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Abstract
Contemporary electroencephalography systems operate on a two-

dimensional single-layer paradigm where signals from multiple layers 
of neuronal populations under an electrode are aggregated and recorded 
by that single electrode, leading to noisy signals and a lack of insight 
into neurological processes and keeping brain-to-brain communication, 
practical brain-computer interfaces and a host of applications in domains 
ranging from medicine to computing out of reach. Here, we introduce 
a novel three-dimensional multilayer electroencephalography (3D 
Multilayer EEG) paradigm – unlike the contemporary single-layer or 
two-dimensional (2D Single-layer EEG) paradigm – that leverages 
a nature-inspired conceptual framework in which approximations to 
carefully selected features of the source of the bio-signals are harnessed 
for characterization and manipulation of the underlying biological system. 
Effected through the simultaneous capture of distinct signal streams from 
multiple layers of neurons, this novel multilayer EEG paradigm could lead 
to effective computer-mediated brain-to-brain communication systems, a 
clearer understanding of neurological processes both in normal functioning 
and in disease as well as several orders of magnitude improvements in the 
information transfer rate in brain-computer interface systems – making 
these systems practical – as well as enabling a broad range of novel 
applications in domains ranging from medicine to social interactions, 
human factors including workplace optimization, economics, generic 
computing and human-machine interactions. Recent work demonstrating 
the direct imaging of signals propagating through myelinated axons 
and direct evidence that scalp EEG recordings can detect subcortical 
electrophysiological activity confirms the correctness of the principles 
underpinning our framework. We demonstrate the effectiveness of our 
novel 3D Multilayer EEG paradigm by formulating the null and alternative 
hypotheses for simultaneous multilayer EEG signal capture and relying 
on the results of analysis of a set of carefully designed experimental 
measurements to falsify the null hypothesis and validate the alternative 
hypothesis. 

Keywords: Electroencephalography (EEG), Three-dimensional Multilayer 
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Introduction
Human communication is essential for the smooth functioning of 

human society. Throughout history, human communication has been 
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neurological impairments such as epilepsy as well as in the 
evaluation of medical and psychological therapies. Uses of 
the EEG in psychology and neuroscience include the study of 
the brain processes underlying memory, learning, perception 
and attention. The EEG can also be applied to the study of 
social interactions. Other applications relate to human factors 
including factors pertaining to workplace optimization, 
neuromarketing and economics and the aforementioned brain 
computer interfaces (BCIs) and human-machine interaction. 
The EEG can also be applied to the study of non-human 
primates, other animals as well as comparative studies 
between species of animals.

Schiller et al [7] examined the relationship between 
the temporal dynamics of resting EEG networks and pro-
sociality while Packheiser et al [8] investigated real-life 
emotions in romantic couples using a mobile EEG study. The 
Neuralink Interface [9] currently under development holds 
out the promise of permitting brain-to-brain communication 
in the future but requires surgical implants that are at best 
inconvenient and expensive and at worst could cause harm 
to the subject. Traditionally, the majority of non-invasive 
BCIs were based on the well-known electroencephalography 
(EEG) technique owing to its relative portability, low cost, 
high temporal resolution and ease of operation. Examples 
of BCIs based on EEG and/or other non-invasive recordings 
include those disclosed by Katz et al [10], Wolpaw et al [11] 
and Toshimitsu [12]. The system described by Katz et al [10] 
groups together multiple modalities including EEG, near- 
infrared spectroscopy (NIRS), electromyography (EMG) and 
galvanic skin response (GSR) on the basis of classification 
techniques and is designed to assess the brain state of a 
patient while determining the present will (defined broadly 
to include not only desires and wishes but also emotions) of 
a subject using characteristic values of the subject such as a 
set of EEG signals that can be augmented by a combination 
of signals from scalp potential, muscle potential, heart-rate, 
eye-movement and frequency of eye blinks is the goal of the 
work described by Toshimitsu [12].

The spatial resolution of contemporary EEG-based BCIs 
is quite low--with systems typically comprising between 1 
and 256 electrodes, each of which aggregates signals from 
massive neuronal populations. Furthermore, the signals 
are heavily attenuated on their journey through the skull 
and are thus susceptible to corruption by noise from other 
signal-emitting physiological processes in the subject and 
disturbances from the environment. As revealed by the Royal 
Society’s review6, the current state-of-the-art in ambulatory 
(portable), relatively inexpensive non-invasive BCIs still 
relies on the well-known single-layer EEG technique where 
signals from all layers of neuronal populations under an 
electrode are aggregated to a single electrode, leading to 
noise and distortion of signal information. Techniques, 

mediated by language in verbal, written and sign formats. 
As a result, there has been a proliferation of languages 
and dialects with the attendant confusion and deficiencies 
in communication. Cooperation, especially international 
cooperation, has also been hampered by this babel of 
languages and more significantly, persistent, intractable, 
costly, violent and fatal conflicts have often resulted from 
our inability to communicate effectively. The brain plays a 
central role in human communication. Enabling brain-to-
brain communication would permit us to communicate and 
collaborate more effectively, resolve conflicts, create more 
peaceful societies, control our environment via thought and 
gain unique insights into the workings of the human mind – 
leading to a wide range of remedies for brain communication-
related problems.

