
overlap cost from the absolute difference of query_gap and 
reference_gap (shown in Figure 2b). 

Implementation
Experimental Setup

Minimap2 (mm2) is a fast evolving software with 7 
new releases on the master branch and 2 new branches 
incorporating mm2-fast in the year 2021 alone. We decided 
to accelerate Minimap2 v2.17 which is used in Oxford 

Figure 7: (a) mm2-ax yields 5.41 - 2.57X speedup and 4.07 - 1.93X speedup : costup over SIMD-vectorized 
mm2-fast baseline. (b) The chaining performance across various read lengths may be further improved by 1.3-
2.3X if we can engineer to hide the data transfer related costs.
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Nanopore’s variant calling pipeline with Medaka [9] . 
Kalikar et al. [22] has accelerated Minimap2 versions v2.18 
and v2.22. mm2 v2.18 and v2.17 produce equivalent results 
in chaining and are, hence, comparable. We demonstrate 
the benefits of our chaining optimizations on a server class 
NVIDIA A100 GPU. Our evaluations are performed on 
Google Cloud Platform (GCP). Speedup is normalized to a 
costup factor to evaluate a speedup : costup metric in order to 
take into account the usually higher GPU costs on the cloud. 
Our costup factor on GCP is 1.33X, but this would be lower 
if one were to use Amazon Web Services (AWS). mm2-ax is 
evaluated on a single GCP instance of a2- highgpu-1g with 
85GB of host memory and one NVIDIA A100 GPU of 40GB 
memory. We compare mm2-ax to the SIMD accelerated 
mm2-fast (fast-contrib branch of mm2) on a single GCP c2-
standard-60 instance (30 AVX-512 vectorized Intel Cascade 
Lake cores and 240GB memory). We use NVIDIA Nsight 
Compute [28] for profiling GPU events and Nsight Systems 
[29] for visualization of concurrent GPU events. Seqtk [30] is 
used for random sub-sampling of DNA sequences. We used 
Perf [31] for profiling mm2 on the CPU. To ensure better 
GPU resource utilization with nanopore reads of varying 
length (few hundred to a million bases), we bin reads based 
on read lengths before batching their sorted anchors onto the 
GPU for chaining. For example, reads of length 1-2 Kilobases 
(Kb) go to the same bin, reads of length 2-3Kb go to the same 
bin etc. However, for longer read lengths, we bin 50K-100K, 
100K-150K etc. because it is relatively harder to find reads 
closer in read lengths. The reads within a bin could still 
present an unbalanced workload as the predecessor ranges 
of every anchor is different. This binning may be done very 
efficiently during basecalling as the basecaller has access to 
read lengths, and hence the overhead introduced is negligible. 
We also try to fit in as many reads as possible on to the GPU’s 
DRAM for every read bin. We measure the compute time for 
optimal chain score generation and sub-task to find maximum 
of scores at start and end of chain on the GPU and compare 
it to that of the SIMD baseline to evaluate SpeedUp metric 
(compute time taken by CPU baseline mm2-fast divided by 
time taken by mm2-ax on GPU). We then divide this with 
1.33X to normalize for cost and calculate the speedup : 
costup metric. The overhead presented by successor range 
selection over predecessor range selection on the host CPU 
is very negligible ( < 2.8% of total CPU time) and is, hence, 
not considered for our analysis. Further, it is worthwhile 
to note that successor range identification can outperform 
predecessor range identification using SIMD vectorization 
on the host CPU as our forward transform essentially makes 
successor range identification parallelizable. Further, we also 
evaluate mapping accuracy of mm2-ax vs mm2-fast (or mm2 
with MAX_SKIP set to INF). Mapping accuracy is defined as 
the number of reads from mm2-ax producing bit-exact chains 
to mm2-fast. If any of the 12 fields in mm2-ax’s Pairwise 

Alignment Format (PAF) formatted output differs from that 
of mm2’s in the primary alignments, we treat the read as 
misaligned. The datasets we use are publicly available [32–
35]. HG002 genome sequenced by ONT PromethION with 
60X coverage and 15Kb and 20Kb PacBio HiFi reads with 
34X coverage.

Optimal GPU conifgurations
Of the two chaining sub-tasks offloaded to the GPU, chain 

