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Introduction 
Spinal fusion surgery is one of the most common surgical procedures 

performed to correct multiple pathologies of the spine, including degenerative 
disorders of the intervertebral discs, spinal weakness or instability, herniated 
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Abstract
The rat animal model is a cost effective and reliable model used in spinal 
pre-clinical research. Complications from various surgical procedures in 
humans often arise that were based on these pre-clinical animal models. 
Therefore safe and efficacious pre-clinical animal models are needed to 
establish continuity into clinical trials. A Standard Operating Procedure 
(SOP) is a validated method that allows researchers to safely and carefully 
replicate previously successful surgical techniques. Thus, the aim of this 
study is to describe in detail the procedures involved in a common rat 
bilateral posterolateral intertransverse spinal fusion SOP used to test 
the efficacy and safety different orthobiologics using a collagen-soaked 
sponge as an orthobiologic carrier. Only two orthobiologics are currently 
FDA approved for spinal fusion surgery which include recombinant bone 
morphogenetic protein 2 (rhBMP-2), and I-FACTOR. While there are 
many additional orthobiologics currently being tested, one way to show 
their safety profile and gain FDA approval, is to use well established pre-
clinical animal models. A preoperative, intraoperative, and postoperative 
surgical setup including specific anesthesia and euthanasia protocols 
are outlined. Furthermore, we describe different postoperative methods 
used to validate the spinal fusion SOP, which include µCT analysis, 
histopathology, biomechanical testing, and blood analysis. This SOP can 
help increase validity, transparency, efficacy, and reproducibly in future 
rat spinal fusion surgery procedures.
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disk stabilization, spinal stenosis, tumors, trauma, chronic 
back pain and deformities [1]. In the United States alone, 
approximately 500,000 spinal fusion procedures are 
performed annually costing approximately 32 billion dollars 
[2,3]. These costs include spinal fusion surgery, inpatient 
follow up in the intensive care unit to monitor for inflammation 
and swelling ($3000/day), and the potential need to harvest 
bone graft material from the iliac crest if necessary ($550/
procedure) [4]. The population of Americans over the age of 
65 is projected to double over the next 40 years [5]. With such 
a surge in the aging population, an increase in the number of 
spinal fusion procedures will likely occur. The rate of spinal 
fusion surgeries has already increased 32.1% from 2004 to 
2015, rising from 60 to 80 surgeries per every 100,00 U.S. 
adults [6]. Although spinal fusion is considered a generally 
safe procedure, with any surgery potential complications can 
arise which include infection, poor wound healing, bleeding, 
blood clots, injury to nerves or blood vessels adjacent to the 
spine, pain at the bone graft site, lingering pain, instability, 
and pseudoarthrosis, which occurs in up to 15-25% of 
spinal fusion surgeries [7,8]. In these patients, multiple 
revision surgeries are often required, increasing financial 
burden, prolonging recovery time, and increasing the risk 
of additional serious complications such as occult infection, 
devascularization of adjacent tissue, epidural fibrosis and 
scarring, and chronic pain [9]. Since these complications 
are fairly common, advancement in research is needed to 
continue searching for better alternatives, such as the use of 
orthobiologics in these procedures.

Orthobiologics are biologically-derived materials 
intended to augment both bone and soft tissue healing [10]. 
They are used in various orthopaedic procedures as biological 
supplements to screws and cages that are used in spinal 
surgery. Orthobiologics can be used in minimally invasive 
spinal fusion surgeries which help decrease operative time 
and avoid complications of a larger, open spinal surgery [11]. 
A patient can undergo a minimally invasive spinal fusion to 
temporarily decrease symptoms prior to a more definitive 
spinal fusion surgery using screws, rods, and cages. Only two 
orthobiologics are currently FDA approved for spinal fusion 
surgery which include recombinant bone morphogenetic 
protein 2 (rhBMP-2), and I-FACTOR. Several other 
orthobiologics that are available to use include Platelet-
Rich Plasma (PRP), Bone Marrow Aspirate Concentrate 
(BMAC), Mesenchymal Stem Cells (MSCs), autograft, 
Neural Epidermal Growth Factor-Like 1 protein (NELL-
1), and bone void fillers (tricalcium phosphate, calcium 
phosphate, calcium sulfate) (Table 1) [10,12-15]. Currently, 
the most common orthobiologic agent used from the ones 
previously listed is rhBMP-2 [16]. It is used “off-label” for 
various orthopaedic procedures including fractures and long 
bone nonunion when used in combination with an autograft 
[17]. Side effects include male sterility, severe postoperative 

radiculitis, vertebral osteolysis and/or edema, ectopic bone 
formation, bone cyst formation, inflammatory complications, 
nerve root injury, and carcinogenesis, many of which have 
been shown to be dose dependent [18-20]. Autografts are 
usually harvested from the patient’s anterior or posterior 
iliac crest, which poses its own risks and complications 
that include early post-operative pain, fracture, chronic 
pain, scarring, bleeding, and infection [21]. However, it is 
considered the “gold standard” orthobiologic due to its optimal 
osteoconduction, osteoinduction, and osteogenesis [22]. 
Although this procedure is quite successful, pseudoarthrosis 
is reported in up to 27% of cases [23,24]. The prevalence and 
severity of these side effects highlight the need, for safer and 
more effective orthobiologics.