Brain-computer interface (BCI) systems are poised to 
become more ubiquitous. It is plausible to induce desired 
states and sensory perceptions in associated biological 
systems through signals emanating from BCIs. Systems for 
the acquisition of brainwave data generally fall into two broad 
categories--invasive and non-invasive. Invasive methods 
and systems are typically characterized by the utilization of 
surgical procedures to insert sensors directly into biological 
tissue. On the contrary, non-invasive methods and systems do 
not require surgical procedures or direct contact with the cells 
within the biological substrate associated with the signals. 
Electrocorticography (ECoG)-based systems such as those 
presented by Leuthardt et al. [1] are invasive. Examples of 
non-invasive systems include positron emission tomography 
(PET) [2], single photon emission computerized tomography 
(SPECT), functional magnetic resonance imaging (fMRI), 
electroencephalography (EEG) [3], magnetoencephalography 
(MEG) [4], including MEG devices employing ultrasensitive 
superconducting quantum interference device (SQUID) 
arrays [5], and functional near-infrared spectroscopy (fNIRS) 
systems. Although invasive techniques generally provide 
more accurate representations of neuronal activity, they are 
inconvenient, typically require risky brain surgery and pose 
ongoing risks to biological tissue during operation. In 2019, 
the Royal Society (United Kingdom) published a Perspective 
Article entitled “iHuman: Blurring the lines between machine 
and mind” providing an extensive review of the state of the 
start as well as a historical perspective on neural interfaces 
including brain-computer interfaces and EEG systems [6]. 
Based on the Royal Society’s review, it is obvious that while 
tremendous progress has been made, numerous challenges 
remain and in particular practical systems for effective human 
level communication using neural interfaces still appear 
unattainable. signals are applied in a very broad range of 
settings including clinical and non-clinical environments. In 
clinical settings and in the practice of medicine, the EEG is 
used for a wide variety of tasks including, but not limited 
to, psychiatric studies and the diagnosis and management of 
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algorithms and systems that remedy the shortcomings of 
EEG-based BCIs are well known and widely reported in the 
literature. Wolpaw et al. [11] describe an adaptive algorithm 
that uses a simple linear combination of relevant features to 
improve the effectiveness of a non-invasive BCI designed for 
2-dimensional computer cursor control. Although the method
described by Wolpaw et al. [11] provides better results than
some competing methods by adapting the features selected
for classification to the specific features that the user is best
able to control, it is still hampered by the major drawback of
high sensitivity to individual brainwave characteristics and
the requirement for long training periods. The information
transfer rate of EEG-based BCIs is currently in the range of 5
to 25 bits per second which is too low to permit widespread
use of such BCIs in practical applications.

Recent research has been focused on harnessing the 
advantages of deep-learning neural networks and other 
artificial intelligence (AI) methods to the challenge of 
processing brainwave signals, classifying patterns therefrom 
and generating actionable information for use in a wide range 
of applications. For example, Dolmans et al [13] describe a 
system for the classification of perceived mental workload 
using intermediate fusion multimodal deep learning. Similarly, 
Kwon et al [14] applied convolutional neural networks to the 
creation of BCIs based on subject-independent functional 
near-infrared spectroscopy. A two-level domain adaptation 
neural network for EEG- based emotion recognition was 
introduced by Bao et al [15]. Aldayel et al [16] carried out 
research on the recognition of consumer preference through 
the analysis and classification of EEG signals. Improvements 
in classification performance for motor imagery EEG 
using channel-level recombination in a data augmentation 
system were achieved by Pei et al [17] while Hosseini et 
al [18] introduced an optimized deep learning method for 
EEG big data and seizure prediction BCI via Internet of 
Things. The enhancements in continuous neural tracking 
for robotic device control using noninvasive neuroimaging 
reported by Edelman et al [19] can be significantly improved 
using the multilayer EEG paradigm and signal processing 
techniques presented here Jiang et al [20] presented a system 
comprising a multi-person brain-to-brain interface for direct 
collaboration between brains that combines EEG brainwaves 
with transcranial magnetic stimulation (TMS) to achieve 
its goals. This system is limited by the shortcomings of the 
current 2D EEG paradigm and uses an intrusive modality 
in the form of TMS, the long-term effects of which are not 
completely understood. By utilizing a computer mediated 
brain-to-brain communication configuration such as that 
depicted in Fig. 1 and based on our novel 3D Multilayer EEG 
paradigm, full-fledged brain-to-brain communication can be 
achieved without the potentially deleterious effects of TMS 
or similar intrusive modalities.

In Fig. 1, 1 and 2 represent human participants each 
wearing a computer-linked EEG headset. Note that the 
linkage between the computer and the EEG headset could be 
accomplished with or without wires. To send a message to 2, 
the computer linked to 1 captures the EEG brainwaves emitted 
by 1, decodes and identifies the pattern(s) they represent and 
then selects the appropriate symbol(s) or representations(s) 
from a pre-arranged language understood by both participants 
for transmission to the computer linked to 2 which displays or 
presents the symbol(s) or representations to 2. This process is 
simply reversed in order to send a message to 1 from 2. The 
pre-arranged language could be a simple visual language. 
For example, in a situation where a Japanese speaker wishes 
to communicate the idea of a river (“kawa” in Japanese) to 
an English speaker, an image or movie of a river could be 
displayed on the receiver’s screen after the brainwave signal 
patterns representing a river are detected from the sender. 
Similarly, the same Japanese speaker could communicate the 
idea of going on a hike in the mountains (“yama” in Japanese) 
by simply imagining the hike in the mountains and having an 
image of a mountain displayed on the receiver’s computer 
screen. In this way truly universal and full-fledged brain-to- 
brain communication could be achieved using a mutually 
understood language which itself could be pictorial. Note 
that the computing resources could be distinct or shared with 
local or distributed communications and that there  could be 
as many participants as dictated by necessity and availability 
if resources.

Nagel et al [21] reported the fastest documented BCI 
in the relevant literature in 2019, achieving an information 
transfer rate (ITR) of 1237 bits per minute or about 21 
bits per second using deep learning. By introducing the 
simultaneous multilayer signal acquisition approaches we 
have introduced in this paper, we can significantly increase 
the information transfer rate of BCIs by several orders 
of magnitude, potentially recording ITRs in the range of 
megabits per second or higher depending on the count and 
density of EEG electrodes and the computing resources 
available. It is a goal of the work presented here to establish 
a novel 3D Multilayer EEG paradigm by formulating the null 
and alternative hypotheses for simultaneous multilayer EEG 
signal capture and relying on the results of analysis of a set 
of carefully designed experimental measurements to falsify 

Figure 1: Schematic of Computer-mediated Brain-to-Brain 
Communication System.
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Three-Dimensional Multilayer Electroencephalo 
graphy (3d Multilayer Eeg)
The Need for a 3D Multilayer EEG Paradigm

Although invasive brain-computer interfaces currently 
provide a pathway to practical brain- machine interaction, 
they are severely limited because they require risky, 
inconvenient and undesirable surgery and implantation 
of electrodes which can be rejected by biological tissue 
and are costly to implement. Existing non-invasive 
electroencephalography (EEG) systems, while being more 
responsive, cost effective and easier to implement than 
alternatives such as functional magnetic resonance imaging 
(fMRI), exhibit poor performance and noisy signals – 
depending as they do on the aggregation of signals from large 
collections of neuronal populations, making them impractical 
for real-world applications. Furthermore, contemporary EEG 
systems do not provide a viable pathway to viable brain-
to-brain communication, which as mentioned earlier could 
permit us to communicate and collaborate more effectively, 
resolve conflicts, create more peaceful societies, control our 
environment via thought and gain unique insights into the 
workings of the human mind – leading to a wide range of 
remedies for brain communication-related problems. Ekpar 
[23] recently introduced a nature-inspired signal processing
system that when adapted to EEG sensor ensembles, permits
the simultaneous capture of distinct EEG brainwave signals
from neuronal populations located at different depths
within the brain thus enabling 3D multilayer EEG systems.
Combined with robust signal processing, pattern recognition
and artificial intelligence techniques, we now have a system
with a clear pathway towards more robust and practical
BCIs, computer-mediated brain-to-brain communication,
clearer insights into the workings of the brain and mind,
clinical applications, and so on. The utility of the system
would be limited primarily by the ability to manufacture
sensor ensembles (and associated electronics, photonics or
other processing modalities) with sufficient electrode counts
and densities to adequately capture information about the
underlying physiological processes.

