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Abstract
The identification of fetal cells in the blood and tissues of healthy 

mothers raised questions about the potential alloreactive origins of various 
diseases, such as autoimmunity, diabetes, arteriosclerosis, and cancer. 
However, the extent to which alloreactivity contributes to these diseases 
remains unverified. This study presents a basic mathematical disease model 
based on the genes’ origin and immunological interactions. This model, 
grounded in set theory, classifies these immunological interactions based 
on their intrinsic, extrinsic, and allogeneic nature. Therefore, this model 
offers an unexpected common theoretical foundation for understanding 
alloreactivity, genetic diseases, and infections. Furthermore, this model 
provides a valuable framework for scrutinizing the role of alloreactivity 
in health and disease.
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Introduction
The identification of genes and pathogens has paradigmatically changed 

our understanding of diseases. Traditionally, we attributed diseases to two 
primary categories: infectious diseases caused by pathogens and genetic 
diseases governed by Mendel's law of heredity, arising from genetic mutations. 
However, a significant group defies these classifications within the realm of 
diseases. This group encompasses disorders such as arteriosclerosis, type 2 
diabetes, autoimmunity, chronic respiratory diseases, neurological diseases, 
and cancer. These diseases are classified as non-communicable diseases 
and constitute approximately 70% of global mortality, as estimated by the 
World Health Organization [1]. The etiology of these diseases is presumed 
to be multifactorial, arising from a complex interplay of lifestyle, behavior, 
environmental influences, and genetic factors. Moreover, research has focused 
on additional factors, such as the gut microbiome [2] and epigenetics [3]. 
Studies on pregnancy and transplantation medicine have also suggested the 
potential involvement of alloreactivity in the development of these diseases. 
This idea is mainly supported by the fact that allogeneic cells transferred 
during pregnancies persist in small numbers and remain viable for decades 
after childbirth. These cells are referred to as microchimerism.

Microchimerism
The existence of chimerism contradicts the inherent idea that cells 

exchanged between individuals cannot persist in a foreign immune system 
environment and should be rejected. Nevertheless, there is increasing 
evidence that most, if not all, individuals carry a small fraction of cells with 
an allogeneic origin [4-6]. Microchimerism has been detected in the blood 
[4] and multiple tissues, including the brain [7], liver [8], and pancreas [9].
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Furthermore, chimerism has been observed in cattle, pigs, 
and other animals, suggesting it is not a rare evolutionary 
occurrence [10, 11]. The discovery of microchimerism 
fundamentally challenges our concept of alloreactivity, as 
it indicates that allogeneic interactions are not confined 
to pregnancy or childbirth but may persist long after these 
events. Considering the lifelong persistence of these cells, it 
has been hypothesized that alloreactivity may be involved in 
non-communicable diseases [12, 13]. 

Autoimmune diseases
Notably, a strong association exists between auto- and 

alloimmunity [12, 14]. Chronic graft-versus-host disease 
(cGvHD) following allogeneic stem cell transplantation 
has similar clinical components as autoimmune diseases, 
such as dry mouth and eyes, joint stiffness, skin lesions, 
and fibrosis. Moreover, autoantibodies, which indicate 
autoimmune diseases, are frequently observed in patients 
with cGvHD. Antinuclear antibodies have been reported in 
approximately 65% of patients with cGvHD [15]. Detecting 
anti-topoisomerase I antibodies in cGvHD [16] is noteworthy 
as these antibodies are highly specific for systemic sclerosis 
[17]. Moreover, anti-platelet-derived growth factor (anti-
PDGF) receptor antibodies have been identified in nearly 
all patients with systemic sclerosis. These antibodies are 
suspected to be significant in the disease's pathogenesis due 
to their capacity to activate collagen gene expression [18]. 
Similarly, anti-PDGF-receptor antibodies have been detected 
in approximately all patients with extensive cGvHD, whereas 
they are absent in controls without cGVHD [19]. Additional 
direct evidence linking auto- and alloreactivity stems from 
discovering allogeneic DNA in the tissues of patients with 
autoimmune diseases. Fetal DNA has been found in the 
salivary glands of women with Sjögren's syndrome [20], the 
skin lesions of women with systemic sclerosis [21], and the 
thyroid tissue of women with autoimmune thyroiditis [22, 23]. 
Conversely, myocardial cells of maternal origin have been 
found in newborns with lupus congenital heart block [24]. 
However, the evidence of an association with autoimmune 
diseases is complicated by the fact that microchimeric 
cells can also be detected in healthy individuals [20-23]. 
Nevertheless, studies with inbred mouse models provide 
compelling evidence supporting alloreactivity's involvement 
in autoimmune diseases. The injection of immune cells 
from one inbred mouse strain into another frequently 
induces autoimmunity, characterized by typical clinical and 
histopathological patterns [25].