To further enhance clinical practice, the need for adequate 
and safe animal models is essential. There are multiple spinal 
fusion models reported in the literature that include rabbit, 
dog, pig, and sheep [25-28]. The rat model is a common in 
vivo animal model for spinal fusion due to its reliability and 
cost effectiveness prior to pursuing surgical experimentation 
in a larger, more costly model [29,30]. Additionally, it has 
been reported that the mechanical performance of rat and 
human discs are very similar, which may suggest that disc 
tissue material properties are largely conserved across animal 
species [31-33]. Therefore, the rat model is a great pre-
clinical model to evaluate new spinal fusion methods and/or 
supplementary drug applications targeted for use in humans. 
Although there has been a plethora of spinal fusion in vivo rat 
models previously described in the literature, none have been 
described in detail that evaluate orthobiologic application 
using collagen sponges as a carrier.

Standard Operating Procedures (SOPs) are validated 
methods that ensure production of accurate and reliable 
results in pre-clinical trials [34]. SOPs help ensure safety, 
consistency, quality, and minimize complications in animal 
experimentation which help advance pre-clinical research. 
They can be used as models by other laboratories to harbor 
similar results within their own studies. Therefore, this paper is 
aimed at providing a descriptive preoperative, intraoperative, 
and postoperative surgical SOP for spinal surgery in a pre-
clinical in vivo rat model.

Materials
Experimental design

Here, we describe in detail a SOP for rat spinal fusion 
surgery to test differences in orthobiologics. The collagen-
soaked sponge acts as a carrier of the orthobiologic or 
rhBMP-2 (as an example presented throughout the paper) that 
allows it to slowly release into the surrounding tissues. A high 
dose of orthobiologics is necessary when using rhBMP-2, as 
there is a 30% loss the orthobiologic when it comes in contact 
with the collagen sponge [77]. Different orthobiologics can 
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be evaluated and compared to FDA approved rhBMP-2 or an 
autograft, both of which are currently used in spinal fusion 
[78-80]. In our experiments, we describe the steps performed 
in our spinal fusion model, outlined in Figure 1. This protocol 
will be important to assist future researchers who plan to 
replicate our procedure using different proteins/therapies 
of interest. The surgical procedure was carried out under 
sterile conditions with all instruments autoclaved prior to 
surgery. The study was conducted according to the approval 
of Northeast Ohio Medical University’s Institutional Animal 
Care and Use Committee (protocol #19-09-236 and #19-
16- 019). The study design follows the ARRIVE guidelines 
(https://arriveguidelines.org/, assessed 27 April 2020) and the 
National Institutes of Health Guide for the Care and Use of 
Laboratory Animals [81].

Materials 
	 Treatment/Control

•	 rhBMP-2 (0.75-1.50mg/cc, 20 L) (R & D Systems, 
MN)

•	 10× Phosphate Buffered Solution (20 L) (Thermo 
Fischer Scientific, MA)

•	 Orthobiologic of interest (0.75-1.50mg/cc, 20 L)

	 Drugs

•	 Ketamine hydrochloride (75mg/kg) (Covertus, OH)

•	 Xylazine (3mg/kg) (Covertus, OH)

•	 1-4% isoflurane vaporizer (EZSystems, PA)

•	 Penicillin (20,000 U/kg) (Covertus, OH)

•	 Buprenorphine (slow release) (ZooPharm, WY)

	 Surgical equipment

•	 100% CO2 (AirGas, OH)

•	 27 G Precisionglide needles (BD, NJ)

•	 Surgical lubricant/Ophthalmic ointment (Surgilube, PA)

•	 Cotton tipped applicator (Henry Schein, NY)

•	 Electric shaver (Wahl, IL)

•	 Betadine (povidone-iodine, 10%) (Betadine, CT)

•	 #10 Surgical blades (Henry Schein, NY)

•	 #3 Scalpel (Henry Schein, NY)

•	 Sterile collagen sponge (2 × 2 × 16 mm) (Medline, OH)

Orthobiologic FDA 
approval Indication Animal 

model
Clinical 

Trial References

rhBMP-2 Yes Cervical and Lumbar spine and long bone non-union Yes Yes [35-38]

I-FACTOR Yes Cervical spine Yes Yes [14, 39-42]

PRP N/A Osteoarthritis, Ligament, tendon, muscle, joint and skin injury Yes Yes [43-47]

MSCs N/A Regenerative medicine: neurological, cardiac, endocrine and 
bone/cartilage diseases Yes Yes [48-53]

BMAC N/A Arthritis, tendinitis, lower back pain, and meniscus tears Yes Yes [54-58]

Autograft N/A Spine Yes Yes [59-64]

NELL-1 No Osteoporosis, spinal fusion and long bone non-union Yes Yes [65-69]

Bone Void Fillers Yes Any bony void or gap of the skeletal system Yes Yes [70-76]

Table 1: Current orthobiologics being tested in various systems. Various orthobiologics that are currently being tested via animal models and clinical trials. Most 
have an indication for spinal fusion surgery, with some having indications for multiple systems. Currently, there are only two FDA approved orthobiologics for 
spinal fusion surgery which include rhBMP-2 and I-FACTOR. Some orthobiologics are not applicable for FDA approval due to the material being used coming 
from the patients’ blood and is therefore not considered a drug.