In the remainder of this section, we highlight the 
theoretical framework underpinning the system and explain 
how the recent direct imaging of signals propagating 
through myelinated axons by Zhang et al.24 and direct 
evidence that scalp EEG recordings can detect subcortical 
electrophysiological activity by Seeber et al.25 confirm the 
correctness of the principles underpinning the conceptual 
framework on which our work is based and confirm all three 
related predictions by Ekpar [22, 23].

Conceptual Framework
As elucidated by Ekpar 22, 23, our model utilizes 

approximations to carefully selected representative features 

the null hypothesis and validate the alternative hypothesis. 
This work also suggests a pathway towards full-fledged and 
effective brain-to-brain communication based on research on 
nature-inspired signal processing by Ekpar [22, 23]. Zhang 
et al [24] recently demonstrated the direct imaging of signals 
propagating through myelinated axons while Seeber et al 
[25] provided direct evidence that scalp EEG recordings
can detect subcortical electrophysiological activity. These
results confirm the correctness of the principles underpinning
the conceptual framework on which our work is based and
confirm all three related predictions reported by Ekpar22, 23
with far-reaching implications.

In summary, the main contributions of the work reported 
in this paper are:

1. Explaining how the recent direct imaging of signals
propagating through myelinated axons by Zhang et al [24]
and direct evidence that scalp EEG recordings can detect
subcortical electrophysiological activity by Seeber et al
[25] confirm the veracity of the principles underpinning
the conceptual framework on which our work is based and
confirm all three related predictions by Ekpar [22, 23].
This has far-reaching consequences.

2. Enabling three-dimensional multilayer electroencephalo
graphy (3D EEG) in a novel paradigm unlike the
contemporary single-layer (2D single-layer EEG)
paradigm, potentially leading to new insights into the
underlying physiological processes and new and improved 
applications of EEG in a broad range of application
domains.

3. Demonstrating the simultaneous capture of distinct signal
streams from neuronal populations located at different
layers at the signal capture site by formulating the null
and alternative hypotheses for simultaneous multilayer
EEG signal capture and relying on the results of analysis
of a set of carefully designed experimental measurements
to falsify the null hypothesis and validate the alternative
hypothesis.

4. Providing a pathway towards effective brain-to-brain
communication and other hitherto difficult-to-achieve
brainwave data-based applications.

The rest of this paper is organized as follows. Section 2
presents our conceptual framework, showing how it enables 
multilayer 3D EEG and explaining how recent results 
obtained by Zhang et al [24] and Seeber et al [25] confirm 
the correctness of the principles underpinning the conceptual 
framework on which our work is based and confirm all three 
related predictions by Ekpar [22, 23]. Materials and Methods 
are described in Section 3 while Hypotheses and Experiments 
to test the hypotheses appear in Section 4. Section 5 presents 
results which are discussed in Section 6 while Section 7 
contains concluding remarks.
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of the source of the bio-signals for characterization and/
or manipulation of the underlying biological system. Fig. 
2A is a schematic representation of our model and outlines 
the relationship between the source of the signals and the 
corresponding or counterpart environment, mediated by the 
boundary while Fig. 2B illustrates a specific instantiation of 
our model.

Confirmation of Correctness of Conceptual  
Framework

On the basis of this conceptual framework, Ekpar22, 23 
made three predictions, namely:

PREDICTION I: Since signals from sources at locations 
deeper in the brain are likely to reach the scalp later than 
signals originating from neuronal populations or brain 
regions closer to the scalp, sensors in the corresponding 
environment closer to the boundary (in a radial direction from 
the scalp) are likely to detect signals in which contributions 
from neuronal populations at shallower locations within 
the brain predominate. Conversely, sensors located farther 
from the boundary are likely to detect signals in which the 
contributions of neuronal populations that are farther from 
the boundary predominate. Generally, the farther the sensor, 
the lower the ratio between the contribution of near compared 
to far sources.

PREDICTION II: Sensors placed over the same site 
but separated from each other (in a radial direction from the 
scalp, such as sensors located at r’1 and r’2 in Fig. 2B) are 
likely to detect signals in which contributions from different 
levels within the brain predominate.

PREDICTION III: Sensors embedded directly at 
different levels within the brain should detect signals similar 
to those detected by sensors located at corresponding 
positions within the corresponding environment.

Consequently, with reference to Fig. 2B, our model 
predicts that a sensor located at r’1 is likely to detect signals 
in which the contributions of neuronal populations closer to 
r1 predominate while a sensor located at r’2 is likely to detect 
signals in which the contributions of neuronal populations 
closer to r2 predominate. This is because the farther the sensor, 
the lower the ratio between the contribution of near compared 
to far sources. Expressed differently, the signal detected by 
a near sensor (r’1) would be almost entirely due to the near 
source (r1), while a farther sensor (r’2) would be influenced 
by both sources since the sources-sensor distances would be 
comparable. Recent work by Zhang et al [24] permits the 
direct imaging of signals propagating through myelinated 
axons and demonstrates conclusively that electrical signals 
propagate through different neurons at finite, measurable and 
disparate speeds and consequently are likely to be detected 
at different layers of neuronal populations at different times. 
This is direct confirmation of PREDICTION I made by 
Ekpar [22, 23] on the basis of our framework and reproduced 
here with an expanded description of the distribution of 
signals. Furthermore, Seeber et al [25] provided direct 
evidence that scalp EEG recordings can detect subcortical 
electrophysiological activity. This is direct confirmation of 
PREDICTION III made by Ekpar [22, 23] on the basis of 
our framework and reproduced here.