Type 2 diabetes
Approximately 60% of women with gestational diabetes 

develop type 2 diabetes later in life [26]. Consequently, 
gestational diabetes represents one of the most significant risk 
factors for type 2 diabetes. Furthermore, gestational diabetes 

closely resembles type 2 diabetes in two clinical components: 
impaired glucose tolerance and insulin resistance. The 
development of gestational diabetes is attributed to the 
hormonal and metabolic changes that occur during pregnancy. 
However, pregnancy presents a unique immunological 
condition characterized by direct allogeneic cell contact at the 
fetomaternal interface and bidirectional exchange of antigens, 
antibodies, and cells. Fetal cells enter the maternal circulation 
during pregnancy and are not entirely removed after that [27, 
28]. It has been established that allogeneic encounters during 
pregnancy primarily result in immunological tolerance 
[29, 30]; however, there is also evidence indicating that 
tolerance may be incomplete, with excessive alloreactivity 
being managed by peripheral tolerance [31]. In contrast to 
central tolerance, which involves the thymic depletion of 
autoreactive immune cells (Figure 1A), peripheral tolerance is 
closely associated with the secretion of cytokines, such as the 
transforming growth factor-β (TGF-β) in response to antigens 
(Figure 1B). These cytokines can further affect the body, as 
TGF-β has been shown to regulate glucose tolerance and 
pancreatic islet β-cell function in mice [32, 33]. Furthermore, 
increased TGF-β levels have been correlated with obesity 
in humans [33]. Therefore, an alternative explanation for 
gestational diabetes could be that fetal allogeneic cells in 
the maternal body stimulate maternal regulatory T cells to 
produce cytokines, such as TGF-β, subsequently leading 
to gestational diabetes. Recently, a correlation between 
increased fetal cells in the maternal circulation and poor 
glucose control has been demonstrated in diabetic pregnancies 
[34]. Moreover, eclampsia, a pregnancy-associated disorder 
characterized by hypertension, proteinuria, and thrombotic 
microangiopathy, leads to endovascular damage and organ 
dysfunction. In eclampsia, placental damage increases fetal 
cell translocation into the maternal blood and tissues [35]. 
Pre-eclampsia is associated with gestational diabetes and a 
twofold increase in diabetes in later life [36].

Arteriosclerosis
Human arteriosclerosis is a chronic inflammatory disorder 

with significant clinical manifestations, such as myocardial 
infarction and stroke [37]. Similarly, graft arteriosclerosis, 
which often occurs following organ transplantation, is the 
primary clinical factor limiting the long-term survival of 
allogeneic organ grafts [38]. The formation of arteriosclerotic 
plaques by allogeneic triggers is noteworthy. Perivascular 
inflammation and consecutive graft arteriosclerosis have been 
documented in heart, kidney, lung, and liver transplantations 
[38, 39]. Histologically, there are similarities and differences 
between spontaneous and transplant arteriosclerosis [40-42]. 
The accumulation of lymphocytes, macrophages in the artery 
wall, and lipids in atherosclerotic plaques are common features 
in spontaneous and transplant arteriosclerosis. Transplant 
arteriosclerosis exhibits more diffuse concentric intimal 
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Alloreactivity in non-communicable diseases
In 1893, Georg Schmorl described fetal cells in the lungs 