Figure 1: Overview of the spinal fusion surgery steps.
Outlined are the critical and major steps of the standard operating procedure 
developed from start to finish. The flow chart also includes the additional 
step of the caudectomy and morselization if the allograft is going to be used 
as a comparison.
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Equipment

•	 AAALAC accredited animal facility with rodent operation 
room (Northeast Ohio Medical University; Rootstown, 
OH)

•	 Anesthesia station (equipped with a gas scavenging system)

•	 Rodent surgical monitor with heating pad, thermometer, 
pulse oximeter, respiratory rate and heart rate (Vetcorder, 
WI)

•	 Clear euthanasia chamber connected to CO2 tank (Conduct 
Science, MA)

•	 Standard animal cages (water, food, and bedding) 
(Ancare, NY & TR Last, PA)

Animals
Sprague-Dawley rats were used in the experiments 

(Charles River Laboratories, NY). Experimental designs 
address the key scientific and commercial barriers with 
adequate numbers based on power calculations, include 
positive and negative controls for the recombinant protein, 
and include negative controls for the animal studies. In the 
first experiment, 40 sixteen-week old male Sprague-Dawley 
rats were used (10 for control, 10 for orthobiologic, 10 for 
orthobiologic plus autograft, and 10 for autograft alone). 
In the second experiment, 136 female Sprague-Dawley 
that were ovariectomized at twelve weeks-old were used 
(34 for control, 34 for orthobiologic, 34 for orthobiologic 
+ autograft, and 34 for autograft alone; 34 was the 
number of animals needed to have significant power for 
the experiment that were split between µCT, histology, 
and biomechanical analysis). Bilateral posterolateral 
intertransverse fusion procedure occurred twelve weeks 
after ovariectomy (24 weeks old). A 24-week-old rat 
corresponds to an approximate 12.2- year-old human 
[82,83]. For this SOP, any rat model can be used. All rats 
were housed in the comparative medicine unit at Northeast 
Ohio Medical University (NEOMED; Rootstown, OH).

Methods
Ovariectomy (optional)

Charles River performed the Ovariectomy (OVX) 
procedure in accordance with Charles River SOP at 12-weeks 
of age [84]. Following surgery, animal well-being and 
survival were monitored for one to two weeks by the vendor 
according to Charles River SOP [85]. They were shipped 
to our facility for the spinal fusion procedure. Spinal fusion 
was performed 12 weeks post OVX. The OVX procedure 
is a well-established animal model used to induce loss of 
bone mass (osteoporosis) in female rodents and are a good 
model to evaluate therapeutics for spinal fusion procedures in 
osteoporotic patients [86].

•	 1mL sterile syringe with plunger (Worldwide Medical 
Products, PA)

•	 4-0 Coated vicryl plus antibacterial absorbable sutures 
(Ethicon, NJ)

•	 Neutral Buffered Formalin (4%) (LabChem, PA)

•	 Ethanol (70%) (Pharmaco-Aaper, KY)

•	 Sponge gauze (Jorvet, CO)

•	 Webcol Alcohol prep, 2 ply, medium (COVIDEN, MA)

•	 Sterile compress (Fischer Scientific, NY)

•	 Non-sterile linen surgical drape (Aspen Veterinary 
Resources, MO)

•	 1 mL cryovials (CELLTREAT Scientific Products, MA)

•	 18 mL syringe (Worldwide Medical Products, PA)

•	 0.8mL Heparin coated tubes (Medline, OH)

•	 Curved forceps (Fischer Scientific, NY)

•	 Needle holder (Alimed, MA)

•	 Surgical forceps (Fischer Scientific, NY)

•	 Retractors (Alimed, MA)

•	 Suture scissors (Fischer Scientific, NY)

•	 Curette (WPI, FL)

•	 Kerrison rongeur (Integra, OH)

•	 Dental bone mill (Salvin Dental Specialties, NC)

•	 High-speed oscillating burr/ideal micro drill (CellPoint 
Scientific, MD)

•	 Jewelers saw (Megacast, DE)

•	 Veterinary surgical lamp (Avante, KY)

•	 Cauterizer (Fischer Scientific, NY)

•	 Small animal heat lamp (Morganville Scientific, NJ)

•	 Centrifuge 5425R (Eppendorf, CT)

•	 Viva CT 80 (ScanCo Medical, PA)

•	 Microtome (Leica, IL)

•	 Scanner (Epson, CA)

•	 Electropuls E3000 linear-torsion all-electric dynamic 
test instrument (Instron, MA)

	 Personal protective equipment

•	 Sterile surgical gloves (Cardinal Health, OH)

•	 Barrier medical face mask (Molnlycke, ME)

•	 Bouffant caps (Medline, OH)

•	 Isolation gown (Labsource Co, IL)

•	 Surgical shoe covers (Labsource Co, IL)
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Anesthesia
Anesthesia was prepared by collecting ketamine 

hydrochloride (75mg/kg), Xylazine (3mg/kg), and two 27G 
needles. The first 27G needle was used to withdraw the 
ketamine hydrochloride to perform an Intraperitoneal (IP) 
injection. For IP injections, the animal is held in a head-
down position and a 27G needle is inserted into the lower 
left abdominal quadrant just off the midline. The second 
27G needle was used to withdraw the Xylazine for the IP 
injection as described above. These two anesthetics plus 
maintenance with isoflurane (see below) will maintain animal 
anesthesia with appropriate monitoring [87]. If needed during 
the procedure, 1/3 dose of ketamine can be supplemented to 
prolong anesthesia. Xylazine can be reversed with 1-2 mg/kg 
Yohimbine IP [88] if needed.