Figure 2A: Outline of model

Figure 2B: Signals within the source (brain) and their detected 
images in the counterpart or corresponding environment.

In Fig. 2B, the source of the signals represents the brain 
while the corresponding environment represents the system 
of sensors built to non-invasively record data streams from 
the brain. The boundary between the two systems is the scalp. 
The detected or measured counterpart to the predominant 
source signal labeled r1 is r’1 while the detected or measured 
counterpart to the predominant source signal labeled r2 
is r’2. Generally, in our model, the characteristics of the 
boundary between the source and the generated counterpart 
environment that are incorporated into the model are 
informed by a consideration of the nature of the source and 
the corresponding environment. Furthermore, the application 
of the model informs the choice of characteristics that need 
to be approximate as well as the manner in which those 
characteristics would be estimated.
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PREDICTION II follows naturally as a consequence 
of PREDICTION I and PREDICTION III which have 
been confirmed by the results reported by Zhang et al. [24] 
and Seeber et al [25]. Confirmation of all three predictions 
made by Ekpar [22, 23] on the basis of our framework by 
the recent results disclosed by Zhang et al.24 and Seeber et 
al.25 provides independent validation of and support for the 
foundations of our conceptual framework and model and has 
far-reaching consequences.

Materials and Methods
Bio-Signal Acquisition System

Here we describe the bio-signal acquisition system 
we created based on our conceptual model and inspired 
generally by some of the characteristic features of Ampullae 
of Lorenzini. Signals propagate through a biological 
signal source and cross the intervening media to reach the 
components or boundaries of the source (such as the scalp 
in the case of the human brain) that are in contact with or 
connected operatively to our signal acquisition system 
at finite, measurable speeds. It has been shown that EEG 
signals (including intracranial EEG or iEEG signals) can 
provide anatomically precise information about the selective 
engagement of neuronal populations at the millimeter scale 
and about the temporal dynamics of their engagement at the 
millisecond scale25, 34. Our system leverages these temporal 
dynamics engendered in the corresponding or counterpart 
environment (permitted by the appropriate source-sensor 
coupling model between the two environments) to effect the 
simultaneous acquisition of distinct signals from disparate 
layers within the signal source. In broad outline, system 
comprises a grid of sensor ensembles, each sensor ensemble 
comprising a collection of sensors disposed on an arbitrarily 
shaped N-dimensional (N = 1, 2, 3, and so on) surface with 
each sensor in contact with a suitable medium (conducting 
medium for applications such as EEG) which in turn is in 
contact with a surface associated with the source of the bio- 
signals [22, 23]. Elasmobranchs (cartilaginous fish belonging 
to the group that comprises sharks, rays and skates) are known 
to possess electroreceptive units referred to in the literature 
as Ampullae of Lorenzini that comprise jelly-filled canals 
usually found on the head of the animal which form a system 
of sense organs, each of which receives stimuli from the 
external environment through the dermis and epidermis. The 
lengths of canals exhibit variability from species to species 
and even within one fish but show an approximately species-
specific distribution pattern. A group of small bulges lined 
by the sensory epithelium terminates each jelly-filled canal 
in an ampulla. Furthermore, each ampulla is innervated by a 
small bundle of afferent nerve fibers. Our signal acquisition 
system is inspired by some of the features associated with the 
ampulla. Murray26, 27, Kalmijn28, 29 and Brown30 provide 
more nuanced discussions of Ampullae of Lorenzini.

Experimental Setup: Sensor Ensemble
We constructed a sensor ensemble comprising two sensors 

or electrodes – SE1 and SE2 -- placed orthogonally with a 
separation of 10.0 mm along the axis of a containing plastic 
(non-conducting) cylinder with an inner diameter D, of 10.0 
mm, an outer diameter of approximately 14.0 mm, and a height 
or length L, of 20.0 mm. The height (distance from scalp) of 
the first electrode (SE1) – HSE1 was 5.0 mm and the height 
(distance from scalp) of the second electrode (SE2) – HSE2 
was 15.0 mm – giving an inter-electrode distance of 10.0 mm. 
Fig. 3 illustrates the sensor configuration. For the purposes 
of our experiments, we filled the interior of the cylindrical 
container with a sponge medium and soaked the sponge in a 
saline (NaCl) solution. We used a stainless-steel wire with a 
diameter of 1.1 mm for the electrodes or sensors. The model 
of sensor-source coupling in our sensor ensemble is resistive 
conduction. The inter-sensor impedance for the two sensors 
SE1 and SE2 was approximately 240 KΩ while the boundary-
sensor impedance for SE1 was about 200 KΩ when the sensor 
ensemble was fully wetted with normal saline, that is, 0.9% 
saline solution. The impedances increase with time – reaching 
1 MΩ or higher -- as the wetness of the ensemble decreases 
with time. Based on our conceptual framework, the sensor 
ensemble constitutes part of the counterpart or corresponding 
environment, the brain is the signal source while the scalp 
serves as the boundary between the source of the signals and 
counterpart environment. Signal (such as action potential 
(AP)) propagation within the intervening medium in the 
brain engenders or induces corresponding signal (such as 
AP) propagation in our counterpart environment due to the 
resistive conduction sensor-source coupling. We have chosen 
this sensor ensemble topography and configuration because 
it is relatively simple to set up and is effective. However, 
researchers and practitioners could experiment with a wide 
variety of alternative topographies and configurations in 
the generation of suitable sensor ensembles in accordance 
with our conceptual framework [22, 23]. In order to 
acquire EEG data, we connected each electrode or sensor 
in the sensor ensemble to an electrode on the Emotiv EPOC 
headset – a wireless ambulatory EEG headset equipped with  
14 electrodes positioned approximately in accordance with 
the international 10-20 system. Note that the sponge medium 
in our sensor ensemble was the same material (felt) utilized 
in the unmodified Emotiv EPOC electrode and that forms the 
boundary between the scalp and the unmodified electrode 
in the traditional 2D EEG configuration. We connected 
SE1 to AF3 and SE2 to F3. We chose these electrodes for 
convenience as they are readily identifiable and accessible 
from the front end of the headset. During EEG data stream 
capture, the electrodes AF3 and F3 were prevented from 
making contact with the scalp at their original positions by 
placing an insulator between them and the scalp. Contact 
between the electrodes (AF3 and F3) and the scalp could only 
be effected via our sensor ensemble at the site at which the 
sensor ensemble was placed over the scalp.
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Matching Features in Ampullae of Lorenzini
As mentioned earlier, some of the features of our sensor 