of women who died of eclampsia [49]. He was the first to 
postulate a connection between fetal cells in the maternal 
circulation and a disease. Over a century later, in 1996, J. Lee 
Nelson advanced the exploration of this idea by introducing 
the question, “Is some autoimmune disease auto‐alloimmune 
or allo‐autoimmune?” [12]. Unfortunately, the low frequency 
of microchimeric cells prevents comprehensive tracking of 
their local and systemic effects. Even today, the theory that 
cells exchanged between individuals subsequently cause 
alloreactive effects in the host’s body remains speculative. 
None of the previously discussed correlations offer definitive 
evidence, leaving the hypothesis neither validated nor 
disproven.

Mathematical aspects of alloreactivity
Questioning whether microchimerism leads to disease goes 

beyond pinpointing a cause; it raises the intriguing question 
of whether diseases themselves might follow mathematical 
patterns, suggesting a deeper, rule-based structure to their 
occurrence and progression. In contrast to microchimerism, 
alloreactivity and its role in health and disease have been more 
clearly defined. Focusing on alloreactivity, three fundamental 
mathematical concepts may help unravel its role in health and 
disease: relativity, set theory, and asymmetry. Importantly, 
these mathematical concepts of alloreactivity originate from 
concrete properties of the immune system. 

The immune system works in a relativistic mode
Relativity, a fundamental concept in physics, elucidates 

thickening compared with spontaneous arteriosclerosis. 
Furthermore, spontaneous arteriosclerosis typically develops 
over several decades, whereas transplant arteriosclerosis may 
develop within 1 or 2 weeks. However, calcification occurs 
late in transplant arteriosclerosis. Arteriosclerosis has also 
been observed during pregnancy, where acute atherosis of the 
spiral arteries at the fetomaternal interface closely resembles 
early-stage atherosclerosis [43]. Acute atherosis is rare in 
healthy pregnancies but is frequently observed in abnormal 
pregnancies, such as those complicated by pre-eclampsia [43, 
44]. The role of alloreactivity in acute atherosclerosis has 
also been previously discussed [44]; alloreactivity leads to 
transplant vasculopathy and is implicated in the etiology of 
spontaneous arteriosclerosis.

Cancer

Chronic infections caused by human papillomavirus, 
hepatitis B and C, and Helicobacter pylori contribute 
significantly to cancer development [45]. In addition to 
viral oncogenes and cytokines, chronic inflammation is 
involved in cancer development and increases the risk 
of malignant transformation [46]. Allogeneic cells have 
been found in various cancer tissues, including melanoma, 
breast, lung, thyroid, and brain tumors [13, 47]. A malignant 
transformation caused by allogeneic cells is yet to be directly 
proven; however, their presence in tumor tissues has been 
extensively documented. Their active role in malignant 
transformation has been discussed in addition to the potential 
benefits of microchimerism, such as anti-tumor effects and 
tissue repair [13, 47, 48].

Figure 1: Predominant immune reactions to intrinsic, allogeneic, and extrinsic antigens
(A) During T-cell maturation in the thymus, CD4+T-cells undergo apoptosis when they recognize self-antigens presented by thymic epithelial 
cells. (B) The contact of the immune system with allogeneic antigens primarily leads to peripheral tolerance. Regulatory CD4+T-cells secrete 
cytokines such as TGF-β, IL-10, and IL-35 following antigen recognition. (C) Effector-CD4+-T-cells secrete cytokines like IFN-γ and TNF-α 
in response to antigens of extrinsic origin, such as viral or bacterial antigens.
APC, Antigen presenting cell; TGF-β, Transforming growth factor β; IL-10, Interleukin-10; IL-35, Interleukin-35; IFN-γ, Interferon-γ; TNF-α, 
Tumor necrosis factor−α.
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the intricate relationships between space, time, mass, energy, 
and gravity. Notably, the principles of relativity extend beyond 
the realm of physics to biological systems [50]. Based on 
the following findings, relativity is pivotal in the interaction 
between the immune system and genes: The immune system 
establishes a natural barrier against invasion, safeguarding 
the body against pathogens. Moreover, the immune system 
adapts to the body's genome, and during T-cell maturation, 
central immune tolerance eliminates T-cells in the thymus 
that react with self-antigens. This process, however, leaves 
an intriguing gap in immune surveillance (Figure 2A). 
Consequently, the immune system contains an individual's 
immunological information, characterized by a complete 
set of specific immune cells devoid of a depleted set of self-
reactive cells. Therefore, each person possesses a distinct set 
of self-antigens, representing their immunological frame of 
reference. Since there is an individual and no universal or 
privileged frame of reference, the immune system operates in 
a relativistic mode [50].