Following anesthesia induction, the animals were observed 
for 5-10 minutes to ensure full surgical anesthesia identified 
by the lack of a withdrawal reflex following forelimb pinch 
with fingers or forceps. Isoflurane (1-4%) plus O2 was then 
used to maintain anesthesia during the procedure.

Surgical setup
Anesthetized animals were placed prone on a heating 

pad with their snout in the nose cone of the anesthetic 
system (Figure 2a) to decrease pain sensitivity and assist 
with maintenance of body temperature [89,90]. Sterile 
non-medicated ophthalmic ointment was applied to both 
eyes using cotton tipped applicator to prevent desiccation 
during the procedure. Oxygen saturation and heart rate were 
monitored with a pulse oximeter on the paw, using the Rodent 
Surgical Monitor (Figure 2b). Isoflurane/Oxygen flow and 
temperature (<40°C) of the heating pad were monitored and 
adjusted throughout the procedure as needed. The orthopedic/
neurosurgeon will be on the caudal side of the rat with their 
assistant/second surgeon overlooking the procedure on 
the right. The surgical instruments are placed next to the 
heating pad on a sterile cover (Figure 2c). The assistant/
second surgeon can prepare the next animal’s injection with 
Ketamine and Xylazine as the main surgeon is suturing the 
animal during the last step to minimize time spent waiting 
for full anesthesia. The main surgeon will disinfect the rat’s 
surgical site by using alcohol-based skin disinfectant. They 
will then disinfect their hands and put on sterile gloves to 
begin the procedure.

Preparing the surgical site
To prepare the site for surgery, hair is removed from the 

midline using an ethanol-sterilized electric shaver. The skin 
was then sterilized with betadine (povidone-iodine, 10%). 
To prepare animals for autografts, the tail was also sterilized 
with betadine (povidone-iodine, 10%) prior to surgery.

Surgical procedures
Rat autografts were obtained prior to beginning the spinal 

fusion procedure. Rat tails were amputated via caudectomy, 
using a cauterizer to control bleeding while the incision was 
closed using 4-0 absorbable suture. From the amputated tail, 
seven tail vertebrae were extracted, and the soft tissues were 
removed. Six vertebrae were taken and morselized using the 
rongeur and the one remaining vertebra was ground using 
the dental bone mill. The morselized and milled bone were 
mixed together and inserted into a 1 mL sterile syringe and 
compacted. Rat’s not undergoing autograft also had their 
tails amputated and disposed to maintain identical surgical 
procedures for all animals.

The spinal fusion procedure began with a midline incision 
down to the spine to expose the dorsal lumbar fascia. Next, two 
paramedian fascial incisions were made 4mm from the spinal 
processes on each side. This exposed the spinal vertebrae and 
the area where the collagen sponges will lie on top of the bed 
for the spinal fusion. Next, the transverse processes of L4 and 
L5 were located and bilaterally decorticated with the high-
speed oscillating burr in addition to the facets and lamina 
which helped create the bed for the spinal fusion.

The rats then received sterile collagen sponges (2 ×2 × 16 
mm) pre-soaked in either 20 µL of PBS (control), 20 µL of 
rhBMP-2, 20 µL of the desired orthobiologic, 20 µL of the 
desired orthobiologic + autograft, or 600 µL of the untreated 
autograft alone. This sponge or autograft was bilaterally 
placed in the newly formed bed (Figure 3 and 4a). To avoid 
bias, the surgeons are blinded in regard to treatment groups 
with the exception of the bone autografts. Following the 
placement of the sponges, 20,000 U/kg of penicillin was 
administered onto the wound. The wounds were closed with 
4-0 absorbable suture and the surgical site was cleaned with 
ethanol wipes.

 

Figure 2: Surgical instruments setup.
Image A depicts the 1-4% isoflurane vaporizer setup with the nose cone 
lying in front of the metal tray where the animal will be placed. Image B 
depicts the Vetcorder animal vitals monitoring device. Image C depicts the 
surgical tray including forceps, scalpel, needle driver, suture scissors, curved 
forceps, and a retractor. Image D depicts the clear euthanasia chamber which 
is connected to 100% CO2.
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Post-op monitoring
To reduce pain and distress to the rats following surgery, 

Buprenorphine (slow release) was administered at a dose of 
1mg/kg subcutaneously. Rats were allowed to recover in a 
clean cage under a heat lamp alone, to prevent suture/wound 
disruption by another animal. Fluid replacement is critical to 
the survival of the rats so ensure that clean water is being 
constantly supplied. A minimum of 48 hours of post-operative 
analgesia must be provided for this procedure. All animals 
were monitored twice daily (morning and afternoon) for 96 
hours (4 days) following surgery to evaluate the animals for 
pain and distress such as difficulty walking, lethargy, rubbing 
of the surgical site and/or alterations in food or water intake. 
Lastly, the rats were weighed one week postop to confirm 
body weight is maintained. If any signs of distress are 
observed, consultation with the institution’s veterinarian as 
soon as possible is required.