ensemble are inspired by characteristics reminiscent of 
Ampullae of Lorenzini found in elasmobranchs. For example, 
the saline-filled sponge medium in our sensor ensemble 
could correspond to canals in the ampullae while the sensor 
casing (in this case a non-conducting plastic cylinder) could 
correspond to the sensor-containing basal region or alveoli of 
the ampullae. Note that as the walls of the sensor-containing 
basal region or alveoli of the ampullae are typically composed 
of high resistive or non-conducting material, so is the wall of 
the sensor casing in our sensor ensemble composed of non-
conducting plastic. Natural ampullae feature canals filled 
with a jelly or hydrogel which could serve as a counterpart 
to the saline-soaked sponge medium that fills the interior 
of our sensor ensemble. In the ampullae of elasmobranchs, 
we typically find a group of sensors (as opposed to a single 
sensor) arranged in an omni-directional fashion that could 
optimize signal coverage. Similarly, our model allows omni-
directional configurations of sensors for optimum signal 
coverage. The sensor ensembles we have created (as well as 
collections of such sensor ensembles) bear similarities to the 
system disclosed by Ekpar31 albeit lacking focusing elements 
in this specific configuration. In order to generate image-
based representations of the EEG data streams that could be 
subjected to further processing and eventual application by 
utilizing deep learning neural networks and other suitable 
artificial intelligence (AI) algorithms and methodologies, 
we could interpret the signal values for individual sensors 
as pixel intensity values. In summary, Ekpar31 describes 
systems, methods and devices including a versatile image 
acquisition device comprising at least one grid of one or 
more focusing elements disposed on an N- dimensional and 
arbitrarily shaped surface, at least one grid of one or more 
sensor elements disposed on an N-dimensional and arbitrarily 

shaped surface, and optionally, at least one grid of one or 
more stimulus guide elements disposed on an N-dimensional 
and arbitrarily shaped surface, where N can be chosen to be 
1, 2, 3, or any other suitable quantity.

Corresponding or Counterpart Environment
Our sensor ensemble (or grid of sensor ensembles) 

constitutes part of the corresponding or counterpart 
environment we have created to match selected features of 
the signal source (the brain in this case) for manipulation/
characterization. The boundary in this case is the scalp 
which is in contact with both the signal source (brain) and 
the corresponding or counterpart environment (sensor 
ensemble). Just as the signal sources (neuronal populations) 
within the brain are enclosed in an intervening medium 
that permits signal propagation, the sensors or electrodes 
in our sensor ensemble are correspondingly enclosed in a 
medium (the saline-soaked sponge medium) that permits 
propagation of signals so that the sensors can be responsive 
to the signals generated by the neuronal populations within 
the signal source. Note that we could create a counterpart or 
corresponding environment in which the medium containing 
the sensors is comparable to the intervening medium within 
the brain and is placed in contact with any desired part (or the 
whole) of the scalp. As a result of the resistive conduction 
source-sensor coupling between the brain and our ensemble, 
the ensemble behaves as an approximate continuation of the 
intervening medium within the brain, permitting the signals 
to propagate through ensemble in a manner that is similar 
to the manner in which they propagate within the brain, 
ultimately enabling simultaneous acquisition of distinct 
signal streams from different layers of neuronal populations 
within the brain.

Data Acquisition
We acquired EEG data by positioning the sensor ensemble 

on a subject’s scalp at a location close to the position 
indicated generally as AF4 or FC6 in Fig. 4 on the Emotiv 
EPOC headset. EEG data was acquired after ensuring a good 
contact quality indication for the reference electrodes and the 
electrodes (AF3 and F3) on the Emotiv EPOC headset that 
were connected to the sensors (SE1 and SE2) on our sensor 
ensemble. We used the TestBench software bundled with the 
headset to record and store the data and ultimately convert it 
to text format for further analysis. Raw EEG data are stored 
by the Emotiv EPOC TestBench tool in standard binary 
European Data Format (EDF) files which are compatible with 
many EEG data analysis programs and can be converted into 
human readable text in comma-separated values (CSV) files.

Data Availability
The data (including raw EEG data) that support the 

findings of this study are available from GitHub at https://
github.com/frankekpar/ekpar_eeg/blob/main/dataset.zip.

Figure 3: Sensor ensemble harnessed for three-dimensional 
multilayer EEG recordings
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Reproducibility
The Emotiv EPOC wireless EEG device harnessed for 

the measurements is a relatively affordable research and 
consumer grade EEG device and is accessible to the research 
and development community. Furthermore, we have provided 
the details required to reconstruct our sensor ensembles and 
reproduce our experiments. As stated earlier, all the data 
(including raw EEG data) that support the conclusions of 
our study are available from GitHub at https://github.com/
frankekpar/ekpar_eeg/blob/main/dataset.zip. Researchers 
have validated the Emotiv EPOC wireless EEG device for the 
acquisition of research-grade EEG data comparable with the 
leading research EEG systems, attesting to its precision and 
accuracy in event-marking for event-related potential (ERP) 
research [35, 36, 37].

Data Analysis
We can utilize a wide range of mathematical tools 

to evaluate the contributions of the topography of the 
transducer ensemble to the distinctness (or lack thereof) of 
the data streams linked to the biological substrate from which 
signals are captured or in which signals are generated by the 
transducers in the ensemble. In the ensemble employed in 
this study, the transducers have been configured or adapted 
to serve as sensors or electrodes and in particular, to record 
EEG data streams that can be gleaned from the scalp and 
that originate from disparate layers of neuronal populations 
within the brain. Mathematical tools that can be harnessed 
in this case include an analysis of measures of the electrical 
distances between sensors or electrodes, scatter plots for 
sensor pairs and the Pearson product-moment correlation 
coefficients between pairs of EEG data streams corresponding 
to sensor pairs within the ensemble [22, 23].

Computing Correlation Coefficients
Given a pair of sensors, Equation 1 illustrates how we can 

compute the Pearson product-moment correlation coefficient 
(r).
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In Equation 1, X represents the sample mean for the data 
{𝑋} = {𝑋1, 𝑋2, … , 𝑋𝑛} (EEG data stream in this case) 
recorded at the first electrode, Y denotes the sample mean for 
the data {𝑌} = {𝑌1, 𝑌2, … , 𝑌𝑛} (EEG data stream in this 
case) recorded at the second electrode while n represents the 
number of samples.

