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Abstract

The emergence of the coronavirus SARS-CoV-2 has
raised a global issue and a pandemic disease
outbreak, COVID-19, was declared by the World
Health Organization on March 12" 2020. Health
authority advisors and governments need to quickly
manage and deal with growing epidemiological data
on a daily basis. In this work, current available data
from reported cases and deaths were analyzed and

treated. Lethality has been calculated by finding
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linearization of death cases against reported ones,
using a time-delayed data transposition. A two-wave
statistical model, 2WM, based on the superposition of
normal distributions was used to fit current data and
to estimate the evolution of infections and deaths,
using Microsoft® Excel. A gamma distribution was
used as a risk function to estimate death probability
from patient admission to reported death. Evolution
of fatality cases over time can then be estimated from

the model with reasonable accuracy. Data from South
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Korea, China, Australia, Germany, Italy, Spain,
United States, United Kingdom and Brazil were used.
Constant lethality can be determined from the initial
stage of the pandemic wave, even for places with low
testing. Values ranged from 1.7% to 15.3%. The two-
wave model can be fine-tuned to properly adjust the
data. The second wave pattern was estimated
according to the first wave parameter. The accuracy
for estimating COVID-19 evolution was compared to
the classic SIR model with good agreement.
According to the model, approximately 10,000,000
cases and 860,000 deaths will be recorded

worldwide.

Keywords: SARS-CoV-2; COVID-19 outbreak

modeling; Pandemic data analysis; MS-Excel®

1. Introduction

By the end of 2019, the World Health Organization
(WHO) [1] noticed that cases of pneumonia from
unknown causes were disclosed in Wuhan City,
Hubei Province of China. After that, the WHO
announced that it was an odd species of coronavirus
(2019-nCoV). The novel species was further named
by the International Committee on Taxonomy of
Viruses as severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) on February 11", 2020
[2]. It is coming up as the third highly pathogenic
disease that rise in the last 20 years [3]. The
transmission rate has been heavily described and the
number of deaths has been increasing exponentially.
By May 3% 2020, WHO reported 3,356,205
confirmed cases and 238,730 confirmed deaths,

spread around 215 countries, areas or territories.
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An investigation reported that the virus may be
originated from bats and its transmission associated
with a seafood market (Huanan Seafood Wholesale
Market) in China [4,5]. COVID-19, the coronavirus
disease promoted by SARS-CoV-2, can be compared
with other disease outbreaks such as Ebola and
Influenza HIN1 which infected and killed a great
number of people worldwide, but it increases the
pressure on particular demands of health systems
around the world, due to ICU and respirators for
longer times [6,7]. Since the initial outbreak of
COVID-19 efforts are being made to better
understand the syndrome and its agent infectious
pattern. The Center of Systems Science and
Engineering at Johns Hopkins University claims that
the most important way to measure the burden of
COVID-19 is mortality. Different fatality ratios have
been reported throughout the countries worldwide,
which is defined as the number of deaths divided by
the number of confirmed cases [8]. Differences in
mortality have been attributed to the differences in
the number of people tested, demographics, and
characteristics of the health care system, among

others.

The literature discusses the fatality rate, which
represents the proportion of cases of who eventually
die from a certain disease, although it is only possible
to calculate it once the epidemic has ended by
dividing the number of deaths by the number of
cases. When the epidemic is on course, as it is the
case of SARS-CoV-2 disease outbreak in the first
months of 2020, this formula can be inaccurate. On
the other hand, there is urgent need to better
understand the spread of the disease and its outcome
and risks. Particularly, one wishes to mitigate the

pandemic in order to buy precious time, so the health

Vol. 5 No.3 — June 2021. [ISSN 2572-9292]. 299



Arch Clin Biomed Res 2021; 5 (3): 298-312

system is better prepared to deal with the incoming
patients. Researchers are using different and
complementary approaches such as reviewing
techniques for disinfection of surfaces [3], studying
transmission factors and their dynamics [9], looking
for the origin of the virus [4] and developing
alternative  mathematical models to predict
transmissibility and COVID-19 evolution [2]. Due to
the easiness and the achievements of good results,
mathematical models are being built to estimate the
dynamic of the transmission of the virus [2,4,5].
However, some models require software only
familiar to experts and many parameters are
necessary to process and interpret the data.
Sometimes those tools are not easily available and/or
are not easily accessible for people directly involved
with local data management and critical policy
decision. Although there is a lack of good data sets,
everywhere, mostly due to the small number of tests,
the reported data are those which the leaders, health
authorities and public agents have in order to support
their decisions, trying to balance saving as many lives
as they can, at the minimal economic and social

costs.