Euthanasia
For our experiments, animals were sacrificed at 5 and 10 

weeks postop to compare the progress of the spinal fusion. 
These time points were chosen as previously publications 
have noted spinal fusion occurring as early as week 4 [91-
93]. Animals were individually placed into a clear and 
clean euthanasia chamber (Figure 2d). Sudden exposure of 
conscious animals to CO2 concentrations of 70% or greater 
has been shown to be distressful [94], yet death should be 
induced as quickly as possible. Without pre-charging the 
chamber, 100% CO2 (with a gas displacement rate of 10-
30% of the chamber volume/min) was introduced slowly to 
minimize animal distress. Gas immersion and displacement 
were controlled with a pressure-reducing regulator and flow 
meter following IACUC guidelines. The euthanasia chamber 
was thoroughly cleaned between animals.

Following exposure to CO2, animals’ death was 
confirmed with cervical dislocation. Following euthanasia, 
tissues/organs, such as the heart, liver, lung, spleen, kidney 
and skeletal muscle next to the spinal fusion, were harvested 
and preserved via 24-hour exposure to 4% Neutral Buffered 
Formalin (NBF). Blood was collected using an 18G syringe 
rinsed with heparin (to prevent clotting) and spun down for 
5 min at 3000 RPM. The serum was collected and aliquoted 
into 1 mL cryovials and stored at -80°C for further analysis. 
Finally, the spines were removed and fixed (Figure 4b-c) 
for future assessments of spinal fusion differences between 
treatments.

Results
To determine if the spinal fusion surgery was successful, 

µCT, histology, blood analysis, and biomechanical testing was 
done. Each of these methods has been shown to be accurate 
ways to exhibit results from each of the orthobiologics tested. 

µCT can be used as a visual construction to see new bone 
growth; histology can be used to visualize and calculate 
inflammation within tissues; blood analysis can be used to 
assess inflammatory cytokines; and biomechanical testing 
can be used to assess mechanical strength and bone quality. 
The following analyses are typical of assessing the effects of 
orthobiologics used in spinal fusion.

µCT analysis
Successful spinal fusion was achieved in both experiments 

with no cases of post-surgical infection. To evaluate the 
spinal fusion variations between treatments, µCT imaging 
was performed on week 5 and week 10 rat spines using a 
Viva µCT 80 (ScanCo Medical, PA) with a 20-micron 
resolution. µCT is a pronounced imaging modality that can 
be used to compare and contrast the protein/therapeutic of 

Figure 3: Overview of procedure and workflow.
Presented is a visual representation of the decortication of the spine and 
placement of the collagen sponge located at spinal levels L4-L5 in the rat. 
Additionally, the workflow of the post-operative procedure with the evaluation 
of µCT imaging, biomechanics, histology and blood analysis is shown.

Figure 4: Gross images of the spinal fusion during surgery and after 
dissection.
Images in A depict different views of the decortication process and 
placement of the collagen sponge at the spinal fusion site. Images B and 
C, control (PBS) and rhBMP-2 respectively, are the dissected spines after 
animal sacrifice. The red boxes are approximately the L4-L5 area where the 
collagen sponge was placed.
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interest to the control due to its ability to conjure a 3D image 
of the spine [95]. The µCT scans were then analyzed using 
the BoneJ plug-in ImageJ to determine bone volume, bone 
volume/trabecular volume, trabecular thickness, trabecular 
spacing, bone mineral density, and connectivity [96]. Results 
showed rhBMP-2 treatment increased bone mass at the L4-
L5 site compared to the control (Figure 5).

Histology
Histopathology is an accurate and efficacious way to 

evaluate the gross inflammatory profile of the therapeutic 
agents in soft tissues. Systemic inflammation is an important 
aspect to review for the safety profile of any new therapeutic. 
Local inflammation is commonly assessed in muscles 
surrounding the spinal fusion [97]. Soft tissues were processed 
and embedded in paraffin. Then, 6‐μm sections were cut 
using a microtome (Leica, IL) and sections were stained with 
hematoxylin and eosin (H and E) [98]. Photomicrographs 
were acquired using an Olympus BX61VS microscope. 
Analysis of photomicrographs was performed using NIS-
Elements software (Nikon). Results of systemic inflammation 
assessment in our spinal fusion animals showed increased 
systemic inflammation in the rhBMP-2 treatment compared 
to PBS treated controls. Here we presented an example of two 
soft tissues (Figure 6).

Blood analysis
Blood analysis can be implemented to assess how the 

orthobiologic affects various systemic protein secretions. 
Rat spinal fusion plasma was subjected to Enzyme-Linked 
Immunosorbent Assay (ELISA) assays to assess alterations 
in proinflammatory cytokines (IL-1 β , IL-6, MMP-1, MMP-
3, TNF-α) [99], anti-inflammatory markers (IL-4, IL-10, IL-

17, TGF-β ) [100], and markers of organ damage (FOXO1, 
SIRT-5, VEGF-C, SMAD-1) following the various treatments 
[101-104].