Measuring Electrical Distance Using the Hjoth  
Laplacian

The Hjorth algorithm [32] provides a linear approximation 
to the surface Laplacian. For the expression for the Hjorth 

waveform Hi (t, N), the contribution to the signal from each 
sensor is expressed as the difference between the time-
varying potential Pi(t) and the scaled sum of the potentials 
Pj(t) at each of N neighboring sensors. Equation 2 describes 
the relevant relationships.
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In Equation 2, Wi-j, as expressed in Equation 3 is inversely 
proportional to the distance di-j between the sensors and 
represents a weighting factor for each neighbor.
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Note that the non-spatial electrical distance Di-j denoting 
the electrical similarity between sensors i and j replaces the 
spatial distance di-j in the intrinsic Hjorth algorithm. Equation 
4 expresses the potential difference waveform Pi-j (t) between 
two sensors i and j.

( ) ( ) ( )i j i jP t P t P t− = −       (4)

Equation 5 demonstrates how to calculate the electrical 
distance.
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Limiting the consideration of electrical distances to the 
detection of the single nearest neighbor is sufficient for 
the detection of electrolyte bridges between sensors. This 
is comparable to setting N = 1 in employing the Hjorth 
algorithm [32] to the computation of a linear approximation 
to the surface Laplacian.

Hypotheses and Experiments
Null Hypothesis
We can state the Null Hypothesis as follows:

Multiple electrodes or sensors placed at distinct layers 
within the same sensor ensemble record identical or 
similar EEG signal streams when placed above the same 
location on the scalp.

For simplicity, we consider two EEG data streams to 
be identical or similar if their correlation coefficient is 
statistically indistinguishable from 1.00 with a margin of 0.05. 
This means that two EEG data streams are identical or similar 
if their correlation coefficient is equal to or greater than 0.95. 
We will carry out measurements using carefully designed 
experiments with sensor ensembles configured in the manner 
described earlier to determine if the Null Hypothesis is true 
or false.
Alternative Hypothesis
Now we can state the Alternative Hypothesis as follows:
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Multiple electrodes or sensors placed at distinct layers 
within the same sensor ensemble record distinct EEG 
signal streams when placed above the same location on 
the scalp.

Here again, for simplicity, we consider two EEG data 
streams to be distinct if their correlation coefficient is 
statistically distinguishable from 1.00 with a margin of 0.05. 
This means that two EEG data streams are distinct if their 
correlation coefficient is less than 0.95. We will carry out 
measurements using carefully designed experiments with 
sensor ensembles configured in the manner described earlier 
to determine if the Alternative Hypothesis is true or false.

Main Experiments
We measured three pairs of data streams each lasting 

just over 3 minutes from three separate adult subjects (A, B 
and C) using the Emotiv EPOC wireless headset. Informed 
consent was obtained from each of the participants and the 
studies complied with all relevant ethical regulations and 
were approved by the Research Ethics Committee at Topfaith 
University. All participants were healthy without any known 
history of neurological pathologies.

Control Experiment
The ideal control experiment would involve the use of 

a sensor ensemble in which the two sensors (SE1 and SE2) 
would be placed at exactly the same layer and position within 
the ensemble. Since this is not very practical without actually 
fusing the electrodes together, we utilize a proxy in the form 
of the consequences of the results reported by Zhang et al.24 
and Seeber et al.25. Relying on direct evidence from Zhang 
et al.24 that electrical signals propagate through different 
neurons at finite, measurable and disparate speeds and direct 
evidence from Seeber et al.25 that scalp EEG recordings 
can detect subcortical electrophysiological activity, we 
conclude that sensors placed at exactly the same layer and 
position within the sensor ensemble measure the same EEG 
data stream with an effective correlation coefficient of 1.0 
and a scatter plot that would appear as a straight line with an 
effective gradient of 1.0.

Results
To evaluate the proposed hypotheses, we computed 

Pearson product-moment correlation coefficients and 
visualized scatter plots for the pairs of EEG data streams (for 
the SE1-SE2 sensor or electrode pair) captured from the three 
subjects who participated in the experiments. Each recording 
lasted approximately 3 minutes or 180000 milliseconds. 
Note that this duration is orders of magnitude longer than 
the typical signal recording duration of 100-500 milliseconds 
utilized in event-related potential (ERP) configurations.

Fig. 5 depicts the scatter plot for the recordings obtained 
from Subject A. The corresponding correlation coefficient for 
Subject A was 0.2951.

In Fig. 6, the scatter plot for the recordings captured 
from Subject B is visualized. The corresponding correlation 
coefficient for Subject B was 0.3337.

Fig. 7 shows the scatter plot for recordings from Subject 
C with a corresponding correlation coefficient of 0.062689.

The correlation coefficients and scatter plots 
obtained demonstrate the distinctness of the two signal 
streams comprising each pair of signal streams recorded 
simultaneously.

As can be inferred from the results of the experiments, 
the EEG data stream captured by each sensor (SE1 or SE2) 
in the pair of sensors in the ensemble is clearly distinct from 
the EEG data stream captured by the other sensor even 
though both sensors were housed within the same ensemble 
(at different layers) and placed over the same location on the 
subject’s scalp.

For the Null Hypothesis to be true, the correlation coefficient 
for the pair of EEG data streams should be very close to 1.0 
and the scatter plot should indicate very close clustering of 

Figure 4: Original positions of electrodes on Emotiv EPOC 
connected to sensor ensemble (AF3 to SE1, F3 to SE2) and 
approximate locations on subject’s scalp during EEG data recordings 
(F4 for Subject A and FC6 for Subject B and Subject C). The 
electrodes AF3 and F3 were prevented from making contact with 
the scalp at their original positions by placing an insulator between 
them and the scalp.

For Subject A, the sensor ensemble was positioned 
near the location generally indicated as AF4 on the scalp 
as illustrated in Fig. 4 while for Subject B and Subject C, 
the sensor ensemble was placed on the scalp near the point 
indicated as FC6 in Fig. 4. The subjects were placed in a 
relatively quiet environment and were recorded in a relaxed 
and sitting position. They were not engaged in any special 
tasks and were recorded with their eyes open.
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Figure 5: Subject A: Scatter plot of EEG data (in microvolts) for SE1-SE2 electrode pair. 
Correlation coefficient, r = 0.2951.