Many of the problems related to the emergent SARS-
CoV-2 remain poorly understood and a lot of efforts
have been made to overcome those concerns [11].
Therefore, the aim of this work is to contribute to
data analysis and treatment providing a simple way to
predict possible scenarios for pandemic evolution
from a country down to a state or city using the well-
known software MS-Excel, based on data with low
accuracy but promoting satisfactory and, hopefully,
useful results. Instead of using somehow more
difficult to handle deterministic models based on a

set of differential equations, we have chosen to use
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more intuitive statistical modeling tools. Statistical
approach was also suggested in a recent published
paper [9]; in that case the author applied a
hierarchical five-parameter logistic model and one
wave, solved by a scripting code in R. The aim of this
work is to contribute to the SARS-CoV-2 pandemic
analysis as it progresses, offering a very simple but
useful fitting model based on classical statistics, a
combination of gaussian and gamma distributions,
implemented in a MS-Excel spreadsheet. In addition,
we provide a simple and easy to use MS-Excel (.xIsx)
file and a brief tutorial so the interested user can use

to easily follow SARS-CoV-2 epidemic progress.

2. Methods

2.1 General description

The schematic diagram shown in Figure 1 shows the
general approach we have used. Total number of new
cases are fitted to a two-wave model, the
superposition of two normal (gaussian) distribution
functions and, in parallel, death cases are linearized
against case numbers (confirmed infection cases). A
hazard function is used to consider clinical data
(hospitalization time) and evolution of death is then
calculated. Model adjustment and actual data fittings
and validation are continuously updated to treat new
data. Model equations are described in detail in
appendix |. The template spreadsheet is available at
https://arquivos.ufsc.br/d/523de7b946624346b3d8/

2.2. Procedures

Data source regarding cases and deaths through time
for selected countries was obtained from Our World
in Data [12] with last update in April 24" 2020.
South Korea (KOR), China (CHN), Australia (AUS)
Germany (DEU), Italy (ITA) and Spain (ESP) were
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selected as reference countries to test and validate the
model. Clinical reported data was applied to
reference cases for time distribution from admission
to death [13] to fit the gamma function. The major
reference was a Chinese study that reported x = 11.5
days and s = 10.6 days for 40 individuals, ~90%
ranged between 4 and 23 days, using o = 2.0 and § =

data source

DOI: 10.26502/acbr.50170166

4.7 [13]. Those parameters were applied to China and
South Korea. For other countries where that clinical
information could not be obtained the authors have
established the equivalent set of o = 12 and p = 1.
Therefore, a can directly represent the average time
from admission to death, ranging from 4 to 23 days,
which represents 99% of death probability.

Onset to death time

i Lz Y
Clinical i ‘;25 R —— :
data or > © «--i Data |
. assumption = | comparison |
! |

Figure 1: Schematic diagram showing how data source is analyzed and treated. Total number of new cases are fitted

to a two-wave model and, in parallel, death cases are linearized against case numbers. A hazard function is used to

consider clinical data (hospitalization time) and evolution of death is calculated. Model and actual data adjustment

and validation are continuously updated to fit new data.
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Microsoft® Excel (2019) (Microsoft Inc., Redmond,
WA) was chosen as the spreadsheet used to
implement the model. MS-Excel has the advantage of
being popular, worldwide used, and support the
model with its current tools. The Solver® toolbox, a
supplement tool available in MS-Excel distributions,
was used to determine the best fit, by minimum
square regression of Eq. 3 and Eq. 4, sequentially.
The outputs are compared with observed data to

check the model adjustment.

The model was applied to United Kingdom (GBR),
United States of America (USA) and Brazil (BRA).
In addition, the model was applied to the word
(WRLD) and to the state of Santa Catarina (SC), in
Brazil. Results were compared to the prediction
calculated by the SIR model with codes available in
Matlab® (Mathworks Inc., Natick, MA) [14] applied
in April 28" by Singapore University of Technology
and Design (SUTD), Data-Driven Innovation Lab,
available in the website [15]. The chart data available
there was extracted by WebPlotDigitalizer [16].
Comparisons were done using the same data sources
(https://ourworldindata.org/coronavirus-source-data),
at the same date [12].