Biomechanical testing
With the production of new orthobiologics, it is important 

to assess how therapy affects mechanical strength and bone 
quality relative to existing approved therapeutic options. 
Common biomechanical assessment techniques include 
3-point bending, tensile, and compression testing [105-107]. 
Prior to biomechanical assessment, soft tissues were removed 
from the spine (Figure 4b-c) and the area of spinal fusion 
(L4-L5) was isolated using a jeweler saw, resulting in a 
10mm section (Figure 7b-e). Total area of each individual 
section was determined by scanning (Epson, CA). Then, we 
performed compression testing of the spine sections using 
an Electropuls E3000 linear-torsion all-electric dynamic test 
instrument (Instron, MA) (Figure 7a). Using the generated 
force displacement curves, we calculated yield strength 
(MPa) and determined compressive stiffness (Young’s 
modulus). Results suggested rhBMP-2 treatment not only 
increases ectopic bone formation but also generates a lower 
quality bone.

Discussion
Orthobiologics are biologically-derived materials 

intended to augment both bone and soft tissue healing [10]. 
They can come from an individual’s own tissues (autograft), 
where less side effects are encountered, or from other sources 
(allograft) [108]. Autografts also have been shown to reduce 
the debilitating effects of osteoarthritis and accelerate healing 
of tendon or ligamentous injuries [109]. Orthobiologics can 
serve as biological supplements to traditional orthopaedic 
hardware such as rods, screws, and cages, and have recently 

Figure 5: µCT analysis of the spinal fusion site.
Images A-D depicts the µCT images of the control in PBS and the treatment 
rhBMP-2. The red box outlines the L4-L5 area in which the spinal fusion bed 
was created, and collagen-soaked sponge was placed. Images A and C are the 
lateral views of the spine, with images B and D being the dorsal views of the 
spine. As shown in C and D in comparison to the control, rhBMP-2 increases 
bone regeneration at the level of the spinal fusion.

Figure 6: Thymus and lung samples of control and rhBMP-2 treatment.
Images A-D depicts the histology staining and imaging post spinal fusion 
at 5 weeks. Images A and C show the control (PBS) while images B and 
D exhibit the rats treated with rhBMP-2. As presented in images B and D, 
rhBMP-2 induced a greater summation of inflammation (dark purple color) 
in samples as evidenced by increased quantity and morphed cell structure.
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played a role in advancing the field of regenerative medicine 
[110]. Most commonly, orthobiologics are used to treat bone 
defects, bone fractures, spinal fusion, cranial defects, tendon/
ligamentous injuries, arthritis, inflammation, knee pain, 
muscles strains and tears, and overuse injuries [111-113].

It has been reported that anywhere from 9% - 45% of 
primary adult spinal fusion surgeries have been revised [114]. 
This number can vary widely based on the location of the 
spinal fusion surgery, patient demographics, other concurrent 
injuries or comorbidities, number of levels fused, and type of 
spinal fusion performed (screws/cages, orthobiologics, bone 
grafts) [115]. Pre-clinical animal models demonstrated the 
efficacy of spinal fusion procedures and were used establish 
the safest protocols prior to use in humans [116]. Furthermore, 
pre-clinical animal models were vital to determining the 

Model Considerations

Mice 
(mouse 
model)

- Cost effective and easily housed

- Reproducible and quick to breed

- Low complication rates

Rat (rodent 
model)

- Smallest–Sprague-Dawley being most common

- Size limited to only dorsal, or dorsal lateral fusions

- Cost effective and easily housed

- Resistant to infection

- Resilient to anesthesia

Rabbit 
(lapine 
model)

- Used in lumbar fusions
- The New Zealand white rabbit is used in dorsal and 
dorsolateral lumbar spinal fusions
- Ventral cervical, thoracic, and lumbar fusion studies 
have been reported infrequently

Cat (feline 
model) - Repudiated model in society

Dog (canine 
model)

- Suitable for all approaches (i.e., Ventral & Dorsal)

- Suitable for biomechanical analyses

- Easy to handle

- Repudiated model in society
Goat 
(caprine 
model)

- Suitable model for cervical fusions

Sheep 
(ovine 
model)

- Considerable background data
- Due to comparable size to humans, surgical 
techniques are readily preformed

- The lumbar spine is frequently studied, whereas the 
thoracic and cervical segments are less profound

- Considerable housing is required
- Biomechanical testing is common and baseline 
data is well established

Swine 
(porcine 
model)

- Minimally invasive techniques are supported 
using live pigs; however, most other techniques are 
reported in cadaveric models
- Similar to human spine lumbar segment is most 
studied
- Challenging to handle due to size and veterinary 
issues

Cattle 
(bovine 
model)

- Cadaveric specimens of the skeletally immature 
cow spine are used
- Instrumentation can easily be placed

- High availability and relatively low cost

Primate 
(primate 
model)

- Ideally the last step in establishing burden of proof
- Offers greatest genetic homology (i.e.  
approximating human upright posture)
- Most difficult model when considering financial, 
housing, and ethical implications

Table 2: Current animal models used in spinal fusion surgery [144]. Various 
animal models that are being studied to be used during spinal fusion surgery. 
Most importantly, each model has considerations whether it is or is not a 
good fit for the proposed experiment.

 

Figure 8: Effects of estrogen on bone. Summarized chart of how estrogen 
affects different components of bone cells.

Figure 7: Biomechanical testing with 10mm sections of spinal fusion L4-L5.
Image A is the Electropuls E3000 linear-torsion all-electric dynamic test 
instrument (Instron) used for biomechanical analysis of the spine sections. 
Image B and C are the controls (PBS) at 5 and 10 weeks respectively with 
image D and E being rhBMP-2 at 5 and 10 weeks, respectively.
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best approaches for spinal fusion as various locations along 
the spinal column as well as the most appropriate location-
specific hardware [117].