Figure 6: Subject B: Scatter plot of EEG data (in microvolts) for SE1-SE2 electrode pair. 
Correlation coefficient, r = 0.3337.
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the data points for each subject. We observe just the opposite 
of these features in the measurements. Conversely, for the 
Alternative Hypothesis to be true, the correlation coefficient 
for the pair of EEG data streams should be less than 1.0 
and the scatter plot should display dissimilarities between 
the data streams -- indicating that they are distinct – for at 
least the majority of subjects. This is the exact set of features 
we observe in the measurements for all subjects. Choong et 
al.38 computed Pearson correlation coefficients for pairs of 
electrodes by utilizing the Emotiv EPOC in the traditional 2D 
EEG configuration in the context of EEG data representing 
emotional states and obtained correlation coefficients as 
high as 0.8142 in the alpha band. Here, we have adapted the 
Emotiv EPOC to our three-dimensional multilayer sensor 
ensemble and obtained correlation coefficients for pairs of 
sensors ranging from 0.062689 for Subject C to 0.3337 for 
Subject B.

In a comparison of time domain measures of EEG 
correlations, Bonita et al.39 set out to apply EEG correlation 
measures to discriminate between two behavioral states, 
namely, eyes open no task (similar to the experimental setup 
we used to measure EEG data) and eyes closed no task. The 
results reported by Bonita et al.39 indicate that the Pearson 
product moment correlation coefficient (also utilized in this 

work) could discern the correct one of the two behavioral 
conditions with epoch durations greater than or equal to 2 
seconds or 2000 milliseconds. Crucially, Bonita et al.39 
demonstrated that the Pearson product moment correlation 
coefficient was robust to noise. Note that the recording duration 
in our experiments was approximately 180000 milliseconds. 
Thus, our measurements of Pearson product moment 
correlation coefficient in this present work were robust to 
noise, ruling out alternative explanations of our results that 
are based on the presence of noise in the signals. Given the 
backdrop of the results reported by Zhang et al.24 and Seeber 
et al.25, these results confirm PREDICTION II by Ekpar22, 
23 and demonstrate that sensors placed at different layers 
above a given location on the scalp capture EEG data streams 
emanating from different layers of neuronal populations 
within the brain. Furthermore, these results, combined with 
the findings of Zhang et al.24 and Seeber et al.25, confirm 
all three predictions (PREDICTION I, PREDICTION II 
and PREDICTION III) by Ekpar22, 23 on the basis of our 
conceptual framework through direct measurements. The 
results are robust and hold true across subjects and over a very 
long recording duration (approximately 180000 milliseconds 
for each recording) that is orders of magnitude longer than 
the typical 100 - 500 millisecond duration of event-related 
potential (ERP) configurations.

Figure 7: Subject C: Scatter plot of EEG data (in microvolts) for SE1-SE2 electrode pair. 
Correlation coefficient, r = 0.062689.
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These results conclusively falsify the Null Hypothesis and 
confirm the Alternative Hypothesis. It can be inferred from 
the findings of Parvizi et al.34 and Seeber et al.25 that EEG 
signals (including intracranial EEG or iEEG signals) can 
provide anatomically precise information about the selective 
engagement of neuronal populations at the millimeter scale 
and about the temporal dynamics of their engagement at the 
millisecond scale. The sampling rate of the device used in our 
experiments was 128 samples per second – sufficient to resolve 
signals emanating from neuronal populations separated by 
an arrival interval of 7.8 milliseconds. By utilizing higher 
sampling rates, sensor ensembles with more densely packed 
sensors, faster processing systems (for example, electronic or 
photonic systems) and robust signal processing algorithms, 
significantly more information can be extracted from EEG 
data streams (for example, through the resolution of data 
streams emanating from neuronal populations separated by 
smaller arrival intervals) with improved signal-to-noise ratio 
(SNR) metrics.

 The fact that sensors placed at disparate layers within 
the sensor ensemble are able to capture signals from neuronal 
populations within the brain can be explained by the direct 
physical contact between the scalp of the subjects and the 
saline-soaked medium within which the sensors are housed, 
allowing signals to propagate to the sensors. It is well known 
– as can be gleaned from results published by Plonsey et
al.41, De Munck et al.42 and Tenke et al.33 – that resistive
conduction is an accurate model of source-sensor coupling in
an EEG sensor ensemble such as our system, and it occurs with 
virtually no delays or phase shifts. Furthermore, our sensor
ensemble creates an environment effectively approximating
the insertion of electrolyte bridges between the electrodes.
Consequently, the electrodes should be expected (assuming
that the signals emanate from the same source locations or
layers) to measure similar or identical signal streams. As
demonstrated by Bonita et al.39, the correlation coefficient
metric we have employed is robust to noise, ruling out noise
in the signals as the source of the distinctness. Note that since
the material used for all electrodes in the sensor ensemble
is the same and all sensors are housed in the same saline-
soaked sponge that is comparable to the sensor pads used
in the regular single-layer configuration, there is no reason
to expect the buildup of an ion cascade or peculiar non-
linearities or distortions within the ensemble. The presence
of effective electrolyte bridges between the electrodes should
be expected to lead to the measurement of similar or identical
signals and to nullify any “cross-talk” effects. By operating
the sensor ensemble under a wide variety of conditions with
the measured impedance ranging from tens to hundreds of
KΩ, stabilizing around 1 MΩ and going beyond that as the
wetness of the medium decreased, our system has effectively
run with characteristics that could be associated with different
sets of materials, obviating the need for additional experiments 

with multiple design parameters. Ekpar22 published research 
in which a sensor ensemble similar to the one described in 
this study was configured with four (4) separate electrodes in 
distinct layers with similar results.

Given the temporal resolution of the phenomena under 
consideration (see Seeber et al.25 and Parvizi et al.34) and 
the use of the correlation coefficient as a similarity metric, 
the sampling frequency of the Emotiv EPOC (with an inbuilt 
high-pass filter) is sufficient. The spatial resolution of the 
Emotiv EPOC does not play any role in this study since the 
original Emotiv EPOC electrodes are bypassed and the novel 
sensor ensemble described in the study used instead. The 
effectiveness of the Emotiv EPOC as a research-grade EEG 
device has been demonstrated in studies including those carried 
out by Badcock et al.35, 37 and Williams et al.36 including 
characterization of the device. Note that all raw EEG data 
measurements in the dataset used for the study are reference- 
compensated, obviating the need for separate measurement 
of the reference signals and subsequent compensation. Based 
on the foregoing explanations and clarifications, the most 
plausible explanation of the observed distinctness of the 
signals is that they can be localized to disparate sources or 
layers within the brain. As explained via the predictions, this 
can be justified by relying on the results reported by Zhang et 
al.24 regarding direct imaging of signals propagating through 
myelinated axons and by Seeber et al.25 regarding direct 
evidence that scalp EEG recordings can detect subcortical 
electrophysiological activity. We have hereby clearly 
demonstrated the acquisition of distinct signal streams from 
neuronal populations located at different depths at the same 
electrode site and consequently established a system enabling 
three-dimensional multilayer electroencephalography  
(3D Multilayer EEG) with far-reaching implications for a 
broad range of novel applications.