3. Results and Discussion

3.1 Lethality, L

Figure 2 shows the number of total current and future
deaths against officially registered cases at a certain
day for some selected countries as a raw data (RAW
= current death) and after linearization (LIN = deaths
predicted). In all analyzed cases it was possible to
obtain linear adjustment of the data by proper shifting
(translation) of the time axis. Linearization procedure
was applied to this pair of variables but testing
different shifts. It was noticed that each country has

its own particularities that this simple procedure can
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reveal. It was possible to find a lethality value (L)
that is constant throughout each outbreak “cycle”.
However, for China, South Korea and Australia the
procedure revealed two straight line segments. This
does not mean that in practice the outbreak had two
different lethalities. It just shows that conditions may
have changed for the disease dynamics or for the data
registration protocol, possibly for both. Still, for
mathematical modeling purposes, it will be
considered that the outbreak may be adjusted as
having two pseudo-lethality values, even for cases

where those conditions have not changed.

Table | shows some important information about the
pandemic for the selected countries. This table also
shows the quantitative results of the linearization
procedure, L and R2. Despite the differences on
testing policies between countries, ranged from 1.4 to
27.8 tests per thousand inhabitants, all cases
presented a high linearity behavior, high correlation
coefficient, R2, as well as a low error on L values.
This result indicates that even with low testing, the
information on the number of cases can be linearly
associated with the deaths that will be caused by
SARS-CoV-2. Thus, even with underreporting of
cases, if a country maintains a regular testing policy,
it can use those results with as a reliable indicator to
measure trends in the evolution of the pandemic. Of
course, we know that the absolute values of the
lethality may vary. For the countries we have
considered, it goes from 1.7% (AUS) to 14.3%
(ITA), with a world average of 8.4%. These figures
require a more in-depth analysis of the particularities
of each country. The problem of underreporting has
been widely reported. A country with a high lethality
value may indicate that it has a higher rate of

unreported cases.
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Figure 2: Total number of deaths against total number of cases without linearization (RAW) and after linearization
(LIN). This procedure could disclosure a linear relationship between death and cases along the outbreak for a given

time shift in one of the variables. The case of KOR, CHN and AUS is detailed in the discussion section.

Model Results

Country/ | First First Current Deaths

.
case death Current| Current testper | X Qases inLor LorlL R%in L RZin
; cases deaths d inL 1 2
Region | reported | reported 1000 or L L, L or
(days) | Togr (%) . (%) L,
( 0 (%) 1

KOR Jan 20" | Feb21% | 10708 240 11.4 5 70 25 0.70+0.05 | 0.9904| 5.6+0.1 |0.9957

AUS Jan 25" | Mar 1% 6667 75 19.0 3 68 31 0.40+0.03 | 0.9787 | 2.45+0.05 | 0.9698

CHN* Dec 31%+ | Jan 11" 83884 3346 - 3 79 46 3.0+0.1 |0.9856| 10.7+0.5 [0.9764

DEU Jan 28" | Mar 10" | 150383 | 5321 25.1 12 100 100 | 4.30+0.04 |0.9983 - -

ITA Jan 3™ Feb 23" | 189973 | 25549 27.8 4 100 100 |14.30+0.04|0.9999 - -

ESP Feb 1% Mar 5™ | 213024 | 22157 20.0 3 100 100 11.2+0.2 |0.9996 - -

USA Jan 21™ | Mar 1 869172 | 49963 14.1 8 100 100 7.6+0.05 |0.9986 - -

GBR Jan 31% | Mar 6™ 138078 | 18738 6.6 3 100 100 153+0.2 [0.9978 - -

BRA Feb 26™ | Mar 18™ | 49492 3313 1.4%* 7 100 100 10.9+0.1 |0.9987 - -

SC Mar 13" | Mar 26" | 1476 44 - 3 100 | 100 3.6+0.2 [0.9860 - -
WLRD | Dec 31%+ [ Jan 11™ | 2557k | 191.6k - 5 100 100 | 8.37 £0.05 |0.9985 - -

* Not considering the 1290 deaths reported in April 17", 2020.
** http://worldometers.info/coronavirus
Table 1: Pandemic data from selected countries or region, lethality and other linearization results as of April 24™,