A relativistic perspective on alloreactivity
Across different species, a substantial genetic 

commonality exists, with most genes being shared. However, 
alloantigens are encoded outside the overlapping genetic 
pool. Alloreactivity is the general term for immune responses 
to alloantigens not found within an individual’s genome 
but instead encoded in the genomes of others within the 
same species. Alloantigens commonly arise due to genetic 
mutations. Notably, many blood group systems are founded on 
genetic variants, such as the Rhesus D blood group alloantigen 

resulting from a gene deletion and the H-Y alloantigen 
exclusively encoded on the Y chromosome. A central feature 
of alloantigens is their presence alongside genes shared by 
other individuals. Importantly, the information that triggers 
an alloreactive immune response is not contained within 
the host or donor genomes but depends on the exclusive 
antigen expression in one but not the other individual. Each 
immune system represents a distinct frame of reference 
encoded by an individual genome. Following transmission 
into a foreign body, the donor immune cells can detect host 
antigens not encoded by the donor’s genome. Therefore, 
the term “relativistic” implies that the ensuing effect defies 
explanation or prediction through the lens of a single genome. 
The personal genome provides only an individual frame of 
reference, and immunological incompatibility emerges 
in response to genomic differences between individuals. 
In addition to minor alloantigens, variations in the major 
histocompatibility complex (MHC) determine alloreactivity; 
T-cells recognize a compound of the MHC and its presented 
antigen. T-cells may directly target MHC variants, but 
alterations in the MHC molecules lead to a shift in antigen 
selection. Therefore, transplantation of MHC-mismatched 
allogeneic organs or stem cells may lead to complex and 
unpredictable immunological interactions. This complexity 
can be markedly reduced if the immune system is considered 
a binary system that distinguishes self- and non-self-antigens, 
regardless of their MHC and minor antigen components. 
Since the term “non-self” pertains to a single individual other 
than oneself, the binary system, featuring two conditions, 
“self” and “non-self,” reflects the relativity of genes.

Figure 2: A mathematical model of disease: Immunological interaction of genes with extrinsic, allogeneic, and intrinsic origin
The genes are classified based on extrinsic, allogeneic, or intrinsic origins. The immune system then converts the genes into antigens.
(A) Within the universe of all existing antigens (red rectangle), central and peripheral tolerance leads to a gap in immune surveillance (white 
circle). Extrinsic antigens are defined as the absolute complement of self-antigens (white circles) within all antigens (red rectangles). Pathogens 
are extrinsic antigens. (B) Following the transfer of cells into another individual, donor immune cells detect host antigens by recognizing 
host antigens (left red circle) in a graft-versus-host-like reaction. Therefore, allogeneic antigens can be defined as a set of host antigens (left 
red circle) that do not overlap the self-antigens of the donor (left white circle): allogeneic antigens of the host are the relative complement of 
host antigens (left red circle) without donor antigens (left white circle). Host immune cells can recognize donor antigens through the antigen 
recognition of donor antigens (right red circle). Therefore, allogeneic antigens can be defined as a set of donor antigens (right red circle) without 
the self-antigens of the host (right white circle): allogeneic antigens of the donor are the relative complement of the set of donor antigens 
(right red circle) without the host antigens (right white circle). (C) Individual genomes encode intrinsic antigens (self-antigens). Central and 
peripheral tolerance deletes or silences self-reactive immune cells. Therefore, antigens of intrinsic origin do not induce an immune response 
(white circle).
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A mathematical model of disease 
The interaction of T cells, antigen-presenting cells, 