Discussion
We have established a system enabling non-invasive 

three-dimensional multilayer electroencephalography 
(3D Multilayer EEG – for which we propose the name 
Ekpar Electroencephalography or Ekpar EEG or eEEG) 
with far-reaching implications for a broad range of fields 
from medicine to computing. We formulated the Null and 
Alternative Hypotheses and carefully designed experiments 
and carried out measurements that clearly falsify the Null 
Hypothesis and validate the Alternative Hypothesis, thus 
directly demonstrating the simultaneous acquisition of 
distinct signal streams from neuronal populations located 
at different depths at the same electrode site. The results of 
our measurements are robust and hold true across subjects 
and over a very long recording duration (approximately 
180000 milliseconds for each recording) that is orders of 
magnitude longer than the typical 100 - 500 millisecond 
duration of event-related potential (ERP) configurations. 
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We have also explained how the recent direct imaging of 
signals propagating through myelinated axons by Zhang 
et al.24 and direct evidence that scalp EEG recordings can 
detect subcortical electrophysiological activity by Seeber 
et al.25 confirm the veracity of the principles underpinning 
the conceptual framework on which our work is based and 
confirm all three related predictions by Ekpar 22, 23.

Further research is needed to characterize the wide variety 
of sensor ensemble topologies and configurations that could 
be utilized, to quantify the difference in the signal-to-noise 
ratio (SNR) of EEG measurements based on our system 
compared to contemporary systems, to quantify the difference 
in the information transfer rate as well as any differences in 
spatial resolution possibly via comparison with other source 
localization techniques reported in the literature. and more 
broadly, comparative studies between our 3D Multilayer 
EEG system and contemporary systems. Research is also 
required to elucidate the influence of temporal dynamics and 
related phenomena on the mechanism of operation of sensor 
ensembles based on our system possibly via investigations 
into the role of coupling, delay, noise and other factors in 
resting brain fluctuations40. With the additional information 
about neuronal activity that could be gleaned from the vastly 
increased electrode count and density permitted by our 3D 
Multilayer EEG system, vast improvements in the signal to 
noise ratio (SNR) of EEG measurements could potentially be 
obtained.

 Our work suggests a pathway to full-fledged brain-to-brain 
communication with the attendant benefits to human society 
including greater collaboration, conflict resolution, greater 
inter-cultural understanding, more peaceful communities and 
greater insights into the workings of the human brain. We can 
also build practical non-invasive BCIs (and more generally, 
human-machine interfaces) and unlock novel non-invasive 
applications by relying on the vastly improved SNR and 
information transfer rate afforded by our 3D Multilayer EEG 
system. In the field of medicine, insights gleaned from our 3D 
Multilayer EEG system could enable more accurate diagnosis 
and therapies for brain-related and psychiatric conditions as 
well as an improved understanding of the workings of the 
human brain in healthy and pathological conditions, possibly 
leading to the discovery of hitherto unknown conditions 
and the development of novel and effective therapies. 
Additionally, the rehabilitation of those living with brain-
related impairments could be rendered practical and cost-
effective using our novel 3D Multilayer EEG system.

Our 3D Multilayer EEG system could be applied in 
psychology and neuroscience in the study of the brain 
processes underlying memory, learning, perception and 
attention and in the study of social interactions, human 
factors including factors related to situational awareness and 
workplace optimization, neuromarketing and economics. This 

system could be utilized in the study of non-human primates, 
other animals as well as comparative studies between species 
of animals, leading to a better understanding of what it means 
to be human. Given sensor ensembles with sufficient sensor 
count and density and associated processing systems and 
algorithms, we could decipher the content of dreams using 
our non-invasive 3D Multilayer EEG system. Our novel non-
invasive 3D Multilayer EEG system could be harnessed in a 
broad range of conceivable applications.

Conclusion
This paper introduced a novel paradigm involving 

three-dimensional multilayer EEG – in contrast with the 
contemporary single-layer (2D single-layer) paradigm – with 
the novel paradigm potentially enabling effective brain-
to-brain communication and other hitherto hard-to-realize 
applications such as a clearer understanding of neurological 
processes both in normal functioning and in disease, orders of 
magnitude improvements in the information transfer rates of 
brain- computer interfaces (BCIs) that could lead to practical 
BCIs, potentially significant improvements in the signal-to-
noise ratio (SNR) of EEG recordings as well as a broad range 
of novel applications and demonstrated that the system works 
through experimental results with evidence that distinct  
signal streams can be recorded from EEG sensor ensembles 
placed over the same site on the scalp but responding to bio-
signals from neuronal populations at different depths. More 
specifically, we have demonstrated the effectiveness of our 
novel 3D Multilayer EEG paradigm by formulating the null 
and alternative hypotheses for simultaneous multilayer EEG 
signal capture and relying on the results of analysis of a set 
of carefully designed experimental measurements to falsify 
the null hypothesis and validate the alternative hypothesis. 
We have explained how the recent direct imaging of signals 
propagating through myelinated axons by Zhang et al. 24 
and direct evidence that scalp EEG recordings can detect 
subcortical electrophysiological activity by Seeber et al. 
25 confirm the correctness of the principles underpinning 
the conceptual framework on which our work is based and 
confirm all three related predictions by Ekpar 22, 23. This 
has far-reaching implications for a broad range of fields 
from medicine to computing. By combining more efficient 
information processing techniques with the ability to capture 
three-dimensional multilayer EEG signal streams, the results 
also suggest a pathway towards more robust and practical 
BCIs and other applications of EEG signals as well as a 
viable pathway to effective computer-mediated brain-to-brain 
communication with its attendant benefits. We propose the 
name Ekpar Electroencephalography or Ekpar EEG or eEEG 
for our novel 3D Multilayer EEG system.
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