2020 (Source: http://ourworldindata.org)
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Table 1 also shows the corresponding X _d for each
country. Germany has presented the highest value,
needing X _d=12 days for the linear relationship
between death and case numbers. This value match
with the average time of 11.5 day from admission to
death reported in the literature [13]. We speculate
that, in the case of Germany a very systematic
procedure between sampling, test result and
communication are been conducting. So, the delay
time for Germany is X c~0. Data from the USA also
show typical dynamic delay response with X_d=8
days. If time from hospitalization to death in the USA
is about 12 days, them X c~4 days. However, it is
only possible to estimate an accurate average value of
X_c for a particular country or region if the mean
admission to death time is known. Considering the
information from the literature [13] as aleatory
sampling, a confidence interval could be estimated
for the average time from admission to death as 9 to
15 days.

3.2 Case evolution, C(X i), and AC(X_j)

Figure 3 shows the graphs of new cases over time for
the analyzed countries. The two-wave model fitted
the cases satisfactorily. KOR is the only country
where the observed data clearly shows a true second
wave. In other countries, deconvolution by the two-
wave model suggests the possible influence of a
second wave, superposed on the previous one while
was still progressing. KOR, CHI and AUS outbreaks
apparently had a break and the two-wave model was
sufficient to describe the cases so far. DEU, ESP and
ITA outbreaks are still ongoing; the two-wave model
can then describe data evolution for a near future. It
is not possible to state that just two waves will be

sufficient to describe all outbreaks around the world
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for the whole pandemic, but as mentioned before, one
can easily add new wave cycles as necessary. Please
notice that, in the case of CHN, the new cases
announced on February 14™ and 15" were not
considered in the model. The strong discontinuity
observed and reported in the literature [9] is a serious
burden for any modeling attempted.

Table 2 shows the adjusted parameters found for the
reference/chosen countries as well as the parameters
for the two-wave model applied to other regions.
Another possibility is to use the most expected value
for each parameter directly. The standard deviation of
the first wave is the key factor for a more accurate
prediction, especially at the beginning of the
outbreak. It is also important to compare x; with
other countries. Within the error margins it is
possible to draw different scenarios and compare
different countries/regions. The fitted values for x;
and s; for USA, GRB, BRA and SC state were
within the limits estimated for the countries taken as

reference.
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Figure 3: Observed and modeled data for new cases against time. The contribution of each wave to the total effect is

detailed. The time zero for all charts is Jan 9™, 2020. The two-wave model could satisfactory describe the observed

data, considering intrinsic data dispersion.
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Parameter./ ", X1 S1 ", X Sy M, G\SI 1";2 + %, - %11/5, ols,
Country/region (day) (day) (day) (day) 1
Referer_lce
countries
KOR 7645 42 4.6 3012 65 104 0.28 0.57 2.25
AUS 4482 61 5.3 2557 71 14.37 0.36 0.16 2.71
CHN 46234 37 6.4 21382 47 104 0.32 0.28 1.62
DEU 120000 63 8.8 52000 85 111 0.30 0.36 1.26
ITA 153214 70 16.7 67787 51 7.5 0.31 0.27 0.45
ESP 171089 59 8.5 85323 81 8.5 0.33 0.37 1.00
Selected
countries/regions
USA 10660k 82 12.3 309 109 9.9 0.32 0.35 0.8
GBR 179236 74 12.6 73209 100 10.1 0.29 0.35 0.8
BRA 99378 59 15.0 46766 97 242 0.32 0.35 1.6
sC 1547 32 13.0 495 57 104 0.32 0.50 1.6
WRLD* 7374k 107 17.2 2073k 157 17.9 0.32 0.5 1.04

Table 2: Two-wave model parameters for the reference countries and for the selected countries/regions where the

model was applied

Wave Parameter X1
S1 My /(M3 + My) %, — %, 1/%, Salsq
(days)
Average 55 8.0 0.32 0.35 1.6
Lower limit 37 4.6 0.28 0.16 0.5
Upper limit 70 16.7 0.36 0.57 2.7

Table 3: First and second wave parameters as extracted from regression fitting of Eq. 2.