and costimulatory signals commonly determines immune 
reactions. For this analysis, we will set aside the complex 
relationships of these cells and explore the situation from 
the antigen's perspective. Alloantigens are defined by their 
absence in an individual’s genome but their presence in the 
genomes of others within the same species. This definition 
implies that alloantigens, and indeed antigens more broadly, 
can be precisely characterized using the rules of set theory 
and their ability to describe the inclusion and exclusion of 
elements within sets. In addition to a mathematical description, 
antigens can be categorized by set theory. Self-antigens 
encoded within an individual’s genome are of intrinsic origin 
(Figure 2C). Pathogenic antigens, such as bacterial and viral 
antigens, are extrinsic (Figure 2A). Antigens encoded by 
some, but not all, members of a species, such as the Rhesus-
D-protein, are allogeneic (Figure 2B). Therefore, antigens 
can be categorized based on their intrinsic, extrinsic, or 
allogeneic origins. 

Moreover, this classification serves as a mathematical 
model of disease integrating genetic, infectious, and allogeneic 
diseases (Figure 2). This model offers a mathematical 
approach by quantifying the relationships among these 
disease categories. It provides a mathematical framework for 
differentiating immune responses to alloantigens from those 
against extrinsic antigens. Furthermore, it accurately predicts 
that, unlike these antigens, the genome and genetic disorders 
are unlikely to trigger an immune reaction. Starting from 
intrinsic self-antigens that are genomically defined, extrinsic 
and allogeneic antigens can be mathematically calculated 
using two different axioms of set theory: the absolute and 
relative complements.

Definition of non-self-antigens as absolute comple-
ment by set theory

B- and T-cells commonly recognize non-self-antigens, 
such as bacterial or viral antigens. The set theory provides a 
useful framework for classifying non-self-antigens. Extrinsic 
antigens, such as those from pathogens, represent the absolute 
complement of self-antigens (Figure 2A). Mathematically, 
a set of extrinsic antigens encompasses the entire spectrum 
without a set of self-antigens. These antigens are not encoded 
in an individual's genome; therefore, this set includes all 
viral and bacterial antigens and allogeneic antigens, such as 
the Rhesus protein. Allogeneic antigens are categorized as 
extrinsic; however, they can be further defined as follows:

Definition of allogeneic antigens as relative comple-
ment by set theory

Allogeneic antigens represent a specific subset of 
non-self-antigens. During the exchange of cells between 

individuals, both immune and non-immune cells encounter 
foreign immune systems and antigens. When fetal immune 
cells enter the maternal circulation, the immunogenic targets 
can be more precisely characterized using another principle 
of set theory: the set of allogeneic minor antigens is defined 
as a relative complement of the host’s (maternal) antigens 
without the self-antigens of the (fetal) donor (Figure 2B, 
left) and vice versa (Figure 2B, right). Alloreactivity is a 
bidirectional process that manifests in response to maternal 
and fetal antigens. Maternal genes not present in the fetal 
genome encode proteins that can serve as allogeneic antigens. 
Consequently, when fetal immune cells enter the maternal 
circulation, they may recognize maternal antigens that are not 
contained in the set of self-antigens in a graft-versus-host-like 
reaction. Conversely, maternal immune cells or antibodies 
entering the fetal circulation may recognize fetal non-self-
antigens in a host-versus-graft response, considering the fetus 
as a graft within the female’s body. These interactions have 
clinical implications. For instance, following immunization 
with the Rhesus-D-protein during a first pregnancy, a Rhesus-
negative woman's Rhesus-D-specific antibodies can destroy 
the blood cells of Rhesus-positive babies in subsequent 
pregnancies. This potentially fatal condition can be prevented 
by administering Rhesus prophylaxis to mothers who are 
Rhesus-negative.