The use of injectable orthobiologics is an alternative 
treatment option for individuals who want to prevent or 
delay surgery. Orthobiologics are also a suitable option when 
conventional procedures require revision and a lack of self-
healing is present, often seen in aging, metabolic diseases, 
genetic diseases, and rare diseases. Here, we described 
a SOP that can be used to enable researchers to be able to 
study the effects of various orthobiologics in a pre-clinical 
spinal fusion rat model. Pre-clinical animal models are good 
conduits to clinical trials in humans and are necessary to 
advance an orthobiologics safety and efficacy profile that can 
be later used to get approval from the FDA for utilization in 
humans. Orthobiologics shown in Table 1 have all undergone 
pre-clinical trials using different animal models, especially 
rhBMP-2 and I-FACTOR, which have both been approved 
by the FDA [14,41].

I-FACTOR and rhBMP-2 are currently the only two 
orthobiologics approved for posterolateral spinal fusions. 
Although these proteins are effective orthobiologics, they 
still pose many undesirable clinical side effects. In pre-
clinical animal models, major side effects of I- FACTOR 
include pain, neural impingement, physical impairment, 
loss of function, allergic reaction, abnormal bone formation, 
excessive or incomplete bone formation, and adjacent level 
degeneration [14]. Major side effects experienced from 
rhBMP-2 are inflammation induction that leads to abnormal 
bone formation [24], and increased osteoclast induced 
activity through the increase of RANK-Ligand production 
[118]. There have also been findings of cyst-like bone cavities 
filled with fatty marrow in lieu of the typical trabecular 
structure [24]. In humans, major side effects have ranged 
from ectopic bone [119,120], inflammatory complications, 
and osteolysis (through the over-activation of osteoclasts) 
[121,122]. Bladder retention and retrograde ejaculation are 
a few urogenital events that are also noted as side effects 
[123,124]. The other major side effects that occur are wound 
complications, including but not limited to hematoma, 
infection, and wound dehiscence [125-127].

Common orthobiologics used during spinal fusions (such 
as rhBMP-2) are known to cause inflammation following 
spinal fusions [128]. This side-effect is reflected through 
systemic inflammatory markers in the serum as well as 
tissue [129]. Serum and histological analyses are some of 
the most common methods to assess inflammation during 
spinal fusions [130,131]. Histological assays may also 
be used on the fusion masses to determine the quality and 
quantity of new bone formed by the orthobiologics at hand 
[132]. When subjected with immunohistochemical analyses, 
various markers of interests can be stained and quantified to 

determine their response to the orthobiologic [68]. In addition 
to quantification of pro-inflammatory markers, blood assays 
can also reveal fluctuations in bone related markers such 
as vitamin-D, calcium, osteocalcin, and N-terminal of 
telopeptide [133-135].

The use of a spinal fusion model to assess the effectiveness 
of orthobiologics has gained a great popularity in the recent 
years due to its clinical relevance and various methods to 
determine successful spinal fusion. While we have presented 
various parameters to be assessed during spinal fusions, this 
list is not exhaustive. Micro-computed tomography (µCT) 
is one of the best methods to describe the changes in bone 
as previously presented [136]. In addition, µCT may also 
be used to assess spinal segment stability during 3-point 
bending, predicting effectiveness of varying sets of rods and 
screws, and aggregation of bone cements [137-139].

While µCT provides invaluable data capable of describing 
the newly formed bone during spinal fusions, biomechanical 
testing is still necessary to prove fusion effectiveness under 
physiological conditions. Young’s Modulus is a reliable 
method for measuring tensile strength, which is one of 
the main forces driving spinal movement [140]. Spinal 
compressive stress, flexion, and lateral bending may also 
be measured through a variety of methods as described 
[141,142]. Each of these methods may further describe the 
effectiveness of an orthobiologic during spinal fusions and 
how it may translate its effectiveness to humans. In addition 
to biomechanical testing, other modalities can be used for 
supplementary analysis including DEXA scanning, X-ray 
imaging, RNA isolation and expression, and bio-material 
property testing. All these modalities are commonly used to 
assess different variables shown in each pre-clinical animal 
model before moving to clinical trials.

The FDA approves animal models based on criteria in 
the “The Animal Model Qualification Program (AMQP).” 
Once an animal model is qualified through this program, the 
FDA focuses on two main components. One is the reliability 
of the proposed animal model to produce a disease process 
or pathological condition that in multiple important aspects 
correlates to primary elements of the human disease or 
condition of interest. The second is the appropriate use and 
application of the qualified animal model in drug development 
and regulatory review. In addition, these details provide 
measures of quality control and quality assurance when the 
models are replicated [143].