score generation takes approximately greater than 95% of 
the time on the GPU. Hence, we discuss how we performed 
design-space exploration to identify the optimal GPU kernel 
launch parameters for this sub-task. Kernel launch parameters 
refer to a predefined configuration with which a kernel or 
function may be executed on the GPU. In this context, we can 
define the chain score generation kernel launch parameters as 
a 3-tuple (thread blocks per SM, number of concurrent reads 
processed per block in an SM , number of parallel threads 
per read). In this context, thread blocks are groups of parallel 
threads within an SM which may or may not be processing 
the same read. We find the register requirement per thread 
on an NVIDIA A100 GPU to figure out the achievable upper 
bound of GPU kernel launch parameters on the A100 GPU. 
Using NVIDIA’s Nsight Compute Profiler, we profiled mm2-
ax and observed that we require 53 registers per thread for the 
optimal chain score generation kernel, and this observation 
helps provide an upper bound on the maximum number of 
parallel threads that can be launched on the SM in our case. 
From Fig. 6b, one may try to fit more concurrent reads 
with 16 or 32 threads per read, but it is observed that this 
configuration hurts spatial cache locality across reads and is 
hence, not beneficial. The optimal configuration is observed to 
be in the direction of higher concurrent reads per SM instead 
of per thread bock and towards more threads allocated per 
read for chaining. This is because having more threads per 
read enables better spatial data locality in L1 cache through 
larger coalesced global memory accesses. We find that (9 
thread blocks per SM, 1 concurrent read per thread block, 
128 parallel threads per read) is the best performing kernel 
configuration. This is followed by (3, 3, 128) and (1, 4, 256). 
From Fig. 6a, we observe that ∼67% of anchors fed to the 
chaining step do not start a chain. This observation helps us 
to ensure better arithmetic intensity (more computations per 
byte of data fetched from high latency global memory). In this 
regard, we perform successor range identification on the host 
CPU and condense the sparse vector of successor ranges to 
a dense one with non-zero successor range before offloading 
the chain score generation sub-task to the GPU. Further, 
Fig. 6b informed us to efficiently implement successor range 
identification. 67% of the anchors have predecessor ranges 
equal to zero, and greater than 92% have predecessor ranges 
less than or equal to 16. We use this information to efficiently 
implement successor range selection by reducing the number 
of total iterations. We did a design space exploration to 
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identify the granularity of dispatching work to the GPU for 
optimal performance. While concurrently dispatching coarse 
grained workloads (each workload is defined with as many 
reads as it takes to fill all the 108 SMs on A100) yielded 
the best results for reads smaller than or equal in length to 
10Kb, coarse grained workloads do not work well for longer 
reads as any SM that finishes early may idle. Concurrently 
dispatching fine-grained workloads (each workload is sized 
with as many as reads as it takes to fill only a single SM) 
yielded the best performance for reads longer than 10Kb. 
Concurrent fine-grained dispatches with each workload sized 
to fill 2 and 4 SMs closely competes but gives slightly lower 
benefits. Additionally, a fine-grained workload for longer 
reads is always followed by fine-grained workload of smaller 
reads (we choose 2Kb) to yield a better performance. This 
is because multiple fine-grained workloads of smaller reads 
can better load balance without adding a significant tail to the 
critical path.

Results
mm2-ax demonstrates a 5.41 - 2.57X speedup and 4.07 

- 1.93X speedup : costup over SIMD-vectorized mm2-fast 
baseline as shown in Figure 7a. It is observed that coarse-
grained load dispatching to the GPU is better for read lengths 
smaller than 10Kb while fine-grained load dispatching to 
each SM is better for longer reads. In Figure 7b we show 
the chaining performance gain factor without including the 
data transfer related costs (memory allocation, asynchronous 
memory copies on CUDA streams and data serialization).

Additionally, we also evaluate the mapping accuracy 
of mm2-ax with respect to mm2-fast on the complete 60X 
HG002 ONT dataset and we observe that all the output chains 
match in all the first 12 fields of the output Paiwise Mapping 
Format (PAF) file. As mm2-ax is limited by the DRAM 
capacity of the GPU, we use minimap2 modified with our 
forward transformed chaining logic on the CPU to evaluate 
accuracy on the very large 60X HG002 dataset. We then 
compare and validate the output PAF file to the outputs of 
both mm2-fast and mm2 modified with MAX_SKIP set to 
INFINITY.

Discussion
We only discuss the profile of the most time-consuming 

kernel of mm2-ax on the GPU, optimal chain score generation. 
Here we present the profile of optimal chain score generation 
kernel on the 2Kb bin of reads. From Fig. 8a, we see that the 
chain score generation kernel on the GPU is memory bound. 
Unless we increase the arithmetic intensity of the kernel, we 
cannot transform it to a compute bound kernel. From Figure 
8b, we observe that high register usage per thread limits the 
theoretical number of active warps per SM on the GPU. The 
higher the warp occupancy, the better the kernel is in hiding 
the relatively longer global memory access latency on the 
GPU. The achieved number of active warps per SM is 12 
(33% of the theoretical maximum). One way to ensure there 
are enough warps on the SM is by integrating asynchronous 
FIFOs at the input and output of chaining to better manage 
input and output out of the GPU. One may also try to better 
hide the data transfer related costs to gain further improve in 
performance. Further, it may be noted that one may further 
improve performance by making the range of read lengths 
that go into a bin even smaller. In our case, the HG002 dataset 
presented reads in 50-150Kb range to be highly varying in 
read lengths and hence, we defined long read bins with higher 
variance in read lengths. It is also worthwhile to consider 
porting the entire mm2 software to the GPU as most long read 
sequencing workflows are now shifting to GPUs.

Conclusions
Long read sequencing workflows on GPUs are becoming 

increasingly popular for healthcare and genomics applications 
like Precision Medicine and microbiome abundance estimation. 
We identify chaining as the bottleneck in the state-of-the-art 
aligner used for long read mapping and alignment. Chaining 
constitutes as high as ∼67% of the total alignment time in 
long noisy ONT reads of lengths greater than 100Kb. We 
address this problem with mm2-ax (minimap2-accelerated), 
a heterogeneous system for accelerating the chaining step of 
minimap2. We implement various optimizations to ensure 
better occupancy and workload balancing on the GPU. Some 
key optimizations include forward transformed chaining 
for better intra-read parallelism, trading-off host and GPU 
memory for better performance on the GPU, better spatial 
data locality and minimal branch divergence. We show mm2-
ax on an NVIDIA A100 GPU improves the chaining step with 
5.41 - 2.57X speedup and 4.07 – 1.93X speedup : costup over 
the fastest version of minimap2, mm2-fast, benchmarked on 
a single Google Cloud Platform instance of 30 AVX-512 
vectorized cores (Intel Cascade Lake).
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