Asymmetry as a marker of alloreactivity
Our diverse genetic backgrounds often result in 

unpredictable immunological interactions when cells are 
transferred from one individual to another. Asymmetry 
can reveal alloreactivity in specific scenarios. It arises due 
to the direction of the immune system; antigen-negative 
individuals respond to antigens that are not encoded in their 
genomes. For instance, when Rhesus D-negative mothers are 
immunized during pregnancy with a Rhesus D-positive child, 
it can lead to hemolytic disease in the newborn in subsequent 
pregnancies. Notably, other examples of alloreactive 
diseases include neonatal alloimmune thrombocytopenia, 
primarily caused by the human platelet antigen-1 (HPA-
1), and neonatal alloimmune neutropenia, which depends 
on the human neutrophil antigen-1 (HNA-1) expression in 
the fetus but not in the mother (Figure 3). A sex-dependent 
immunological imbalance is another example of asymmetry 
resulting from alloreactivity. The male genome carries 
genes on the Y chromosome that are absent in the female 
genome. This genomic distinction results in a sex-dependent 
immunological imbalance and has clinical implications for 
donor selection in human stem cell transplantation. It is 
widely acknowledged that using a female donor for a male 
recipient should be avoided, as this combination significantly 
increases the risk of graft-versus-host disease [51]. The HY 
antigen encoded in the Y chromosome has been identified as 
a relevant alloantigen in transplantations. In inbred mouse 



Marc A. Schnitzler., Arch Microbiol Immunology 2024
DOI:10.26502/ami.936500192

Citation:	Marc A. Schnitzler. A Mathematical Model of Disease. Archives of Microbiology and Immunology. 8 (2024): 460-468.

Volume 8 • Issue 4 465 

strains, such as C57BL/6, all individuals are genetically 
identical except males, who possess the Y chromosome. The 
HY antigen prompts female mice to reject skin grafts from 
male donors, whereas they tolerate female skin grafts, and 
male mice tolerate both female and male skin grafts [52]. 
This asymmetric pattern may help uncover the contribution 
of alloreactivity to human diseases.

genomic variability, such as blood group incompatibility, 
can cause immunological incompatibility and subsequent 
pregnancy loss. Second, maternal microchimerism fosters 
peripheral tolerance to non-inherited maternal antigens and 
positively affects offspring survival in the next generation 
[6]. Conversely, this strongly implies a detrimental effect 
on the offspring of mothers lacking this acquired tolerance. 
Third, peripheral tolerance is, to some extent, incomplete, as 
it involves the secretion of cytokines, such as TGF-β (Figure 
1B).

Immunosuppression can be discontinued three months 
after allogeneic stem cell transplantation. This is widely 
accepted as strong evidence that stem cell transplantation 
results in tolerance. However, cGvHD is a common adverse 
effect and acute, chronic, and transfusion-associated GvHD 
have demonstrated that transferred immune cells can cause 
lethal damage to the host [53]. Remarkably, the extent 
of cGvHD following allogeneic stem cell transplantation 
increases with the sex, relationship, and ethnic backgrounds 
of the donor and host. Therefore, cGvHD is a gradual 
process, reflecting the accumulation of immunological 
incompatibility with increasing genetic distance [54, 55]. 
Notably, relativity operates with modest effects at lower 
volumes and markedly amplifies effects at higher volumes. 
When tolerance is incomplete, accumulating immunological 
incompatibility may limit genomic variability within a 
species [56]. Therefore, alloreactivity, like an evolutionary 
clock, may be an immunological counterbalance to genomic 
variability. 

Allogeneic immune responses during pregnancy, 
transfusion, and transplantation have been extensively 
studied. Naturally occurring alloreactive diseases include 
various conditions, such as hemolytic diseases in newborns, 
neonatal alloimmune neutropenia, and neonatal alloimmune 
thrombocytopenia. Notably, most red blood cells, neutrophils, 
and thrombocyte alloantigens are based on single nucleotide 
polymorphisms, underscoring the exceptional sensitivity 
of the immune system in detecting the smallest differences 
between the two genomes. The substantial and increasing 
number of alloantigens (> 300) in red blood cells, neutrophils, 
and platelets suggests the existence of additional undiscovered 
alloantigens in blood and tissues.