Table 3 gives first and second wave parameters as calculated from reference countries, i.e., countries chosen to

validate the model. The average and range between lower and upper limits may be used to build possible scenarios

for a target country or region.
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3.3. Deaths Evolution, D(X;)
Figure 4 shows the case and death evolution over the time and deaths as a function of cases for the simulated
linearized function. KOR and DEU were selected as representative cases. The combination of two-wave modeling

for the cases evolution, lethality and hazard function could estimate the death with a good level of proximity.
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Figure 4: Cases and deaths evolution over the time and deaths against cases for South Korea (KOR) and Germany
(DEU), the chosen representative countries. Deaths were calculated combining the two-wave model for cases,

lethality, and hazard function. Number of total cases are given in thousands.

Archives of Clinical and Biomedical Research Vol. 5 No.3 — June 2021. [ISSN 2572-9292]. 307



Arch Clin Biomed Res 2021; 5 (3): 298-312

South Korea, as well
presented two values for lethality, according to the
linearization
information was not incorporated into the model.
However, before concluding that there are in fact two
distinct lethality, it is necessary to analyze at least
two important aspects: (1) if the duration of the
outbreak is faster than the hospital stay until death
and (2) if there was any significant change in testing
policy or protocol and confirmed cases. The analysis
of the data treated here allows evaluating the first
aspect. These countries were the ones that presented
the shortest time for the first wave cycle. In the case

of KOR the value was s;= 4.6 days, see Table 2. This

procedure.

as China and Australia,

Mathematically,

DOI: 10.26502/achr.50170166

means that approximately 85% of people infected in

the first wave were infected within 15 days. The

average length of stay according to the literature

varies from 2 to 56 days, with an average of 11.5

days and standard deviation of 10 days. Thus, it can

be said that the period of the outbreak is faster than

the length of hospital stays until death. Thus, the

lethality of the virus in these countries is more likely

to be approximately constant over the outbreak

interval. The model would be able to simulate this

scenario, but in this case, it would be necessary to

obtain accurate information on the distribution of the

length of hospital stay until death in the countries

considered.

X, Estimated Estimated Cases
Country/
Deaths 97% of est’d cases 99% of est’d cases
region
(day) (thousands) (thousands)
2WM 2WM 2WM SIR 2WM SIR 2WM SIR
DEU 1 75 171 230 May 6" May 4" May 12" | May 16"
ITA 8 32 221 280 May 7" May 14" May 09" May 17"
ESP 10 28 255 306 May 05" May 02" May 09" May 13"
USA 5 110 1440 1200 May 19" May 16" May 25" May 29"
GBR 9 39 252 247 May 22" May18™ May 28" May 31%
BRA 5 16 146 154 Jun 26" Jun 06" Jul 8" Jun 18"
SC 10 0.085 2.2 - May 22" - May 28" -
WRLD* 8 860 10300 11300 Jul 157 Jun 12™ Jul 26" Jun 25"

Table 4: Estimates for deaths, cases and end dates. Comparison between 2WM and SIR cases. SIR results from:

Singapore University of Technology and Design (SUTD), Data-Driven Innovation Lab [15].
Table 4 presents a critical parameter for adjusting the

model, X, that corresponds to the average delay time

between hospitalization and confirmation of the case.
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The sum X, + X,

represents approximately the

average length of stay until death. If the length of

hospital stay is different from that considered in the
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calculations, the difference may be subtracted from
the value of X.. This adjustment is a position
adjustment. If there are no significant variations in
the testing protocols during the pandemic, this is a
value that does not tend to change. The table also
presents a comparison between the predictions
obtained with the two-wave model, 2WM, and the
SIR model. Differences in the forecast of the total
number of cases fluctuated by approximately 20%.
The dates predicted to end the outbreak in question
also resulted in close values. The biggest discrepancy
is related to the forecast for the end of the pandemic
in the world. It is observed that the statistical model
of two waves allows obtaining forecasts with results
similar to those of the SIR, but with the advantages of

simplicity and ease of implementation and analysis.

5. Conclusion

A two-wave statistical model, 2WM, based on the
superposition of normal distributions was developed
and used to fit current data and to estimate the
evolution of infections and deaths in chosen reference
countries and other ongoing places. The model
showed good agreement even for apparent single
wave behavior in some countries and can easily be
extended to any number of waves. A gamma
distribution was used to estimate death probability
from patient admission at a health service to his/her
reported death. Evolution of fatality cases over time
is estimated from the model with reasonable
accuracy. The model was successfully implemented
in MS-Excel®, a popular and easy to use analytical
tool. Constant lethality was determined from the
initial stage of the pandemic wave. Values ranged
from 1.7% to 15.3%, depending on the degree of