The anatomy and overall methodology of the pre-clinical 
animal model should be akin to that seen clinically. Because 
of inherent advantages and disadvantages, specific models 
are chosen over others. Table 2 is a recapitulation of current 
animal models organized by approach. In addition, it is also 
worth considering an organism's size, cost, and handling. A 
broad spectrum of species, from rats to non-human primates 
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has been used to study orthobiologics in spinal fusion. While 
smaller model organisms have their advantages, non-human 
primates are the most closely related to humans and are thus 
considered the most valid pre-clinical model [144]. The 
progression from smaller to larger animal models demonstrates 
an evolving cascade of evidence known putatively as the 
“Burden of Proof” [144]. The burden of proof is defined by 
a series of steps: proof of concept studies, feasibility studies, 
and efficacy studies [145]. The bone graft substitute must have 
osteoinductive properties that can be confirmed, i.e., induce 
the formation of de novo bone heterotopically in rat muscle 
pouches, to establish a proof of concept [145]. However, 
heterotopic bone induction in rat muscles pouches does not 
suggest that it will produce sufficient surgical immobilization 
of adjacent bones, i.e., vertebra [145]. Moreover, success in 
feasibility studies does not foreshadow success in efficacy 
studies. Orthobiologics may produce one effect in a lower 
organism but fail to produce any clinically significant effect in 
humans [145]. Taken together, these steps serve to underscore 
the importance of progressing to larger, more evolutionarily 
similar model organisms.

Animal models of osteoporosis are suitable tools for 
studying new prevention and treatment modalities. The 
first choice, and the most employed for such studies, is the 
ovariectomized rat model [146]. To better understand the 
utility of the OVX model, it is crucial to define menopause. 
Menopause is when the menstrual cycle ceases due to a 
reduced production of the ovarian hormones estrogen and 
progesterone [147]. Removal of the ovaries mimics the 
menopausal phase, which is an essential approach to better 
comprehend the biological process involved in menarche 
[148]. The ultimate action of estrogen on the skeleton is to 
decrease bone resorption and remodeling, while maintaining 
bone formation [149] (Figure 8). Therefore a deficiency in 
estrogen results in accelerated trabecular and cortical bone 
loss over life, resembling patterns of osteoporosis in humans 
[150].

Posterolateral spinal fusions have used specific animal 
models from the aforementioned species, which all range in 
varying advantages. The four major types of spinal fusions 
in humans are posterolateral gutter fusions, posterior lumbar 
interbody fusions, anterior lumbar interbody fusions and 
transforaminal lumbar interbody fusions [151]. The variation 
in these different techniques aid in the accessibility of the 
effected vertebrae. Posterolateral gutter fusions are performed 
through the back and include a bone graft isolated from the 
iliac crest, being placed at the posterolateral region of the 
spine [152]. Whereas posterior lumbar interbody fusions 
are also performed through the back, while including the 
removal of a disc between two vertebrae [153]. Bone graft is 
then inserted into the space created between the two vertebral 
bodies, all of which can be obtained by the use of a single 
incision. An advantage of this method is the allowance 

of access to nerve roots, which is beneficial in neural 
decompression [153,154]. Anterior lumbar interbody fusions 
are similar to posterior lumbar interbody fusions, being that 
a disc is removed from between two vertebrae and the bone 
graft is then inserted into the space created between the two 
vertebral bodies. The primary difference is this procedure is 
performed from the front of the patient [155,156]. In doing 
so posterior and iliopsoas muscles are avoided and promote 
better stability for patients in their recovery process [156]. A 
Transforaminal lumbar interbody fusion allows for access to 
the foraminal spaces via a unilateral manner. This is achieved 
through using the posterior spine which avoids ligaments and 
muscle tissues, which allows for an effective healing process 
and increased biomechanical stability [157,158].

The murine models are easily genetically manipulated 
[159]; athymic rats display a decrease in inflammatory 
responses to xenogeneic proteins [160]. Additionally, mice 
models are very easy to inbreed [161]. Rabbit models are 
the most favorable animal models used for posterolateral 
spinal fusions [162], whereas canine models are deemed as 
easy working models but they are less societally accepted 
[163]. Both swine and primate models are similar to 
human beings in that swine share a similar spine [164], and 
primates share an anatomical homology with humans [163]. 
Murine models are easily inbred, but these models possess 
a decrease in genetic variability when compared to humans 
and are not ideal for inflammatory studies [165]. Sheep are 
beneficial animal models that share similar anatomical and 
physiological structure of humans, which makes them a 
better animal model for assessing disease states [166, 167]. 
Primates are the best animal models as they share genetic, 
biochemical, and psychological characteristics similar to that 
of humans [168].

In conclusion, the use of orthobiologics has been gaining 
traction within the United States and can often be a preferred 
method of treatment prior to or during surgical correction. 
Without the proper studies enacted by researchers that are 
experts in the field in animal surgical models, orthobiologics 
would have not come to fruition in today’s day and age. 
Often time Contract Research Organizations (CRO) have 
be used to help expedite the process of collecting valuable 
data on orthobiologic testing, including in vivo and in vitro 
experiments. These previous experiments have provided 
evidence to determine the doses of orthobiologics that are 
safe [169]. Although these CRO’s may come at a higher cost 
of operation, the data they produce is necessary to gain FDA 
approval and validate prior laboratory data from academic 
research. Possible ways to establish a consistent process in 
orthobiologic testing can be establishing a center for training 
or using online or in-person training that ensures that the 
researchers are up to date on the most current methods and 
procedures for pre-clinical animal models. Therefore, the 
SOP we describe is one of many ways’ researchers are able 
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to test orthobiologics in a pre-clinical rat spinal fusion model. 
We thank all the athletes who have agreed to participate in 
this study.
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