However, detecting the effects caused by alloreactivity 
remains difficult. Notably, most studies on microchimerism 
are based on quantifying allogeneic cells in blood or tissues; 
however, this approach does not provide insights into their 
function. In addition, the frequency of microchimeric T-cells 
is very low, suggesting that research on antibodies could be a 
more viable alternative. Antibodies are compelling evidence 
of a B-cell effector activity. As such, identifying antibodies 
from microchimeric B-cells or those targeting microchimeric 

Figure 3: The asymmetrical pattern of alloreactivity
The fetus can be considered as a graft for the mother. Allogeneic 
immune responses occur when the lymphocytes of an antigen-
negative mother recognize the antigen of an antigen-positive child 
(red squares). No immune reactions occur if the mother and child are 
antigen negative, both are antigen positive, or if the mother is antigen 
positive and the child is antigen negative (white squares). Examples 
include hemolytic disease of the newborn, in which lymphocytes 
of a Rhesus D-negative mother recognize the Rhesus D-antigen on 
the child’s red blood cells; neonatal alloimmune thrombocytopenia, 
in which lymphocytes of an HPA-1-negative mother recognize the 
HPA-1-antigen on the child’s platelets; and neonatal alloimmune 
neutropenia, in which lymphocytes of an HNA-1-negative mother 
recognize the HNA-1-antigen on the child’s neutrophils.
HNA-1, Human neutrophil antigen 1; HPA-1, Human platelet 
antigen 1; Rhesus D, Rhesus blood group antigen D.

Discussion
The genome encodes linear information stored within the 

solid molecular structure of the DNA. However, spontaneous 
mutations introduce dynamism into this otherwise static 
condition, maintaining an ongoing process where the DNA 
is subject to continuous modifications throughout evolution. 
Consequently, the genetic diversity has increased over time. 
During pregnancy, genetic disparities between mothers 
and children gain relevance and are primarily shaped by 
alloreactivity. Nevertheless, the continuous maternal effector 
immune cell response to fetal alloantigens would lead to 
severe fetal damage during pregnancy. This underscores 
the predominance of alloantigen tolerance within the 
immune system before birth [29]. However, it is crucial 
to consider three important aspects that suggest a limit of 
allogeneic tolerance: First, pregnancy directly proves that 
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antigens could offer a new perspective. The source of these 
antibodies can be identified through their distinct (non-self) 
allotype. Therefore, detecting antibodies with a foreign allotype 
indicates the immunological activity of microchimeric cells. 
For instance, patients with rheumatoid arthritis were found 
to produce antibodies targeting foreign immunoglobulin 
allotypes [57, 58]. Moreover, the corresponding genes of these 
extrinsic immunoglobulins were detected in synovial tissues 
by polymerase chain reaction, suggesting a microchimerism 
involvement [57]. Unfortunately, there are also limitations 
on antibody studies: antibodies targeting foreign antigens 
are continuously cleared from the bloodstream through their 
binding to their respective tissues. Notably, multiple other 
strategies can be used to explore the impact of alloreactivity 
on diseases, such as animal models for type 2 diabetes and 
arteriosclerosis, in which antigens can be actively defined.

Conclusion
The mathematical disease model presented here 

effectively integrates infectious, genetic, and alloreactive 
diseases. However, while this model does not prove that 
alloreactivity is involved in non-communicable diseases, it 
provides a valuable mathematical framework. This framework 
emphasizes that alloreactivity adheres to both predictable and 
quantifiable principles. Therefore, it can serve as a tool for 
evaluating the role of alloreactivity in health and disease. 
In this framework, diseases' primary origins are no longer 
attributed to misbehavior, dysfunction, or dysregulation. 
Instead, we understand that the immune system adapts and 
responds to the inherent relativity of genes.
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