possible sub notification cases. Even for places with
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low testing, a linear relationship could be found, by
properly translating time series data. The two-wave
model can be fine-tuned to properly adjust a variety
of situations. A second wave pattern was estimated
according to the first wave parameters. Confirmation
of the future scenario, as predicted by the model, is
vulnerable to changes in behavior on the part of the
population and policies to deal with the epidemic. As
a result, the characteristics of the second wave can
extrapolate, for more or less, the observed and
parameterized behavior. The accuracy for estimating
COVID-19 evolution was compared to the classic
SIR model, based on ordinary differential equations,
with good agreement. According to our two-wave
model and based on current trends, health protocols
and policies, approximately 10,000,000 cases and
860,000 deaths will be recorded worldwide by the
end of the pandemic. Approximately 99% of that
number would be reached by the end of July 2020,
given current conditions. In this way, the model
offers complementary information to the classic
models, hopefully contributing to the monitoring and

management of the pandemic.
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Appendix |
Modeling

Epidemiological data are being reported as cumulative confirmed cases, active cases, number of deaths and
recovered cases. Other relevant parameters are the incidence and testing rates (given in cases per 100,000 people)
and the case-fatality and hospitalization rates (usually given as percentage rate). The modeling developed and
applied in this study uses the cases and deaths officially reported. In order to treat the epidemiological data as the
disease evolves, we have assumed the following hypotheses:

Cumulative data behave like a sum of normal, gaussian (normal) distribution, curves;

The data were fitted by the addition of two gaussian curves;

Each gaussian was named as a single wave;

The onset of symptoms corresponds to the beginning of the patient admission date;

There is no delay between the date of death and the date of its communication into the public database;
A probability of death during hospitalization is implemented as a hazard function, h,(t), and assumed to
follow a gamma distribution, i.e., h,(t) =T(X; a,B), witha=12e g =1,

7. The average onset time is constant throughout the outbreak.

o aprwd PR

Below we briefly introduce and describe major model variables and parameters.

Model input variables for the gaussian distribution and linearization:

C Total (cumulative) number of cases (confirmed infections)
D Total number of (confirmed) deaths
X Time vector (in days)

Model parameter for the gamma distribution:

a Parameter of gamma function, assumed to be equal to 12
B Parameter of gamma function, assumed to be equal to 1

Output variables:
L Virus lethality, determined by linearization of the observed data from C and D
X; Timeatdayi(i=0,1,2,..)
C(X;) Evolution of total number of cases as a function of time, determined by adjusting the model to the
reported data

D(X;) Prediction of daily deaths as a function of time, calculated from the relationship between L, C(X;)
and I'(X)

Model equations
Lethality, L

The lethality of the virus was determined through linearization by translation of the abscissa axis according to
Equation 1:
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D(Clxi - C|Xi—Xd) =L C|Xi +c Eq.1

where X is the time interval between the date of announcement of the case and the respective death; c is the linear
coefficient of the equation; L and c are calculated for the X, interval in order to maximize R2 Usually, ¢ value is
found to be zero.

Cumulative number of cases, C(X;)

The evolution of cases over time, €(X;), can be described from the superposition of shifted gaussian distribution
curves in order to fit the data, according to Equations 2 to 4 of individual waves. In this study, the deconvolution of
the cases in two sequential waves was used, but the reader may see that additional cycles could benefit from a
greater number of wave outbreaks.

Ci(X) =M,y - &,(X;;%, — X, 51) Eq.3
C2(X;) = My - @,(X; %2 — X, 52) Eq. 4
Cn(Xi) =M, q)n(Xi;fn -X., Sn) Eq 5
where:

.....

X12,.n Time at peak of cases in waves 1, 2 and n, the average time of the respective cycle
S12..n Standard deviation in waves 1, 2 e n
X, The time delay between the date of patient admission and the announcement of a new case.

The parameters M, ,, X4, 51, Were determined by adjusting the observed data to the model, by least squares, for
countries where the outbreak was at advanced stage being possible to identify with significant clarity the behavior of
the second wave. X, is a parameter adjusted from the results of Eq. 6.

Cumulative number of deaths, D(X;)

The prediction of the cumulative number of deaths was calculated from Equation 6.

DX, = Z AD(X)) Eq. 6
i=0

Where we have introduced the gamma function as the hazard, probabilistic weighting function, to account for the
hospitalization period.
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